Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Impact of Dysfunctional Protein Catabolism on Macrophage Cholesterol Handling

Author(s): Takuro Miyazaki* and Akira Miyazaki

Volume 26, Issue 9, 2019

Page: [1631 - 1643] Pages: 13

DOI: 10.2174/0929867325666180326165234

Price: $65

Abstract

Protein catabolism in macrophages, which is accomplished mainly through autophagy- lysosomal degradation, ubiquitin-proteasome system, and calpains, is disturbed in atheroprone vessels. Moreover, growing evidence suggests that defects in protein catabolism interfere with cholesterol handling in macrophages. Indeed, decreases in autophagy facilitate the deposition of cholesterol in atheroprone macrophages and the subsequent development of vulnerable atherosclerotic plaques due to impaired catabolism of lipid droplets and limited efferocytic clearance of dead cells. The proteasome is responsible for the degradation of ATP-binding cassette transporters, which leads to impaired cholesterol efflux from macrophages. Overactivation of conventional calpains contributes to excessive processing of functional proteins, thereby accelerating receptor-mediated uptake of oxidized low-density lipoproteins (LDLs) and slowing cholesterol efflux. Furthermore, calpain-6, an unconventional nonproteolytic calpain in macrophages, potentiates pinocytotic uptake of native LDL and attenuates the efferocytic clearance of dead cells. Herein, we focus on recent progress in understanding how defective protein catabolism is associated with macrophage cholesterol handling and subsequent atherogenesis.

Keywords: Atherosclerosis, low-density lipoprotein, scavenger receptor, pinocytosis, efferocytosis, cholesterol efflux; ATP-binding cassette transporters.

[1]
Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. Genet., 2003, 4(7), 544-558.
[2]
Rawlings, N.D.; Barrett, A.J.; Bateman, A. MEROPS: The peptidase database. Nucleic Acids Res., 2010, 38(Database issue), D227-D233.
[3]
Mizushima, N.; Komatsu, M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[4]
Tanaka, K.; Matsuda, N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta, 2014, 1843(1), 197-204.
[5]
Qureshi, N.; Vogel, S.N.; Van Way, C., III; Papasian, C.J.; Qureshi, A.A.; Morrison, D.C. The proteasome: a central regulator of inflammation and macrophage function. Immunol. Res., 2005, 31(3), 243-260.
[6]
Vieira, O.; Escargueil-Blanc, I.; Jürgens, G.; Borner, C.; Almeida, L.; Salvayre, R.; Nègre-Salvayre, A. Oxidized LDLs alter the activity of the ubiquitin-proteasome pathway: potential role in oxidized LDL-induced apoptosis. FASEB J., 2000, 14(3), 532-542.
[7]
Martinet, W.; De Bie, M.; Schrijvers, D.M.; De Meyer, G.R.; Herman, A.G.; Kockx, M.M. 7-ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2004, 24(12), 2296-2301.
[8]
Miyazaki, T.; Miyazaki, A. Emerging roles of calpain proteolytic systems in macrophage cholesterol handling. Cell. Mol. Life Sci., 2017, 74(16), 3011-3021.
[9]
Miyazaki, T.; Miyazaki, A. Dysregulation of calpain proteolytic systems underlies degenerative vascular disorders. J. Atheroscler. Thromb., 2018, 25(1), 1-15.
[10]
Miyazaki, T.; Koya, T.; Kigawa, Y.; Oguchi, T.; Lei, X.F.; Kim-Kaneyama, J.R.; Miyazaki, A. Calpain and atherosclerosis. J. Atheroscler. Thromb., 2013, 20(3), 228-237.
[11]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[12]
Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007, 8(9), 741-752.
[13]
Lavandero, S.; Chiong, M.; Rothermel, B.A.; Hill, J.A. Autophagy in cardiovascular biology. J. Clin. Invest., 2015, 125(1), 55-64.
[14]
Razani, B.; Feng, C.; Coleman, T.; Emanuel, R.; Wen, H.; Hwang, S.; Ting, J.P.; Virgin, H.W.; Kastan, M.B.; Semenkovich, C.F. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab., 2012, 15(4), 534-544.
[15]
Liao, X.; Sluimer, J.C.; Wang, Y.; Subramanian, M.; Brown, K.; Pattison, J.S.; Robbins, J.; Martinez, J.; Tabas, I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab., 2012, 15(4), 545-553.
[16]
Sijts, E.J.; Kloetzel, P.M. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell. Mol. Life Sci., 2011, 68(9), 1491-1502.
[17]
DeSalle, L.M.; Pagano, M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett., 2001, 490(3), 179-189.
[18]
Kimura, Y.; Tanaka, K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J. Biochem., 2010, 147(6), 793-798.
[19]
Zheng, Q.; Huang, T.; Zhang, L.; Zhou, Y.; Luo, H.; Xu, H.; Wang, X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci., 2016, 8, 303.
[20]
Herrmann, J.; Lerman, L.O.; Lerman, A. On to the road to degradation: Atherosclerosis and the proteasome. Cardiovasc. Res., 2010, 85(2), 291-302.
[21]
Herrmann, J.; Soares, S.M.; Lerman, L.O.; Lerman, A. Potential role of the ubiquitin-proteasome system in atherosclerosis: Aspects of a protein quality disease. J. Am. Coll. Cardiol., 2008, 51(21), 2003-2010.
[22]
Herrmann, J.; Saguner, A.M.; Versari, D.; Peterson, T.E.; Chade, A.; Olson, M.; Lerman, L.O.; Lerman, A. Chronic proteasome inhibition contributes to coronary atherosclerosis. Circ. Res., 2007, 101(9), 865-874.
[23]
Versari, D.; Herrmann, J.; Gössl, M.; Mannheim, D.; Sattler, K.; Meyer, F.B.; Lerman, L.O.; Lerman, A. Dysregulation of the ubiquitin-proteasome system in human carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(9), 2132-2139.
[24]
Brand, K.; Eisele, T.; Kreusel, U.; Page, M.; Page, S.; Haas, M.; Gerling, A.; Kaltschmidt, C.; Neumann, F.J.; Mackman, N.; Baeurele, P.A.; Walli, A.K.; Neumeier, D. Dysregulation of monocytic nuclear factor-kappa B by oxidized low-density lipoprotein. Arterioscler. Thromb. Vasc. Biol., 1997, 17(10), 1901-1909.
[25]
Wilck, N.; Fechner, M.; Dreger, H.; Hewing, B.; Arias, A.; Meiners, S.; Baumann, G.; Stangl, V.; Stangl, K.; Ludwig, A. Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1418-1426.
[26]
Ross, R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[27]
Goll, D.E.; Thompson, V.F.; Li, H.; Wei, W.; Cong, J. The calpain system. Physiol. Rev., 2003, 83(3), 731-801.
[28]
Ono, Y.; Sorimachi, H. Calpains: An elaborate proteolytic system. Biochim. Biophys. Acta, 2012, 1824(1), 224-236.
[29]
Ono, Y.; Saido, T.C.; Sorimachi, H. Calpain research for drug discovery: Challenges and potential. Nat. Rev. Drug Discov., 2016, 15(12), 854-876.
[30]
Miyazaki, T.; Ohata, H.; Yamamoto, M.; Momose, K. Spontaneous and flow-induced Ca2+ transients in retracted regions in endothelial cells. Biochem. Biophys. Res. Commun., 2001, 281(1), 172-179.
[31]
Miyazaki, T.; Honda, K.; Ohata, H. m-Calpain antagonizes RhoA overactivation and endothelial barrier dysfunction under disturbed shear conditions. Cardiovasc. Res., 2010, 85(3), 530-541.
[32]
Miyazaki, T.; Taketomi, Y.; Takimoto, M.; Lei, X.F.; Arita, S.; Kim-Kaneyama, J.R.; Arata, S.; Ohata, H.; Ota, H.; Murakami, M.; Miyazaki, A. m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation, 2011, 124(23), 2522-2532.
[33]
Subramanian, V.; Uchida, H.A.; Ijaz, T.; Moorleghen, J.J.; Howatt, D.A.; Balakrishnan, A. Calpain inhibition attenuates angiotensin II-induced abdominal aortic aneurysms and atherosclerosis in low-density lipoprotein receptor-deficient mice. J. Cardiovasc. Pharmacol., 2012, 59(1), 66-76.
[34]
Howatt, D.A.; Balakrishnan, A.; Moorleghen, J.J.; Muniappan, L.; Rateri, D.L.; Uchida, H.A.; Takano, J.; Saido, T.C.; Chishti, A.H.; Baud, L.; Subramanian, V. Leukocyte calpain deficiency reduces angiotensin II-Induced inflammation and atherosclerosis but not abdominal aortic aneurysms in mice. Arterioscler. Thromb. Vasc. Biol., 2016, 36(5), 835-845.
[35]
Miyazaki, T.; Tonami, K.; Hata, S.; Aiuchi, T.; Ohnishi, K.; Lei, X.F.; Kim-Kaneyama, J.R.; Takeya, M.; Itabe, H.; Sorimachi, H.; Kurihara, H.; Miyazaki, A. Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing. J. Clin. Invest., 2016, 126(9), 3417-3432.
[36]
Tonami, K.; Hata, S.; Ojima, K.; Ono, Y.; Kurihara, Y.; Amano, T.; Sato, T.; Kawamura, Y.; Kurihara, H.; Sorimachi, H. Calpain-6 deficiency promotes skeletal muscle development and regeneration. PLoS Genet., 2013, 9(8), e1003668.
[37]
Dear, N.; Matena, K.; Vingron, M.; Boehm, T. A new subfamily of vertebrate calpains lacking a calmodulin-like domain: Implications for calpain regulation and evolution. Genomics, 1997, 45(1), 175-184.
[38]
Brown, M.S.; Goldstein, J.L. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem., 1983, 52, 223-261.
[39]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[40]
Chang, T.Y.; Chang, C.C.; Ohgami, N.; Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol., 2006, 22, 129-157.
[41]
Yokoyama, S. Assembly of high density lipoprotein by the ABCA1/apolipoprotein pathway. Curr. Opin. Lipidol., 2005, 16(3), 269-279.
[42]
Silvestre-Roig, C.; de Winther, M.P.; Weber, C.; Daemen, M.J.; Lutgens, E.; Soehnlein, O. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ. Res., 2014, 114(1), 214-226.
[43]
Steinberg, D.; Parthasarathy, S.; Carew, T.E.; Khoo, J.C.; Witztum, J.L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med., 1989, 320(14), 915-924.
[44]
Kunjathoor, V.V.; Febbraio, M.; Podrez, E.A.; Moore, K.J.; Andersson, L.; Koehn, S.; Rhee, J.S.; Silverstein, R.; Hoff, H.F.; Freeman, M.W. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem., 2002, 277(51), 49982-49988.
[45]
Bonilla, D.L.; Bhattacharya, A.; Sha, Y.; Xu, Y.; Xiang, Q.; Kan, A.; Jagannath, C.; Komatsu, M.; Eissa, N.T. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity, 2013, 39(3), 537-547.
[46]
Wang, X.; Li, L.; Niu, X.; Dang, X.; Li, P.; Qu, L.; Bi, X.; Gao, Y.; Hu, Y.; Li, M.; Qiao, W.; Peng, Z.; Pan, L. mTOR enhances foam cell formation by suppressing the autophagy pathway. DNA Cell Biol., 2014, 33(4), 198-204.
[47]
Liu, X.; Tang, Y.; Cui, Y.; Zhang, H.; Zhang, D. Autophagy is associated with cell fate in the process of macrophage-derived foam cells formation and progress. J. Biomed. Sci., 2016, 23(1), 57.
[48]
Zhao, J.F.; Ching, L.C.; Huang, Y.C.; Chen, C.Y.; Chiang, A.N.; Kou, Y.R.; Shyue, S.K.; Lee, T.S. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol. Nutr. Food Res., 2012, 56(5), 691-701.
[49]
Yang, X.; Yin, M.; Yu, L.; Lu, M.; Wang, H.; Tang, F.; Zhang, Y. Simvastatin inhibited oxLDL-induced proatherogenic effects through calpain-1-PPARγ-CD36 pathway. Can. J. Physiol. Pharmacol., 2016, 94(12), 1336-1343.
[50]
Steinbrecher, U.P.; Lougheed, M. Scavenger receptor-independent stimulation of cholesterol esterification in macrophages by low density lipoprotein extracted from human aortic intima. Arterioscler. Thromb., 1992, 12(5), 608-625.
[51]
Manning-Tobin, J.J.; Moore, K.J.; Seimon, T.A.; Bell, S.A.; Sharuk, M.; Alvarez-Leite, J.I.; de Winther, M.P.; Tabas, I.; Freeman, M.W. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol., 2009, 29(1), 19-26.
[52]
Kruth, H.S. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Curr. Opin. Lipidol., 2011, 22(5), 386-393.
[53]
Buono, C.; Anzinger, J.J.; Amar, M.; Kruth, H.S. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J. Clin. Invest., 2009, 119(5), 1373-1381.
[54]
Kruth, H.S.; Jones, N.L.; Huang, W.; Zhao, B.; Ishii, I.; Chang, J.; Combs, C.A.; Malide, D.; Zhang, W.Y. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem., 2005, 280(3), 2352-2360.
[55]
Barthwal, M.K.; Anzinger, J.J.; Xu, Q.; Bohnacker, T.; Wymann, M.P.; Kruth, H.S. Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLoS One, 2013, 8(3), e58054.
[56]
Anzinger, J.J.; Chang, J.; Xu, Q.; Buono, C.; Li, Y.; Leyva, F.J.; Park, B.C.; Greene, L.E.; Kruth, H.S. Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis. Arterioscler. Thromb. Vasc. Biol., 2010, 30(10), 2022-2031.
[57]
Steckelberg, A.L.; Boehm, V.; Gromadzka, A.M.; Gehring, N.H. CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Reports, 2012, 2(3), 454-461.
[58]
Fujii, M.; Kawai, K.; Egami, Y.; Araki, N. Dissecting the roles of Rac1 activation and deactivation in macropinocytosis using microscopic photo-manipulation. Sci. Rep., 2013, 3, 2385.
[59]
Gordon, D.J.; Rifkind, B.M. High-density lipoprotein--the clinical implications of recent studies. N. Engl. J. Med., 1989, 321(19), 1311-1316.
[60]
Ho, Y.K.; Brown, M.S.; Goldstein, J.L. Hydrolysis and excretion of cytoplasmic cholesteryl esters by macrophages: stimulation by high density lipoprotein and other agents. J. Lipid Res., 1980, 21(4), 391-398.
[61]
Ouimet, M.; Franklin, V.; Mak, E.; Liao, X.; Tabas, I.; Marcel, Y.L. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab., 2011, 13(6), 655-667.
[62]
Ouimet, M.; Ediriweera, H.; Afonso, M.S.; Ramkhelawon, B.; Singaravelu, R.; Liao, X.; Bandler, R.C.; Rahman, K.; Fisher, E.A.; Rayner, K.J.; Pezacki, J.P.; Tabas, I.; Moore, K.J. MicroRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1058-1067.
[63]
Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720.
[64]
Hsieh, V.; Kim, M.J.; Gelissen, I.C.; Brown, A.J.; Sandoval, C.; Hallab, J.C.; Kockx, M.; Traini, M.; Jessup, W.; Kritharides, L. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J. Biol. Chem., 2014, 289(11), 7524-7536.
[65]
Aleidi, S.M.; Howe, V.; Sharpe, L.J.; Yang, A.; Rao, G.; Brown, A.J.; Gelissen, I.C. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters. J. Biol. Chem., 2015, 290(40), 24604-24613.
[66]
Ogura, M.; Ayaori, M.; Terao, Y.; Hisada, T.; Iizuka, M.; Takiguchi, S.; Uto-Kondo, H.; Yakushiji, E.; Nakaya, K.; Sasaki, M.; Komatsu, T.; Ozasa, H.; Ohsuzu, F.; Ikewaki, K. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9), 1980-1987.
[67]
Wang, N.; Chen, W.; Linsel-Nitschke, P.; Martinez, L.O.; Agerholm-Larsen, B.; Silver, D.L.; Tall, A.R. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest., 2003, 111(1), 99-107.
[68]
Lu, R.; Arakawa, R.; Ito-Osumi, C.; Iwamoto, N.; Yokoyama, S. ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation. Arterioscler. Thromb. Vasc. Biol., 2008, 28(10), 1820-1824.
[69]
Okoro, E.U.; Guo, Z.; Yang, H. Akt isoform-dependent regulation of ATP-binding cassette A1 expression by apolipoprotein E. Biochem. Biophys. Res. Commun., 2016, 477(1), 123-128.
[70]
Liu, X.Y.; Lu, Q.; Ouyang, X.P.; Tang, S.L.; Zhao, G.J.; Lv, Y.C.; He, P.P.; Kuang, H.J.; Tang, Y.Y.; Fu, Y.; Zhang, D.W.; Tang, C.K. Apelin-13 increases expression of ATP-binding cassette transporter A1 via activating protein kinase C α signaling in THP-1 macrophage-derived foam cells. Atherosclerosis, 2013, 226(2), 398-407.
[71]
Lu, Q.; Tang, S.L.; Liu, X.Y.; Zhao, G.J.; Ouyang, X.P.; Lv, Y.C.; He, P.P.; Yao, F.; Chen, W.J.; Tang, Y.Y.; Zhang, M.; Zhang, D.W.; Yin, K.; Tang, C.K. Tertiary-butylhydroquinone upregulates expression of ATP-binding cassette transporter A1 via nuclear factor E2-related factor 2/heme oxygenase-1 signaling in THP-1 macrophage-derived foam cells. Circ. J., 2013, 77(9), 2399-2408.
[72]
Hossain, M.A.; Ngeth, S.; Chan, T.; Oda, M.N.; Francis, G.A. Lipid-bound apolipoproteins in tyrosyl radical-oxidized HDL stabilize ABCA1 like lipid-free apolipoprotein A-I. BMC Biochem., 2012, 13, 1.
[73]
Wu, C.A.; Tsujita, M.; Hayashi, M.; Yokoyama, S. Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J. Biol. Chem., 2004, 279(29), 30168-30174.
[74]
Arakawa, R.; Tsujita, M.; Iwamoto, N.; Ito-Ohsumi, C.; Lu, R.; Wu, C.A.; Shimizu, K.; Aotsuka, T.; Kanazawa, H.; Abe-Dohmae, S.; Yokoyama, S. Pharmacological inhibition of ABCA1 degradation increases HDL biogenesis and exhibits antiatherogenesis. J. Lipid Res., 2009, 50(11), 2299-2305.
[75]
Yakushiji, E.; Ayaori, M.; Nishida, T.; Shiotani, K.; Takiguchi, S.; Nakaya, K.; Uto-Kondo, H.; Ogura, M.; Sasaki, M.; Yogo, M.; Komatsu, T.; Lu, R.; Yokoyama, S.; Ikewaki, K. Probucol-oxidized products, spiroquinone and diphenoquinone, promote reverse cholesterol transport in mice. Arterioscler. Thromb. Vasc. Biol., 2016, 36(4), 591-597.
[76]
Wang, L.; Palme, V.; Rotter, S.; Schilcher, N.; Cukaj, M.; Wang, D.; Ladurner, A.; Heiss, E.H.; Stangl, H.; Dirsch, V.M.; Atanasov, A.G. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol. Nutr. Food Res., 2017, 61(4), 1500960.
[77]
Tanaka, N.; Abe-Dohmae, S.; Iwamoto, N.; Fitzgerald, M.L.; Yokoyama, S. Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J. Lipid Res., 2010, 51(9), 2591-2599.
[78]
Lin, C.Y.; Lee, T.S.; Chen, C.C.; Chang, C.A.; Lin, Y.J.; Hsu, Y.P.; Ho, L.T. Endothelin-1 exacerbates lipid accumulation by increasing the protein degradation of the ATP-binding cassette transporter G1 in macrophages. J. Cell. Physiol., 2011, 226(8), 2198-2205.
[79]
Zhao, J.F.; Shyue, S.K.; Lee, T.S. Excess Nitric Oxide Activates TRPV1-Ca(2+)-Calpain Signaling and Promotes PEST-dependent Degradation of Liver X Receptor α. Int. J. Biol. Sci., 2016, 12(1), 18-29.
[80]
Hozoji, M.; Munehira, Y.; Ikeda, Y.; Makishima, M.; Matsuo, M.; Kioka, N.; Ueda, K. Direct interaction of nuclear liver X receptor-beta with ABCA1 modulates cholesterol efflux. J. Biol. Chem., 2008, 283(44), 30057-30063.
[81]
Silvestre-Roig, C.; de Winther, M.P.; Weber, C.; Daemen, M.J.; Lutgens, E.; Soehnlein, O. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ. Res., 2014, 114(1), 214-226.
[82]
Ortega-Gómez, A.; Perretti, M.; Soehnlein, O. Resolution of inflammation: An integrated view. EMBO Mol. Med., 2013, 5(5), 661-674.
[83]
Thorp, E.; Vaisar, T.; Subramanian, M.; Mautner, L.; Blobel, C.; Tabas, I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem., 2011, 286(38), 33335-33344.
[84]
Sather, S.; Kenyon, K.D.; Lefkowitz, J.B.; Liang, X.; Varnum, B.C.; Henson, P.M.; Graham, D.K. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood, 2007, 109(3), 1026-1033.
[85]
Ravichandran, K.S. Beginnings of a good apoptotic meal: The find-me and eat-me signaling pathways. Immunity, 2011, 35(4), 445-455.
[86]
Driscoll, W.S.; Vaisar, T.; Tang, J.; Wilson, C.L.; Raines, E.W. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ. Res., 2013, 113(1), 52-61.
[87]
Teplova, I.; Lozy, F.; Price, S.; Singh, S.; Barnard, N.; Cardiff, R.D.; Birge, R.B.; Karantza, V. ATG proteins mediate efferocytosis and suppress inflammation in mammary involution. Autophagy, 2013, 9(4), 459-475.
[88]
Tao, H.; Yancey, P.G.; Babaev, V.R.; Blakemore, J.L.; Zhang, Y.; Ding, L.; Fazio, S.; Linton, M.F. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J. Lipid Res., 2015, 56(8), 1449-1460.
[89]
Miyazaki, T.; Taketomi, Y.; Saito, Y.; Hosono, T.; Lei, X.F.; Kim-Kaneyama, J.R.; Arata, S.; Takahashi, H.; Murakami, M.; Miyazaki, A. Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells. Circ. Res., 2015, 116(7), 1170-1181.
[90]
Tsai, J.C.; Lin, Y.W.; Huang, C.Y.; Lin, C.Y.; Tsai, Y.T.; Shih, C.M.; Lee, C.Y.; Chen, Y.H.; Li, C.Y.; Chang, N.C.; Lin, F.Y.; Tsai, C.S. The role of calpain-myosin 9-Rab7b pathway in mediating the expression of Toll-like receptor 4 in platelets: a novel mechanism involved in α-granules trafficking. PLoS One, 2014, 9(1), e85833.
[91]
Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[92]
Giunzioni, I.; Tavori, H.; Covarrubias, R.; Major, A.S.; Ding, L.; Zhang, Y.; DeVay, R.M.; Hong, L.; Fan, D.; Predazzi, I.M.; Rashid, S.; Linton, M.F.; Fazio, S. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol., 2016, 238(1), 52-62.
[93]
Maxwell, K.N.; Fisher, E.A.; Breslow, J.L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 2069-2074.
[94]
Wang, Y.; Huang, Y.; Hobbs, H.H.; Cohen, J.C. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J. Lipid Res., 2012, 53(9), 1932-1943.
[95]
Martinet, W.; De Loof, H.; De Meyer, G.R. mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis, 2014, 233(2), 601-607.
[96]
Chen, W.Q.; Zhong, L.; Zhang, L.; Ji, X.P.; Zhang, M.; Zhao, Y.X.; Zhang, C.; Zhang, Y. Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels. Br. J. Pharmacol., 2009, 156(6), 941-951.
[97]
Pakala, R.; Stabile, E.; Jang, G.J.; Clavijo, L.; Waksman, R. Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis. J. Cardiovasc. Pharmacol., 2005, 46(4), 481-486.
[98]
Zhao, L.; Ding, T.; Cyrus, T.; Cheng, Y.; Tian, H.; Ma, M.; Falotico, R.; Praticò, D. Low-dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor. Br. J. Pharmacol., 2009, 156(5), 774-785.
[99]
Xie, J.; Wang, X.; Proud, C.G. mTOR inhibitors in cancer therapy. F1000Res., 2016, 5(F1000 Faculty Rev), 2078.
[http://dx.doi.org/10.12688/f1000research.9207.1]
[100]
Huang, L.; Chen, C.H. Proteasome regulators: Activators and inhibitors. Curr. Med. Chem., 2009, 16(8), 931-939.
[101]
Seo, H.; Sonntag, K.C.; Kim, W.; Cattaneo, E.; Isacson, O. Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS One, 2007, 2(2), e238.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy