Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

General Review Article

GLP-1RA and SGLT2i: Cardiovascular Impact on Diabetic Patients

Author(s): Aschner Pablo, Blanc Evelyn, Folino Claudia and Morosán A. Yanina*

Volume 17, Issue 2, 2021

Published on: 24 November, 2020

Page: [149 - 158] Pages: 10

DOI: 10.2174/1573402116999201124123549

Price: $65

Abstract

Background: Diabetes is a chronic disease with high complexity that demands strategic medical care with a multifactorial risk-reduction approach. Over the past decade, the treatment of type 2 diabetes mellitus (T2DM) has entirely changed. One of the paradigm changes has been the arrival of new drugs that reduce cardiovascular risk beyond the reduction of A1C.

Objective: Sodium-glucose cotransporter 2 (SGLT2i) and glucagon-like peptide-1 receptor agonist (GLP-1RA) are two groups of antidiabetics drugs, which have demonstrated superiority compared to placebo for major cardiovascular events (MACE).

Methods: We update and discuss their impact on MACE expressed as relative risk (HR hazard ratio) and as the number needed to treat (NNT) to avoid one cardiovascular event in 5 years. We include the publications of the last 10 years.

Results: Empagliflozin, Canagliflozin and Dapagliflozin present an HR for MACE of 0.86, 0.86, 0.86 and an NNT of 38, 44, and 33, respectively (Dapagliflozin in secondary prevention). Regarding HHF (Hospitalization for Heart Failure), the HR was 0.65, 0.67, 0.73 and NNT was 44, 62, and 98, respectively. Lixisenatide, Exenatide, Liragutide, Semaglutide, Albiglutide and Dulaglutide presented for MACE an HR of 1.02, 0.91, 0.87, 0.74, 0.78, 0.88, respectively. There was no increase in the risk of HHF, but there was no benefit either.

Conclusion: Cardiovascular benefits of the GLP-1RA and the SGLT2i are clinically significant. A number needed to treat under 50 is required to avoid one MACE in five years. These benefits have led to important changes in the Clinical Practice Guidelines and in the care of our patients with T2DM.

Keywords: Cardiovascular outcomes, glucose lowering medications, type 2 diabetes mellitus, SGLT2i, GLP1 agonist, cardiovascular mechanisms, cardiovascular disease.

Graphical Abstract

[1]
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854-65.
[http://dx.doi.org/10.1016/S0140-6736(98)07037-8] [PMID: 9742977]
[2]
Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356(24): 2457-71.
[http://dx.doi.org/10.1056/NEJMoa072761] [PMID: 17517853]
[3]
US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry: diabetes mellitus – evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes https://www.fda.gov/downloads/ Drugs/https://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500129256.pdf
[4]
Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3(3): 153-65.
[http://dx.doi.org/10.1016/j.cmet.2006.01.004] [PMID: 16517403]
[5]
Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995; 44(9): 1126-31.
[http://dx.doi.org/10.2337/diab.44.9.1126] [PMID: 7657039]
[6]
Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon- like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002; 87(3): 1239-46.
[http://dx.doi.org/10.1210/jcem.87.3.8355] [PMID: 11889194]
[7]
Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003; 278(1): 471-8.
[http://dx.doi.org/10.1074/jbc.M209423200] [PMID: 12409292]
[8]
Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003; 144(12): 5149-58.
[http://dx.doi.org/10.1210/en.2003-0323] [PMID: 12960095]
[9]
Gupta A, Jelinek HF, Al-Aubaidy H. Glucagon like peptide-1 and its receptor agonists: Their roles in management of Type 2 diabetes mellitus. Diabetes Metab Syndr 2017; 11(3): 225-30.
[http://dx.doi.org/10.1016/j.dsx.2016.09.003] [PMID: 27884496]
[10]
Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A. Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists. Diabetes Ther 2015; 6(3): 239-56.
[http://dx.doi.org/10.1007/s13300-015-0127-x] [PMID: 26271795]
[11]
Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29: 46.
[12]
Verdich C, Toubro S, Buemann B, Lysgård Madsen J, Juul Holst J, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety-effect of obesity and weight reduction. Int J Obes Relat Metab Disord 2001; 25(8): 1206-14.
[http://dx.doi.org/10.1038/sj.ijo.0801655] [PMID: 11477506]
[13]
Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: A systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab 2017; 19(4): 524-36.
[http://dx.doi.org/10.1111/dom.12849] [PMID: 27981757]
[14]
Sorli C, Harashima SI, Tsoukas GM, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol 2017; 5(4): 251-60.
[http://dx.doi.org/10.1016/S2213-8587(17)30013-X] [PMID: 28110911]
[15]
Advani A, Bugyei-Twum A, Connelly KA. Cardiovascular effects of incretins in diabetes. Can J Diabetes 2013; 37(5): 309-14.
[http://dx.doi.org/10.1016/j.jcjd.2013.06.010] [PMID: 24500557]
[16]
Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2014; 16(1): 38-47.
[http://dx.doi.org/10.1111/dom.12175] [PMID: 23829656]
[17]
Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005; 54(1): 146-51.
[http://dx.doi.org/10.2337/diabetes.54.1.146] [PMID: 15616022]
[18]
Lønborg J, Vejlstrup N, Kelbæk H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 2012; 33(12): 1491-9.
[http://dx.doi.org/10.1093/eurheartj/ehr309] [PMID: 21920963]
[19]
von Scholten BJ, Lajer M, Goetze JP, Persson F, Rossing P. Time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet Med 2015; 32(3): 343-52.
[http://dx.doi.org/10.1111/dme.12594] [PMID: 25251901]
[20]
Gutzwiller JP, Tschopp S, Bock A, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004; 89(6): 3055-61.
[http://dx.doi.org/10.1210/jc.2003-031403] [PMID: 15181098]
[21]
Ha SJ, Kim W, Woo JS, et al. Preventive effects of exenatide on endothelial dysfunction induced by ischemia-reperfusion injury via KATP channels. Arterioscler Thromb Vasc Biol 2012; 32(2): 474-80.
[http://dx.doi.org/10.1161/ATVBAHA.110.222653] [PMID: 22155457]
[22]
Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 2006; 12(9): 694-9.
[http://dx.doi.org/10.1016/j.cardfail.2006.08.211] [PMID: 17174230]
[23]
Margulies KB, Hernandez AF, Redfield MM, et al. NHLBI Heart Failure Clinical Research Network. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 2016; 316(5): 500-8.
[http://dx.doi.org/10.1001/jama.2016.10260] [PMID: 27483064]
[24]
Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am J Med 2011; 124(1)(Suppl.): S35-53.
[http://dx.doi.org/10.1016/j.amjmed.2010.11.004] [PMID: 21194579]
[25]
Pfeffer MA, Claggett B, Diaz R, et al. ELIXA Investigators. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373(23): 2247-57.
[http://dx.doi.org/10.1056/NEJMoa1509225] [PMID: 26630143]
[26]
Holman RR, Bethel MA, Mentz RJ, et al. EXSCEL Study Group. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377(13): 1228-39.
[http://dx.doi.org/10.1056/NEJMoa1612917] [PMID: 28910237]
[27]
Marso SP, Daniels GH, Brown-Frandsen K, et al. LEADER Steering Committee; LEADER Trial Investigators. LEADER steering committee; LEADER trial investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[28]
Marso SP, Bain SC, Consoli A, et al. SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[29]
Hernandez AF, Green JB, Janmohamed S, et al. Harmony outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony outcomes): a double-blind, randomized placebo-controlled trial. Lancet 2018; 392(10157): 1519-29.
[http://dx.doi.org/10.1016/S0140-6736(18)32261-X] [PMID: 30291013]
[30]
Gerstein HC, Colhoun HM, Dagenais GR, et al. REWIND Trial Investigators. Design and baseline characteristics of participants in the Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) trial on the cardiovascular effects of dulaglutide. Diabetes Obes Metab 2018; 20(1): 42-9.
[http://dx.doi.org/10.1111/dom.13028] [PMID: 28573765]
[31]
Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud 2014; 11(3-4): 202-30.
[http://dx.doi.org/10.1900/RDS.2014.11.202] [PMID: 26177483]
[32]
Dore DD, Seeger JD, Arnold Chan K. Use of a claims-based active drug safety surveillance system to assess the risk of acute pancreatitis with exenatide or sitagliptin compared to metformin or glyburide. Curr Med Res Opin 2009; 25(4): 1019-27.
[http://dx.doi.org/10.1185/03007990902820519] [PMID: 19278373]
[33]
Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Glucagon-like peptide-1 receptor agonists and pancreatitis: a meta-analysis of randomized clinical trials. Diabetes Res Clin Pract 2014; 103(2): 269-75.
[http://dx.doi.org/10.1016/j.diabres.2014.01.010] [PMID: 24485345]
[34]
Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation 2016; 134(10): 752-72.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887] [PMID: 27470878]
[35]
Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2013; 159(4): 262-74.
[http://dx.doi.org/10.7326/0003-4819-159-4-201308200-00007] [PMID: 24026259]
[36]
Jingfan Z, Ling L, Cong L, Ping L, Yu C. Efficacy and safety of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus with inadequate glycemic control on metformin: a meta-analysis. Arch Endocrinol Metab 2019; 63(5): 478-86.
[http://dx.doi.org/10.20945/2359-3997000000146] [PMID: 31271575]
[37]
Zelniker TA, Braunwald E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75(4): 422-34.
[http://dx.doi.org/10.1016/j.jacc.2019.11.031] [PMID: 32000955]
[38]
Kario K, Okada K, Murata M, et al. Effects of luseogliflozin on arterial properties in patients with type 2 diabetes mellitus: The multicenter, exploratory LUSCAR study. J Clin Hypertens (Greenwich) 2020; 22(9): 1585-93.
[http://dx.doi.org/10.1111/jch.13988] [PMID: 32810338]
[39]
Kario K, Ferdinand KC, O’Keefe JH. Control of 24-hour blood pressure with SGLT2 inhibitors to prevent cardiovascular disease. Prog Cardiovasc Dis 2020; 63(3): 249-62.
[http://dx.doi.org/10.1016/j.pcad.2020.04.003] [PMID: 32275926]
[40]
Kario K, Weber M, Ferrannini E. Nocturnal hypertension in diabetes: Potential target of sodium/glucose cotransporter 2 (SGLT2) inhibition. J Clin Hypertens (Greenwich) 2018; 20(3): 424-8.
[http://dx.doi.org/10.1111/jch.13229] [PMID: 29457344]
[41]
Kario K, Okada K, Kato M, et al. 24-hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA study. Circulation 2018; 139(18): 2089-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.037076] [PMID: 30586745]
[42]
Kario K, Hoshide S, Okawara Y, et al. Effect of canagliflozin on nocturnal home blood pressure in Japanese patients with type 2 diabetes mellitus: The SHIFT-J study. J Clin Hypertens (Greenwich) 2018; 20(10): 1527-35.
[http://dx.doi.org/10.1111/jch.13367] [PMID: 30246286]
[43]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[44]
Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[45]
Wiviott SD, Raz I, Bonaca MP, et al. DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[46]
Ruanpeng D, Ungprasert P, Sangtian J, Harindhanavudhi T. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Metab Res Rev 2017; 33(6): e2903.
[http://dx.doi.org/10.1002/dmrr.2903] [PMID: 28440590]
[47]
Tang HL, Li DD, Zhang JJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 2016; 18(12): 1199-206.
[http://dx.doi.org/10.1111/dom.12742] [PMID: 27407013]
[48]
Donnan JR, Grandy CA, Chibrikov E, et al. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open 2019; 9(1): e022577.
[http://dx.doi.org/10.1136/bmjopen-2018-022577] [PMID: 30813108]
[49]
Dicembrini I, Tomberli B, Nreu B, et al. Peripheral artery disease and amputations with Sodium-Glucose co-Transporter-2 (SGLT-2) inhibitors: A meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2019; 153: 138-44.
[http://dx.doi.org/10.1016/j.diabres.2019.05.028] [PMID: 31150722]
[50]
Tsimihodimos V, Filippatos TD, Filippas-Ntekouan S, Elisaf M. Renoprotective effects of SGLT2i: beyond glucose reabsorption inhibition. Curr Vasc Pharmacol 2017; 15(2): 96-102.
[http://dx.doi.org/10.2174/1570161114666161007163426] [PMID: 27748201]
[51]
Abdul-Ghani MA, Norton L, DeFronzo RA. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am J Physiol Renal Physiol 2015; 309(11): F889-900.
[http://dx.doi.org/10.1152/ajprenal.00267.2015] [PMID: 26354881]
[52]
Burke KR, Schumacher CA, Harpe SE. SGLT2 Inhibitors: A Systematic Review of Diabetic Ketoacidosis and Related Risk Factors in the Primary Literature. Pharmacotherapy 2017; 37(2): 187-94.
[http://dx.doi.org/10.1002/phar.1881] [PMID: 27931088]
[53]
Wu JH, Foote C, Blomster J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2016; 4(5): 411-9.
[http://dx.doi.org/10.1016/S2213-8587(16)00052-8] [PMID: 27009625]
[54]
Tang H, Zhang X, Zhang J, et al. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia 2016; 59(12): 2546-51.
[http://dx.doi.org/10.1007/s00125-016-4101-6] [PMID: 27628105]
[55]
Filippatos TD, Tsimihodimos V, Liamis G, Elisaf MS. SGLT2 inhibitors-induced electrolyte abnormalities: An analysis of the associated mechanisms. Diabetes Metab Syndr 2018; 12(1): 59-63.
[http://dx.doi.org/10.1016/j.dsx.2017.08.003] [PMID: 28826578]
[56]
Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 2015; 3(1): 8-10.
[http://dx.doi.org/10.1016/S2213-8587(14)70227-X] [PMID: 25523498]
[57]
Briand F, Mayoux E, Brousseau E, et al. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes 2016; 65(7): 2032-8.
[http://dx.doi.org/10.2337/db16-0049] [PMID: 27207551]
[58]
Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Pharmacologic Management of Type 2 Diabetes: 2016 Interim Update. Can J Diabetes 2016; 40(6): 484-6.
[http://dx.doi.org/10.1016/j.jcjd.2016.09.003] [PMID: 27912867]
[59]
Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020; 63(2): 221-8.
[http://dx.doi.org/10.1007/s00125-019-05039-w] [PMID: 31853556]
[60]
Cosentino F, Grant PJ, Aboyans V, et al. ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[61]
Husain M, Birkenfeld AL, Donsmark M, et al. PIONEER 6 Investigators. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019; 381(9): 841-51.
[http://dx.doi.org/10.1056/NEJMoa1901118] [PMID: 31185157]
[62]
Available from: www.clinicaltrials.gov
[63]
Kosiborod M, Cavender MA, Fu AZ, et al. CVD-REAL Investigators and Study Group*. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the cvd-real study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[64]
Patorno E, Najafzadeh M, Pawar A, et al. The EMPagliflozin comparative effectiveness and Safety (EMPRISE) study programme: Design and exposure accrual for an evaluation of empagliflozin in routine clinical care. Endocrinol Diabetes Metab 2019; 3(1): e00103.
[PMID: 31922030]
[65]
Ryan PB, Buse JB, Schuemie MJ, et al. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes Metab 2018; 20(11): 2585-97.
[http://dx.doi.org/10.1111/dom.13424] [PMID: 29938883]
[66]
Furtado RHM, Bonaca MP, Raz I, et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation 2019; 139(22): 2516-27.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.039996] [PMID: 30882239]
[67]
McMurray JJV, Solomon SD, Inzucchi SE, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381(21): 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy