Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Antiproliferative Effects of Cynaropicrin on Anaplastic Thyroid Cancer Cells

Author(s): Saverio M. Lepore*, Valentina Maggisano*, Giovanni E. Lombardo, Jessica Maiuolo, Vincenzo Mollace, Stefania Bulotta, Diego Russo and Marilena Celano

Volume 19, Issue 1, 2019

Page: [59 - 66] Pages: 8

DOI: 10.2174/1871530318666180928153241

Price: $65

Abstract

Background: The sesquiterpene lactone cynaropicrin, a major constituent of the artichoke leaves extracts, has shown several biologic activities in many preclinical experimental models, including anti-proliferative effects.

Objective: Herein we evaluated the effects of cynaropicrin on the growth of three human anaplastic thyroid carcinoma cell lines, investigating the molecular mechanism underlying its action.

Method: MTT assay was used to evaluate the viability of CAL-62, 8505C and SW1736 cells, and flow cytometry to analyse cell cycle distribution. Western blot was performed to detect the levels of STAT3 phosphorylation and NFkB activation. Antioxidant effects were analyzed by measuring the reactive oxygen species and malonyldialdehyde dosage was used to check the presence of lipid peroxidation.

Results: Viability of CAL-62, 8505C and SW1736 cells was significantly reduced by cynaropicrin in a dose- and time-dependent way, with an EC50 of about 5 µM observed after 48 h of treatment with the compound. Cellular growth inhibition was accompanied both by an arrest of the cell cycle, mainly in the G2/M phase, and the presence of a significant percentage of necrotic cells. After 48 h of treatment with 10 µM of cynaropicrin, a reduced nuclear expression of NFkB and STAT3 phosphorylation were also revealed. Moreover, we observed an increase in lipid peroxidation, without any significant effect on the reactive oxygen species production.

Conclusion: These results demonstrate that cynaropicrin reduces the viability and promotes cytotoxic effects in anaplastic thyroid cancer cells associated with reduced NFkB expression, STAT3 phosphorylation and increased lipid peroxidation. Further characterization of the properties of this natural compound may open the way for using cynaropicrin as an adjuvant in the treatment of thyroid cancer.

Keywords: Artichoke leaves, cynaropicrin, sesquiterpenes, thyroid cancer, proliferation, STAT3, Lipid peroxidation.

Graphical Abstract

[1]
Cravotto, G.; Nano, G.M.; Binello, A.; Spagliardi, P.; Seu, G. Chemical and biological modification of cynaropicrin and grosheimin: A structure-bitterness relationship study. J. Sci. Food Agric., 2005, 85, 1757-1764.
[2]
Eljounaidi, K.; Comino, C.; Moglia, A.; Cankar, K.; Genre, A.; Hehn, A.; Bourgaud, F.; Beekwilder, J.; Lanteri, S. Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis. Plant Sci., 2015, 239, 128-136.
[3]
Elsebai, M.F.; Mocan, A.; Atanasov, A.G. Cynaropicrin: A comprehensive research review and therapeutic potential as an anti-Hepatitis C virus agent. Front. Pharmacol., 2016, 7, 472.
[http://dx.doi.org/10.3389/fphar.2016.00472]
[4]
Kang, K.; Lee, H.J.; Kim, C.Y.; Lee, S.B.; Tunsag, J.; Batsuren, D.; Nho, C.W. The chemopreventive effects of Saussurea salicifolia through induction of apoptosis and phase II detoxification enzyme. Biol. Pharm. Bull., 2007, 30, 2352-2359.
[5]
Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet, 2016, 388, 2783-2795.
[6]
Bulotta, S.; Celano, M.; Costante, G.; Russo, D. Emerging strategies for managing differentiated thyroid cancers refractory to radioiodine. Endocrine, 2016, 52, 214-221.
[7]
Bible, K.C.; Ryder, M. Evolving molecularly targeted therapies for advanced-stage thyroid cancers. Nat. Rev. Clin. Oncol., 2016, 13, 403-416.
[8]
Maggisano, V.; Celano, M.; Lombardo, G.E.; Lepore, S.M.; Sponziello, M.; Rosignolo, F.; Verrienti, A.; Baldan, F.; Puxeddu, E.; Durante, C.; Filetti, S.; Damante, G.; Russo, D.; Bulotta, S. Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells. Mol. Cell. Endocrinol., 2017, 448, 34-40.
[9]
Sponziello, M.; Verrienti, A.; Rosignolo, F.; De Rose, R.F.; Pecce, V.; Maggisano, V.; Durante, C.; Bulotta, S.; Damante, G.; Giacomelli, L.; Di Gioia, C.R.; Filetti, S.; Russo, D.; Celano, M. PDE5 expression in human thyroid tumors and effects of PDE5 inhibitors on growth and migration of cancer cells. Endocrine, 2015, 50, 434-441.
[10]
Celano, M.; Maggisano, V.; De Rose, R.F.; Bulotta, S.; Maiuolo, J.; Navarra, M.; Russo, D. Flavonoid fraction of Citrus reticulata juice reduces proliferation and migration of anaplastic thyroid carcinoma cells. Nutr. Cancer, 2015, 67, 1183-1190.
[11]
Bulotta, S.; Corradino, R.; Celano, M.; Maiuolo, J.; D’Agostino, M.; Oliverio, M.; Procopio, A.; Filetti, S.; Russo, D. Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells. J. Mol. Endocrinol., 2013, 51, 181-189.
[12]
Sponziello, M. Rosignolo. F.; Celano, M.; Maggisano, V.; Pecce, V.; De Rose, R.F.; Lombardo, G.E.; Durante, C.; Filetti, S.; Damante, G.; Russo, D.; Bulotta, S. Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells. Mol. Cell. Endocrinol., 2016, 431, 123-132.
[13]
Russo, D.; Celano, M.; Bulotta, S.; Bruno, R.; Arturi, F.; Giannasio, P.; Filetti, S.; Damante, G.; Tell, G. APE/Ref-1 is increased in nuclear fractions of human thyroid hyperfunctioning nodules. Mol. Cell. Endocrinol., 2002, 194, 71-76.
[14]
Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol., 2016, 12, 646-653.
[15]
Liu, Y.; Su, L.; Xiao, H. Review of factors related to the thyroid cancer epidemic. Int. J. Endocrinol., 2017, 2017, 5308635.
[http://dx.doi.org/10.1155/2017/5308635]
[16]
Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; De Vathaire, F.; Schlumberger, M. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab., 2006, 91, 2892-2899.
[17]
Schlumberger, M.; Lacroix, L.; Russo, D.; Filetti, S.; Bidart, J.M. Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat. Clin. Pract. Endocrinol. Metab., 2007, 3, 260-269.
[18]
Celano, M.; Mio, C.; Sponziello, M.; Verrienti, A.; Bulotta, S.; Durante, C.; Damante, G.; Russo, D. Targeting post-translational histone modifications for the treatment of non-medullary thyroid cancer. Mol. Cell. Endocrinol., 2017, 5, 38-47.
[19]
Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Akt inhibition enhances the cytotoxic effect of apigenin in combination with PLX4032 in anaplastic thyroid carcinoma cells harboring BRAFV600E. J. Endocrinol. Invest., 2013, 36, 1099-1104.
[20]
Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells. Mol. Cell. Endocrinol., 2013, 369, 130-139.
[21]
Yu, X.M.; Phan, T.; Patel, P.N.; Jaskula-Sztul, R.; Chen, H. Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer, 2013, 119, 774-781.
[22]
Yu, X.M.; Jaskula-Sztul, R.; Ahmed, K.; Harrison, A.D.; Kunnimalaiyaan, M.; Chen, H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol. Cancer Ther., 2013, 12, 1276-1287.
[23]
Mutlu Altundağ, E.; Kasacı, T.; Yılmaz, A.M.; Karademir, B.; Koçtürk, S.; Taga, Y.; Yalçın, A.S. Quercetin-induced cell death in human papillary thyroid cancer (b-cpap) cells. J. Thyroid Res., 2016, 9843675
[http://dx.doi.org/10.1155/2016/9843675]
[24]
Gonçalves, C.F.L.; de Freitas, M.L.; Ferreira, A.C.F. Flavonoids, thyroid iodide uptake and thyroid cancer-a review. Int. J. Mol. Sci., 2017, 18, E1247.
[http://dx.doi.org/10.3390/ijms18061247]
[25]
Ahn, J.C.; Biswas, R.; Chung, P.S. Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers Surg. Med., 2012, 44, 840-849.
[26]
Patel, P.N.; Yu, X.M.; Jaskula-Sztul, R.; Chen, H. Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann. Surg. Oncol., 2014, 21, S497-S504.
[27]
Allegri, L.; Rosignolo, F.; Mio, C.; Filetti, S.; Baldan, F.; Damante, G. Effects of nutraceuticals on anaplastic thyroid cancer cells. J. Cancer Res. Clin. Oncol., 2018, 144, 285-294.
[28]
Meireles, A.M.; Preto, A.; Rocha, A.S.; Rebocho, A.P.; Máximo, V.; Pereira-Castro, I.; Moreira, S.; Feijão, T.; Botelho, T.; Marques, R.; Trovisco, V.; Cirnes, L.; Alves, C.; Velho, S.; Soares, P.; Sobrinho-Simões, M. Molecular and genotypic characterization of human thyroid follicular cell carcinoma-derived cell lines. Thyroid, 2007, 17, 707-715.
[29]
Ricarte-Filho, J.C.; Ryder, M.; Chitale, D.A.; Rivera, M.; Heguy, A.; Ladanyi, M.; Janakiraman, M.; Solit, D.; Knauf, J.A.; Tuttle, R.M.; Ghossein, R.A.; Fagin, J.A. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res., 2009, 69, 4885-4893.
[30]
Jin, S.; Borkhuu, O.; Bao, W.; Yang, Y.T. Signaling pathways in thyroid cancer and their therapeutic implications. J. Clin. Med. Res., 2016, 8, 284-296.
[31]
Butturini, E.; Carcereri de Prati, A.; Chiavegato, G.; Rigo, A.; Cavalieri, E.; Darra, E.; Mariotto, S. Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic. Biol. Med., 2013, 65, 1322-1330.
[32]
Zhang, X.; Li, K.; Liu, S.; Zou, P.; Xing, R.; Yu, H.; Chen, X.; Qin, Y.; Li, P. Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. J. Agric. Food Chem., 2017, 65, 501-509.
[33]
Gong, E.Y.; Shin, Y.J.; Hwang, I.Y.; Kim, J.H.; Kim, S.M.; Moon, J.H.; Shin, J.S.; Lee, D.H.; Hur, D.Y.; Jin, D.H.; Hong, S.W.; Lee, W.K.; Lee, W.J. Combined treatment with vitamin C and sulindac synergistically induces p53- and ROS-dependent apoptosis in human colon cancer cells. Toxicol. Lett., 2016, 258, 126-133.
[34]
Conte, A.; Kisslinger, A.; Procaccini, C.; Paladino, S.; Oliviero, O.; de Amicis, F.; Faicchia, D.; Fasano, D.; Caputo, M.; Matarese, G.; Pierantoni, G.M.; Tramontano, D. Convergent effects of resveratrol and pyk2 on prostate cells. Int. J. Mol. Sci., 2016, 17, pii: E1542.
[http://dx.doi.org/10.3390/ijms17091542]
[35]
Odiatou, E.M.; Skaltsounis, A.L.; Constantinou, A.I. Identification of the factors responsible for the in vitro pro-oxidant and cytotoxic activities of the olive polyphenols oleuropein and hydroxytyrosol. Cancer Lett., 2013, 330, 113-121.
[36]
Cho, J.Y.; Kim, A.R.; Jung, J.H.; Chun, T.; Rhee, M.H.; Yoo, E.S. Cytotoxic and pro-apoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines. Eur. J. Pharmacol., 2004, 492, 85-94.
[37]
Ben Salem, M.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum. Nutr., 2015, 70, 441-453.
[38]
Rondanelli, M.; Opizzi, A.; Faliva, M.; Sala, P.; Perna, S.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Giacosa, A. Metabolic management in overweight subjects with naive impaired fasting glycaemia by means of a highly standardized extract from Cynara scolymus: A double-blind, placebo-controlled, randomized clinical trial. Phytother. Res., 2014, 28, 33-41.
[39]
Rondanelli, M.; Giacosa, A.; Opizzi, A.; Faliva, M.A.; Sala, P.; Perna, S.; Riva, A.; Morazzoni, P.; Bombardelli, E. Beneficial effects of artichoke leaf extract supplementation on increasing HDL-cholesterol in subjects with primary mild hypercholesterolaemia: A double-blind, randomized, placebo-controlled trial. Int. J. Food Sci. Nutr., 2013, 64, 7-15.
[41]
Wang, Y.; Hamburger, M.; Cheng, C.H.K.; Costall, B.; Naylor, R.J.; Jenner, P.; Hostettman, K. Neurotoxic sequiterpenoids from the yellow star thistle Centaurea solstitialis L. (Asteraceae). Helv. Chim. Acta, 1991, 74, 117-123.
[42]
Cheng, C.H.K.; Costall, B.; Hamburger, M.; Hostettmann, K.; Naylor, R.J.; Wang, Y.; Jenner, P. Toxic effects of solstitialin A 13-acetate and cynaropicrin from Centaurea solstitialis L. (Asteraceae) in cell cultures of foetal rat brain. Neuropharmacology, 1992, 31, 271-277.
[43]
Hay, A.J.; Hamburger, M.; Hostettmann, K.; Hoult, J.R. Toxic inhibition of smooth muscle contractility by plant-derived sesquiterpenes caused by their chemically reactive alpha-methylenebutyrolactone functions. Br. J. Pharmacol., 1994, 112, 9-12.
[44]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33, 1582-1614.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy