Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention

Author(s): Alice Ossoli, Chiara Pavanello, Eleonora Giorgio, Laura Calabresi and Monica Gomaraschi*

Volume 26, Issue 9, 2019

Page: [1610 - 1630] Pages: 21

DOI: 10.2174/0929867325666180316115726

Price: $65

Abstract

Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction.

Keywords: High density lipoproteins, atherosclerosis, coronary heart disease, chronic kidney disease, diabetes, autoimmune disorders, inflammation.

[1]
Castelli, W.P.; Anderson, K.; Wilson, P.W.; Levy, D. Lipids and risk of coronary heart disease. The Framingham Study. Ann. Epidemiol., 1992, 2(1-2), 23-28.
[2]
Cullen, P.; Schulte, H.; Assmann, G. The Münster Heart Study (PROCAM): total mortality in middle-aged men is increased at low total and LDL cholesterol concentrations in smokers but not in nonsmokers. Circulation, 1997, 96(7), 2128-2136.
[3]
Sharrett, A.R.; Ballantyne, C.M.; Coady, S.A.; Heiss, G.; Sorlie, P.D.; Catellier, D.; Patsch, W. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The atherosclerosis risk in communities (ARIC) study. Circulation, 2001, 104(10), 1108-1113.
[4]
Rader, D.J.; Hovingh, G.K. HDL and cardiovascular disease. Lancet, 2014, 384(9943), 618-625.
[5]
Scott, R.; O’Brien, R.; Fulcher, G.; Pardy, C.; D’Emden, M.; Tse, D.; Taskinen, M.R.; Ehnholm, C.; Keech, A. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the fenofibrate intervention and event lowering in diabetes (FIELD) study. Diabetes Care, 2009, 32(3), 493-498.
[6]
Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med., 2011, 365(24), 2255-2267.
[7]
Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.C.; Waters, D.D.; Shear, C.L.; Revkin, J.H.; Buhr, K.A.; Fisher, M.R.; Tall, A.R.; Brewer, B. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med., 2007, 357(21), 2109-2122.
[8]
Calabresi, L.; Gomaraschi, M.; Franceschini, G. High-density lipoprotein quantity or quality for cardiovascular prevention? Curr. Pharm. Des., 2010, 16(13), 1494-1503.
[9]
Annema, W.; von Eckardstein, A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ. J., 2013, 77(10), 2432-2448.
[10]
Basso, F.; Freeman, L.; Knapper, C.L.; Remaley, A.; Stonik, J.; Neufeld, E.B.; Tansey, T.; Amar, M.J.; Fruchart-Najib, J.; Duverger, N.; Santamarina-Fojo, S.; Brewer, H.B., Jr Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J. Lipid Res., 2003, 44(2), 296-302.
[11]
Calabresi, L.; Gomaraschi, M.; Simonelli, S.; Bernini, F.; Franceschini, G. HDL and atherosclerosis: insights from inherited HDL disorders. Biochim. Biophys. Acta, 2015, 1851(1), 13-18.
[12]
Rye, K.A.; Clay, M.A.; Barter, P.J. Remodelling of high density lipoproteins by plasma factors. Atherosclerosis, 1999, 145(2), 227-238.
[13]
Huuskonen, J.; Olkkonen, V.M.; Jauhiainen, M.; Ehnholm, C. The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis, 2001, 155(2), 269-281.
[14]
Rosenson, R.S.; Brewer, H.B., Jr; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.C.; Phillips, M.C.; Rader, D.J.; Remaley, A.T.; Rothblat, G.H.; Tall, A.R.; Yvan-Charvet, L. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation, 2012, 125(15), 1905-1919.
[15]
Schwartz, C.C.; VandenBroek, J.M.; Cooper, P.S. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J. Lipid Res., 2004, 45(9), 1594-1607.
[16]
Calabresi, L.; Gomaraschi, M.; Franceschini, G. Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler. Thromb. Vasc. Biol., 2003, 23(10), 1724-1731.
[17]
Nofer, J.R. Signal transduction by HDL: agonists, receptors, and signaling cascades. Handb. Exp. Pharmacol., 2015, 224, 229-256.
[18]
Kontush, A.; Chantepie, S.; Chapman, M.J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler. Thromb. Vasc. Biol., 2003, 23(10), 1881-1888.
[19]
Shuhei, N.; Söderlund, S.; Jauhiainen, M.; Taskinen, M.R. Effect of HDL composition and particle size on the resistance of HDL to the oxidation. Lipids Health Dis., 2010, 9, 104.
[20]
Ashby, D.T.; Rye, K.A.; Clay, M.A.; Vadas, M.A.; Gamble, J.R.; Barter, P.J. Factors influencing the ability of HDL to inhibit expression of vascular cell adhesion molecule-1 in endothelial cells. Arterioscler. Thromb. Vasc. Biol., 1998, 18(9), 1450-1455.
[21]
Cuchel, M.; Rader, D.J. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation, 2006, 113(21), 2548-2555.
[22]
Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; Mohler, E.R.; Rothblat, G.H.; Rader, D.J. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med., 2011, 364(2), 127-135.
[23]
Li, X.M.; Tang, W.H.; Mosior, M.K.; Huang, Y.; Wu, Y.; Matter, W.; Gao, V.; Schmitt, D.; Didonato, J.A.; Fisher, E.A.; Smith, J.D.; Hazen, S.L. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1696-1705.
[24]
Karathanasis, S.K.; Freeman, L.A.; Gordon, S.M.; Remaley, A.T. The Changing face of HDL and the best way to measure it. Clin. Chem., 2017, 63(1), 196-210.
[25]
Calabresi, L.; Baldassarre, D.; Castelnuovo, S.; Conca, P.; Bocchi, L.; Candini, C.; Frigerio, B.; Amato, M.; Sirtori, C.R.; Alessandrini, P.; Arca, M.; Boscutti, G.; Cattin, L.; Gesualdo, L.; Sampietro, T.; Vaudo, G.; Veglia, F.; Calandra, S.; Franceschini, G. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation, 2009, 120(7), 628-635.
[26]
Sirtori, C.R.; Calabresi, L.; Franceschini, G.; Baldassarre, D.; Amato, M.; Johansson, J.; Salvetti, M.; Monteduro, C.; Zulli, R.; Muiesan, M.L.; Agabiti-Rosei, E. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation, 2001, 103(15), 1949-1954.
[27]
Calabresi, L.; Favari, E.; Moleri, E.; Adorni, M.P.; Pedrelli, M.; Costa, S.; Jessup, W.; Gelissen, I.C.; Kovanen, P.T.; Bernini, F.; Franceschini, G. Functional LCAT is not required for macrophage cholesterol efflux to human serum. Atherosclerosis, 2009, 204(1), 141-146.
[28]
Franceschini, G.; Calabresi, L.; Chiesa, G.; Parolini, C.; Sirtori, C.R.; Canavesi, M.; Bernini, F. Increased cholesterol efflux potential of sera from ApoA-IMilano carriers and transgenic mice. Arterioscler. Thromb. Vasc. Biol., 1999, 19(5), 1257-1262.
[29]
Gomaraschi, M.; Baldassarre, D.; Amato, M.; Eligini, S.; Conca, P.; Sirtori, C.R.; Franceschini, G.; Calabresi, L. Normal vascular function despite low levels of high-density lipoprotein cholesterol in carriers of the apolipoprotein A-I(Milano) mutant. Circulation, 2007, 116(19), 2165-2172.
[30]
Gomaraschi, M.; Ossoli, A.; Castelnuovo, S.; Simonelli, S.; Pavanello, C.; Balzarotti, G.; Arca, M.; Di Costanzo, A.; Sampietro, T.; Vaudo, G.; Baldassarre, D.; Veglia, F.; Franceschini, G.; Calabresi, L. Depletion in LpA-I:A-II particles enhances HDL-mediated endothelial protection in familial LCAT deficiency. J. Lipid Res., 2017, 58(5), 994-1001.
[31]
Zanoni, P.; Khetarpal, S.A.; Larach, D.B.; Hancock-Cerutti, W.F.; Millar, J.S.; Cuchel, M.; DerOhannessian, S.; Kontush, A.; Surendran, P.; Saleheen, D.; Trompet, S.; Jukema, J.W.; De Craen, A.; Deloukas, P.; Sattar, N.; Ford, I.; Packard, C.; Majumder, A.; Alam, D.S.; Di Angelantonio, E.; Abecasis, G.; Chowdhury, R.; Erdmann, J.; Nordestgaard, B.G.; Nielsen, S.F.; Tybjærg-Hansen, A.; Schmidt, R.F.; Kuulasmaa, K.; Liu, D.J.; Perola, M.; Blankenberg, S.; Salomaa, V.; Männistö, S.; Amouyel, P.; Arveiler, D.; Ferrieres, J.; Müller-Nurasyid, M.; Ferrario, M.; Kee, F.; Willer, C.J.; Samani, N.; Schunkert, H.; Butterworth, A.S.; Howson, J.M.; Peloso, G.M.; Stitziel, N.O.; Danesh, J.; Kathiresan, S.; Rader, D.J. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351(6278), 1166-1171.
[32]
Calabresi, L.; Nilsson, P.; Pinotti, E.; Gomaraschi, M.; Favari, E.; Adorni, M.P.; Bernini, F.; Sirtori, C.R.; Calandra, S.; Franceschini, G.; Tarugi, P. A novel homozygous mutation in CETP gene as a cause of CETP deficiency in a Caucasian kindred. Atherosclerosis, 2009, 205(2), 506-511.
[33]
Gomaraschi, M.; Ossoli, A.; Pozzi, S.; Nilsson, P.; Cefalù, A.B.; Averna, M.; Kuivenhoven, J.A.; Hovingh, G.K.; Veglia, F.; Franceschini, G.; Calabresi, L. eNOS activation by HDL is impaired in genetic CETP deficiency. PLoS One, 2014, 9(5), e95925.
[34]
Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur. Heart J., 2017, 38(32), 2478-2486.
[35]
Marsche, G.; Saemann, M.D.; Heinemann, A.; Holzer, M. Inflammation alters HDL composition and function: implications for HDL-raising therapies. Pharmacol. Ther., 2013, 137(3), 341-351.
[36]
Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; Stojakovic, T.; Vlachopoulou, E.; Lokki, M.L.; Nieminen, M.S.; Klingenberg, R.; Matter, C.M.; Hornemann, T.; Jüni, P.; Rodondi, N.; Räber, L.; Windecker, S.; Gencer, B.; Pedersen, E.R.; Tell, G.S.; Nygård, O.; Mach, F.; Sinisalo, J.; Lüscher, T.F. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J., 2016, 37(25), 1967-1976.
[37]
Sethi, A.A.; Sampson, M.; Warnick, R.; Muniz, N.; Vaisman, B.; Nordestgaard, B.G.; Tybjaerg-Hansen, A.; Remaley, A.T. High pre-beta1 HDL concentrations and low lecithin: cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol. Clin. Chem., 2010, 56(7), 1128-1137.
[38]
Schlitt, A.; Schwaab, B.; Fingscheidt, K.; Lackner, K.J.; Heine, G.H.; Vogt, A.; Buerke, M.; Maegdefessel, L.; Raaz, U.; Werdan, K.; Jiang, X.C. Serum phospholipid transfer protein activity after a high fat meal in patients with insulin-treated type 2 diabetes. Lipids, 2010, 45(2), 129-135.
[39]
Gomaraschi, M.; Sinagra, G.; Serdoz, L.V.; Pitzorno, C.; Fonda, M.; Cattin, L.; Calabresi, L.; Franceschini, G. The plasma concentration of Lpa-I:A-II particles as a predictor of the inflammatory response in patients with ST-elevation myocardial infarction. Atherosclerosis, 2009, 202(1), 304-311.
[40]
Gomaraschi, M.; Ossoli, A.; Favari, E.; Adorni, M.P.; Sinagra, G.; Cattin, L.; Veglia, F.; Bernini, F.; Franceschini, G.; Calabresi, L. Inflammation impairs eNOS activation by HDL in patients with acute coronary syndrome. Cardiovasc. Res., 2013, 100(1), 36-43.
[41]
Sposito, A.C.; Carvalho, L.S.; Cintra, R.M.; Araújo, A.L.; Ono, A.H.; Andrade, J.M.; Coelho, O.R.; Quinaglia e Silva, J.C. Rebound inflammatory response during the acute phase of myocardial infarction after simvastatin withdrawal. Atherosclerosis, 2009, 207(1), 191-194.
[42]
Pitt, B.; Loscalzo, J.; Ycas, J.; Raichlen, J.S. Lipid levels after acute coronary syndromes. J. Am. Coll. Cardiol., 2008, 51(15), 1440-1445.
[43]
Riwanto, M.; Rohrer, L.; Roschitzki, B.; Besler, C.; Mocharla, P.; Mueller, M.; Perisa, D.; Heinrich, K.; Altwegg, L.; von Eckardstein, A.; Lüscher, T.F.; Landmesser, U. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation, 2013, 127(8), 891-904.
[44]
Alwaili, K.; Bailey, D.; Awan, Z.; Bailey, S.D.; Ruel, I.; Hafiane, A.; Krimbou, L.; Laboissiere, S.; Genest, J. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim. Biophys. Acta, 2012, 1821(3), 405-415.
[45]
Tan, Y.; Liu, T.R.; Hu, S.W.; Tian, D.; Li, C.; Zhong, J.K.; Sun, H.G.; Luo, T.T.; Lai, W.Y.; Guo, Z.G. Acute coronary syndrome remodels the protein cargo and functions of high-density lipoprotein subfractions. PLoS One, 2014, 9(4), e94264.
[46]
Dullaart, R.P.; Tietge, U.J.; Kwakernaak, A.J.; Dikkeschei, B.D.; Perton, F.; Tio, R.A. Alterations in plasma lecithin: cholesterol acyltransferase and myeloperoxidase in acute myocardial infarction: implications for cardiac outcome. Atherosclerosis, 2014, 234(1), 185-192.
[47]
Besler, C.; Heinrich, K.; Rohrer, L.; Doerries, C.; Riwanto, M.; Shih, D.M.; Chroni, A.; Yonekawa, K.; Stein, S.; Schaefer, N.; Mueller, M.; Akhmedov, A.; Daniil, G.; Manes, C.; Templin, C.; Wyss, C.; Maier, W.; Tanner, F.C.; Matter, C.M.; Corti, R.; Furlong, C.; Lusis, A.J.; von Eckardstein, A.; Fogelman, A.M.; Lüscher, T.F.; Landmesser, U. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest., 2011, 121(7), 2693-2708.
[48]
Carnuta, M.G.; Stancu, C.S.; Toma, L.; Sanda, G.M.; Niculescu, L.S.; Deleanu, M.; Popescu, A.C.; Popescu, M.R.; Vlad, A.; Dimulescu, D.R.; Simionescu, M.; Sima, A.V. Dysfunctional high-density lipoproteins have distinct composition, diminished anti-inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients. Sci. Rep., 2017, 7(1), 7295.
[49]
Zewinger, S.; Drechsler, C.; Kleber, M.E.; Dressel, A.; Riffel, J.; Triem, S.; Lehmann, M.; Kopecky, C.; Säemann, M.D.; Lepper, P.M.; Silbernagel, G.; Scharnagl, H.; Ritsch, A.; Thorand, B.; de las Heras Gala, T.; Wagenpfeil, S.; Koenig, W.; Peters, A.; Laufs, U.; Wanner, C.; Fliser, D.; Speer, T.; März, W. Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur. Heart J., 2015, 36(43), 3007-3016.
[50]
Holy, E.W.; Besler, C.; Reiner, M.F.; Camici, G.G.; Manz, J.; Beer, J.H.; Lüscher, T.F.; Landmesser, U.; Tanner, F.C. High-density lipoprotein from patients with coronary heart disease loses anti-thrombotic effects on endothelial cells: impact on arterial thrombus formation. Thromb. Haemost., 2014, 112(5), 1024-1035.
[51]
Riwanto, M.; Landmesser, U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J. Lipid Res., 2013, 54(12), 3227-3243.
[52]
Ossoli, A.; Remaley, A.T.; Vaisman, B.; Calabresi, L.; Gomaraschi, M. Plasma-derived and synthetic high-density lipoprotein inhibit tissue factor in endothelial cells and monocytes. Biochem. J., 2016, 473(2), 211-219.
[53]
Song, C.; Shen, Y.; Yamen, E.; Hsu, K.; Yan, W.; Witting, P.K.; Geczy, C.L.; Freedman, S.B. Serum amyloid A may potentiate prothrombotic and proinflammatory events in acute coronary syndromes. Atherosclerosis, 2009, 202(2), 596-604.
[54]
Tselepis, A.D.; Tsoumani, M.E.; Kalantzi, K.I.; Dimitriou, A.A.; Tellis, C.C.; Goudevenos, I.A. Influence of high-density lipoprotein and paraoxonase-1 on platelet reactivity in patients with acute coronary syndromes receiving clopidogrel therapy. J. Thromb. Haemost., 2011, 9(12), 2371-2378.
[55]
Francis, G.A. The complexity of HDL. Biochim. Biophys. Acta, 2010, 1801(12), 1286-1293.
[56]
Dullaart, R.P.; Annema, W.; Tio, R.A.; Tietge, U.J. The HDL anti-inflammatory function is impaired in myocardial infarction and may predict new cardiac events independent of HDL cholesterol. Clin. Chim. Acta, 2014, 433, 34-38.
[57]
Annema, W.; Willemsen, H.M.; de Boer, J.F.; Dikkers, A.; van der Giet, M.; Nieuwland, W.; Muller Kobold, A.C.; van Pelt, L.J.; Slart, R.H.; van der Horst, I.C.; Dullaart, R.P.; Tio, R.A.; Tietge, U.J. HDL function is impaired in acute myocardial infarction independent of plasma HDL cholesterol levels. J. Clin. Lipidol., 2016, 10(6), 1318-1328.
[58]
Undurti, A.; Huang, Y.; Lupica, J.A.; Smith, J.D.; DiDonato, J.A.; Hazen, S.L. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem., 2009, 284(45), 30825-30835.
[59]
Kontush, A. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc. Res., 2014, 103(3), 341-349.
[60]
Patel, P.J.; Khera, A.V.; Jafri, K.; Wilensky, R.L.; Rader, D.J. The anti-oxidative capacity of high-density lipoprotein is reduced in acute coronary syndrome but not in stable coronary artery disease. J. Am. Coll. Cardiol., 2011, 58(20), 2068-2075.
[61]
Bounafaa, A.; Berrougui, H.; Ikhlef, S.; Essamadi, A.; Nasser, B.; Bennis, A.; Yamoul, N.; Ghalim, N.; Khalil, A. Alteration of HDL functionality and PON1 activities in acute coronary syndrome patients. Clin. Biochem., 2014, 47(18), 318-325.
[62]
Chiba, T.; Chang, M.Y.; Wang, S.; Wight, T.N.; McMillen, T.S.; Oram, J.F.; Vaisar, T.; Heinecke, J.W.; De Beer, F.C.; De Beer, M.C.; Chait, A. Serum amyloid A facilitates the binding of high-density lipoprotein from mice injected with lipopolysaccharide to vascular proteoglycans. Arterioscler. Thromb. Vasc. Biol., 2011, 31(6), 1326-1332.
[63]
Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G.; Zhang, R.; Li, X.M.; DiDonato, A.J.; Gogonea, V.; Tang, W.H.; Smith, J.D.; Plow, E.F.; Fox, P.L.; Shih, D.M.; Lusis, A.J.; Fisher, E.A.; DiDonato, J.A.; Landmesser, U.; Hazen, S.L. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest., 2013, 123(9), 3815-3828.
[64]
Nofer, J.R.; Levkau, B.; Wolinska, I.; Junker, R.; Fobker, M.; von Eckardstein, A.; Seedorf, U.; Assmann, G. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J. Biol. Chem., 2001, 276(37), 34480-34485.
[65]
Kavo, A.E.; Rallidis, L.S.; Sakellaropoulos, G.C.; Lehr, S.; Hartwig, S.; Eckel, J.; Bozatzi, P.I.; Anastasiou-Nana, M.; Tsikrika, P.; Kypreos, K.E. Qualitative characteristics of HDL in young patients of an acute myocardial infarction. Atherosclerosis, 2012, 220(1), 257-264.
[66]
Luo, M.; Liu, A.; Wang, S.; Wang, T.; Hu, D.; Wu, S.; Peng, D. ApoC III enrichment in HDL impairs HDL-mediated cholesterol efflux capacity. Sci. Rep., 2017, 7(1), 2312.
[67]
Sutter, I.; Velagapudi, S.; Othman, A.; Riwanto, M.; Manz, J.; Rohrer, L.; Rentsch, K.; Hornemann, T.; Landmesser, U.; von Eckardstein, A. Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis, 2015, 241(2), 539-546.
[68]
Hafiane, A.; Jabor, B.; Ruel, I.; Ling, J.; Genest, J. High-density lipoprotein mediated cellular cholesterol efflux in acute coronary syndromes. Am. J. Cardiol., 2014, 113(2), 249-255.
[69]
Rached, F.; Lhomme, M.; Camont, L.; Gomes, F.; Dauteuille, C.; Robillard, P.; Santos, R.D.; Lesnik, P.; Serrano, C.V., Jr; Chapman, M.J.; Kontush, A. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim. Biophys. Acta, 2015, 1851(9), 1254-1261.
[70]
Shao, B.; Tang, C.; Sinha, A.; Mayer, P.S.; Davenport, G.D.; Brot, N.; Oda, M.N.; Zhao, X.Q.; Heinecke, J.W. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ. Res., 2014, 114(11), 1733-1742.
[71]
Banka, C.L.; Yuan, T.; de Beer, M.C.; Kindy, M.; Curtiss, L.K.; de Beer, F.C. Serum amyloid A (SAA): influence on HDL-mediated cellular cholesterol efflux. J. Lipid Res., 1995, 36(5), 1058-1065.
[72]
Shao, B.; Pennathur, S.; Pagani, I.; Oda, M.N.; Witztum, J.L.; Oram, J.F.; Heinecke, J.W. Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J. Biol. Chem., 2010, 285(24), 18473-18484.
[73]
Zheng, L.; Settle, M.; Brubaker, G.; Schmitt, D.; Hazen, S.L.; Smith, J.D.; Kinter, M. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J. Biol. Chem., 2005, 280(1), 38-47.
[74]
Shao, B.; Tang, C.; Heinecke, J.W.; Oram, J.F. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J. Lipid Res., 2010, 51(7), 1849-1858.
[75]
Kotur-Stevuljevic, J.; Bogavac-Stanojevic, N.; Jelic-Ivanovic, Z.; Stefanovic, A.; Gojkovic, T.; Joksic, J.; Sopic, M.; Gulan, B.; Janac, J.; Milosevic, S. Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis, 2015, 241(1), 192-198.
[76]
Ortiz-Munoz, G.; Couret, D.; Lapergue, B.; Bruckert, E.; Meseguer, E.; Amarenco, P.; Meilhac, O. Dysfunctional HDL in acute stroke. Atherosclerosis, 2016, 253, 75-80.
[77]
Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med., 2004, 351(13), 1296-1305.
[78]
Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis., 1998, 32(5)(Suppl. 3), S112-S119.
[79]
Shao, B.; Heinecke, J.W. Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway. J. Proteomics, 2011, 74(11), 2289-2299.
[80]
Calabresi, L.; Simonelli, S.; Conca, P.; Busnach, G.; Cabibbe, M.; Gesualdo, L.; Gigante, M.; Penco, S.; Veglia, F.; Franceschini, G. Acquired lecithin: cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J. Intern. Med., 2015, 277(5), 552-561.
[81]
Liang, K.; Vaziri, N.D. Down-regulation of hepatic lipase expression in experimental nephrotic syndrome. Kidney Int., 1997, 51(6), 1933-1937.
[82]
Holzer, M.; Schilcher, G.; Curcic, S.; Trieb, M.; Ljubojevic, S.; Stojakovic, T.; Scharnagl, H.; Kopecky, C.M.; Rosenkranz, A.R.; Heinemann, A.; Marsche, G. Dialysis modalities and HDL composition and function. J. Am. Soc. Nephrol., 2015, 26(9), 2267-2276.
[83]
Kon, V.; Yang, H.; Fazio, S. Residual cardiovascular risk in chronic kidney disease: role of high-density lipoprotein. Arch. Med. Res., 2015, 46(5), 379-391.
[84]
Kennedy, D.J.; Tang, W.H.; Fan, Y.; Wu, Y.; Mann, S.; Pepoy, M.; Hazen, S.L. Diminished antioxidant activity of high-density lipoprotein-associated proteins in chronic kidney disease. J. Am. Heart Assoc., 2013, 2(2), e000104.
[85]
Zheng, L.; Nukuna, B.; Brennan, M.L.; Sun, M.; Goormastic, M.; Settle, M.; Schmitt, D.; Fu, X.; Thomson, L.; Fox, P.L.; Ischiropoulos, H.; Smith, J.D.; Kinter, M.; Hazen, S.L. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest., 2004, 114(4), 529-541.
[86]
Rye, K.A. Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease. Clin. Exp. Nephrol., 2014, 18(2), 247-250.
[87]
Terrier-Lenglet, A.; Nollet, A.; Liabeuf, S.; Barreto, D.V.; Brazier, M.; Lemke, H.D.; Vanholder, R.; Choukroun, G.; Massy, Z.A. [Plasma malondialdehyde may not predict mortality in patient with chronic kidney disease]. Nephrol. Ther., 2011, 7(4), 219-224.
[88]
Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Kränkel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y.; Martin, T.; Perisa, D.; Winnik, S.; Müller, M.F.; Sester, U.; Wernicke, G.; Jung, A.; Gutteck, U.; Eriksson, U.; Geisel, J.; Deanfield, J.; von Eckardstein, A.; Lüscher, T.F.; Fliser, D.; Bahlmann, F.H.; Landmesser, U. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity, 2013, 38(4), 754-768.
[89]
Shroff, R.; Speer, T.; Colin, S.; Charakida, M.; Zewinger, S.; Staels, B.; Chinetti-Gbaguidi, G.; Hettrich, I.; Rohrer, L.; O’Neill, F.; McLoughlin, E.; Long, D.; Shanahan, C.M.; Landmesser, U.; Fliser, D.; Deanfield, J.E. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J. Am. Soc. Nephrol., 2014, 25(11), 2658-2668.
[90]
El-Gamal, D.; Rao, S.P.; Holzer, M.; Hallström, S.; Haybaeck, J.; Gauster, M.; Wadsack, C.; Kozina, A.; Frank, S.; Schicho, R.; Schuligoi, R.; Heinemann, A.; Marsche, G. The urea decomposition product cyanate promotes endothelial dysfunction. Kidney Int., 2014, 86(5), 923-931.
[91]
Yamamoto, S.; Yancey, P.G.; Ikizler, T.A.; Jerome, W.G.; Kaseda, R.; Cox, B.; Bian, A.; Shintani, A.; Fogo, A.B.; Linton, M.F.; Fazio, S.; Kon, V. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J. Am. Coll. Cardiol., 2012, 60(23), 2372-2379.
[92]
Kaseda, R.; Jabs, K.; Hunley, T.E.; Jones, D.; Bian, A.; Allen, R.M.; Vickers, K.C.; Yancey, P.G.; Linton, M.F.; Fazio, S.; Kon, V. Dysfunctional high-density lipoproteins in children with chronic kidney disease. Metabolism, 2015, 64(2), 263-273.
[93]
Nobécourt, E.; Tabet, F.; Lambert, G.; Puranik, R.; Bao, S.; Yan, L.; Davies, M.J.; Brown, B.E.; Jenkins, A.J.; Dusting, G.J.; Bonnet, D.J.; Curtiss, L.K.; Barter, P.J.; Rye, K.A. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 766-772.
[94]
Weichhart, T.; Kopecky, C.; Kubicek, M.; Haidinger, M.; Döller, D.; Katholnig, K.; Suarna, C.; Eller, P.; Tölle, M.; Gerner, C.; Zlabinger, G.J.; van der Giet, M.; Hörl, W.H.; Stocker, R.; Säemann, M.D. Serum amyloid A in uremic HDL promotes inflammation. J. Am. Soc. Nephrol., 2012, 23(5), 934-947.
[95]
Morena, M.; Cristol, J.P.; Dantoine, T.; Carbonneau, M.A.; Descomps, B.; Canaud, B. Protective effects of high-density lipoprotein against oxidative stress are impaired in haemodialysis patients. Nephrol. Dial. Transplant., 2000, 15(3), 389-395.
[96]
Moradi, H.; Pahl, M.V.; Elahimehr, R.; Vaziri, N.D. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl. Res., 2009, 153(2), 77-85.
[97]
Tölle, M.; Pawlak, A.; Schuchardt, M.; Kawamura, A.; Tietge, U.J.; Lorkowski, S.; Keul, P.; Assmann, G.; Chun, J.; Levkau, B.; van der Giet, M.; Nofer, J.R. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler. Thromb. Vasc. Biol., 2008, 28(8), 1542-1548.
[98]
Nicholls, S.J.; Zheng, L.; Hazen, S.L. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc. Med., 2005, 15(6), 212-219.
[99]
Holzer, M.; Birner-Gruenberger, R.; Stojakovic, T.; El-Gamal, D.; Binder, V.; Wadsack, C.; Heinemann, A.; Marsche, G. Uremia alters HDL composition and function. J. Am. Soc. Nephrol., 2011, 22(9), 1631-1641.
[100]
Meier, S.M.; Wultsch, A.; Hollaus, M.; Ammann, M.; Pemberger, E.; Liebscher, F.; Lambers, B.; Fruhwürth, S.; Stojakovic, T.; Scharnagl, H.; Schmidt, A.; Springer, A.; Becker, J.; Aufricht, C.; Handisurya, A.; Kapeller, S.; Röhrl, C.; Stangl, H.; Strobl, W. Effect of chronic kidney disease on macrophage cholesterol efflux. Life Sci., 2015, 136, 1-6.
[101]
Holzer, M.; Gauster, M.; Pfeifer, T.; Wadsack, C.; Fauler, G.; Stiegler, P.; Koefeler, H.; Beubler, E.; Schuligoi, R.; Heinemann, A.; Marsche, G. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid. Redox Signal., 2011, 14(12), 2337-2346.
[102]
Ganda, A.; Yvan-Charvet, L.; Zhang, Y.; Lai, E.J.; Regunathan-Shenk, R.; Hussain, F.N.; Avasare, R.; Chakraborty, B.; Febus, A.J.; Vernocchi, L.; Lantigua, R.; Wang, Y.; Shi, X.; Hsieh, J.; Murphy, A.J.; Wang, N.; Bijl, N.; Gordon, K.M.; de Miguel, M.H.; Singer, J.R.; Hogan, J.; Cremers, S.; Magnusson, M.; Melander, O.; Gerszten, R.E.; Tall, A.R. Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. J. Mol. Cell. Cardiol., 2017, 112, 114-122.
[103]
Cardinal, H.; Raymond, M.A.; Hébert, M.J.; Madore, F. Uraemic plasma decreases the expression of ABCA1, ABCG1 and cell-cycle genes in human coronary arterial endothelial cells. Nephrol. Dial. Transplant., 2007, 22(2), 409-416.
[104]
Lewis, G.F.; Rader, D.J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res., 2005, 96(12), 1221-1232.
[105]
Lagos, K.G.; Filippatos, T.D.; Tsimihodimos, V.; Gazi, I.F.; Rizos, C.; Tselepis, A.D.; Mikhailidis, D.P.; Elisaf, M.S. Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome. Lipids, 2009, 44(1), 9-16.
[106]
Guérin, M.; Le Goff, W.; Lassel, T.S.; Van Tol, A.; Steiner, G.; Chapman, M.J. Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes: impact of the degree of triglyceridemia. Arterioscler. Thromb. Vasc. Biol., 2001, 21(2), 282-288.
[107]
Rashid, S.; Barrett, P.H.; Uffelman, K.D.; Watanabe, T.; Adeli, K.; Lewis, G.F. Lipolytically modified triglyceride-enriched HDLs are rapidly cleared from the circulation. Arterioscler. Thromb. Vasc. Biol., 2002, 22(3), 483-487.
[108]
Fielding, C.J.; Reaven, G.M.; Liu, G.; Fielding, P.E. Increased free cholesterol in plasma low and very low density lipoproteins in non-insulin-dependent diabetes mellitus: its role in the inhibition of cholesteryl ester transfer. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2512-2516.
[109]
Dullaart, R.P.; Riemens, S.C.; Scheek, L.M.; Van Tol, A. Insulin decreases plasma cholesteryl ester transfer but not cholesterol esterification in healthy subjects as well as in normotriglyceridaemic patients with type 2 diabetes. Eur. J. Clin. Invest., 1999, 29(8), 663-671.
[110]
Hansel, B.; Giral, P.; Nobecourt, E.; Chantepie, S.; Bruckert, E.; Chapman, M.J.; Kontush, A. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J. Clin. Endocrinol. Metab., 2004, 89(10), 4963-4971.
[111]
Camont, L.; Lhomme, M.; Rached, F.; Le Goff, W.; Nègre-Salvayre, A.; Salvayre, R.; Calzada, C.; Lagarde, M.; Chapman, M.J.; Kontush, A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2715-2723.
[112]
Bagdade, J.D.; Buchanan, W.E.; Kuusi, T.; Taskinen, M.R. Persistent abnormalities in lipoprotein composition in noninsulin-dependent diabetes after intensive insulin therapy. Arteriosclerosis, 1990, 10(2), 232-239.
[113]
Watala, C.; Winocour, P.D. The relationship of chemical modification of membrane proteins and plasma lipoproteins to reduced membrane fluidity of erythrocytes from diabetic subjects. Eur. J. Clin. Chem. Clin. Biochem., 1992, 30(9), 513-519.
[114]
Denimal, D.; Monier, S.; Brindisi, M.C.; Petit, J.M.; Bouillet, B.; Nguyen, A.; Demizieux, L.; Simoneau, I.; Pais de Barros, J.P.; Vergès, B.; Duvillard, L. Impairment of the ability of HDL from patients with metabolic syndrome but without diabetes mellitus to activate eNOS: correction by S1P enrichment. Arterioscler. Thromb. Vasc. Biol., 2017, 37(5), 804-811.
[115]
Brinck, J.W.; Thomas, A.; Lauer, E.; Jornayvaz, F.R.; Brulhart-Meynet, M.C.; Prost, J.C.; Pataky, Z.; Löfgren, P.; Hoffstedt, J.; Eriksson, M.; Pramfalk, C.; Morel, S.; Kwak, B.R.; van Eck, M.; James, R.W.; Frias, M.A. Diabetes mellitus is associated with reduced high-density lipoprotein sphingosine-1-phosphate content and impaired high-density lipoprotein cardiac cell protection. Arterioscler. Thromb. Vasc. Biol., 2016, 36(5), 817-824.
[116]
Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 816-823.
[117]
Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res., 2004, 45(7), 1169-1196.
[118]
Curtiss, L.K.; Bonnet, D.J.; Rye, K.A. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: a surface plasmon resonance study. Biochemistry, 2000, 39(19), 5712-5721.
[119]
Kontush, A.; de Faria, E.C.; Chantepie, S.; Chapman, M.J. A normotriglyceridemic, low HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL particles with attenuated antioxidative activity. Atherosclerosis, 2005, 182(2), 277-285.
[120]
Shao, B.; Oda, M.N.; Oram, J.F.; Heinecke, J.W. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr. Opin. Cardiol., 2006, 21(4), 322-328.
[121]
Hermo, R.; Mier, C.; Mazzotta, M.; Tsuji, M.; Kimura, S.; Gugliucci, A. Circulating levels of nitrated apolipoprotein A-I are increased in type 2 diabetic patients. Clin. Chem. Lab. Med., 2005, 43(6), 601-606.
[122]
Karabina, S.A.; Lehner, A.N.; Frank, E.; Parthasarathy, S.; Santanam, N. Oxidative inactivation of paraoxonase--implications in diabetes mellitus and atherosclerosis. Biochim. Biophys. Acta, 2005, 1725(2), 213-221.
[123]
Ferretti, G.; Bacchetti, T.; Marchionni, C.; Caldarelli, L.; Curatola, G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol., 2001, 38(4), 163-169.
[124]
Durrington, P.N.; Mackness, B.; Mackness, M.I. Paraoxonase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2001, 21(4), 473-480.
[125]
Boemi, M.; Leviev, I.; Sirolla, C.; Pieri, C.; Marra, M.; James, R.W. Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives; influence on the ability of HDL to protect LDL from oxidation. Atherosclerosis, 2001, 155(1), 229-235.
[126]
Perségol, L.; Vergès, B.; Foissac, M.; Gambert, P.; Duvillard, L. Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia, 2006, 49(6), 1380-1386.
[127]
Meyer, M.F.; Lieps, D.; Schatz, H.; Pfohl, M. Impaired flow-mediated vasodilation in type 2 diabetes: lack of relation to microvascular dysfunction. Microvasc. Res., 2008, 76(1), 61-65.
[128]
Wen, Y.; Skidmore, J.C.; Porter-Turner, M.M.; Rea, C.A.; Khokher, M.A.; Singh, B.M. Relationship of glycation, antioxidant status and oxidative stress to vascular endothelial damage in diabetes. Diabetes Obes. Metab., 2002, 4(5), 305-308.
[129]
Lemmers, R.F.H.; van Hoek, M.; Lieverse, A.G.; Verhoeven, A.J.M.; Sijbrands, E.J.G.; Mulder, M.T. The anti-inflammatory function of high-density lipoprotein in type II diabetes: A systematic review. J. Clin. Lipidol., 2017, 11(3), 712-724.e5.
[130]
Hedrick, C.C.; Thorpe, S.R.; Fu, M.X.; Harper, C.M.; Yoo, J.; Kim, S.M.; Wong, H.; Peters, A.L. Glycation impairs high-density lipoprotein function. Diabetologia, 2000, 43(3), 312-320.
[131]
Hoang, A.; Murphy, A.J.; Coughlan, M.T.; Thomas, M.C.; Forbes, J.M.; O’Brien, R.; Cooper, M.E.; Chin-Dusting, J.P.; Sviridov, D. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia, 2007, 50(8), 1770-1779.
[132]
Kontush, A.; Chapman, M.J. Antiatherogenic small, dense HDL--guardian angel of the arterial wall? Nat. Clin. Pract. Cardiovasc. Med., 2006, 3(3), 144-153.
[133]
Nobécourt, E.; Jacqueminet, S.; Hansel, B.; Chantepie, S.; Grimaldi, A.; Chapman, M.J.; Kontush, A. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia, 2005, 48(3), 529-538.
[134]
Gowri, M.S.; Van der Westhuyzen, D.R.; Bridges, S.R.; Anderson, J.W. Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may Be due to the abnormal composition of HDL. Arterioscler. Thromb. Vasc. Biol., 1999, 19(9), 2226-2233.
[135]
Lakshman, M.R.; Gottipati, C.S.; Narasimhan, S.J.; Munoz, J.; Marmillot, P.; Nylen, E.S. Inverse correlation of serum paraoxonase and homocysteine thiolactonase activities and antioxidant capacity of high-density lipoprotein with the severity of cardiovascular disease in persons with type 2 diabetes mellitus. Metabolism, 2006, 55(9), 1201-1206.
[136]
Van Lenten, B.J.; Navab, M.; Shih, D.; Fogelman, A.M.; Lusis, A.J. The role of high-density lipoproteins in oxidation and inflammation. Trends Cardiovasc. Med., 2001, 11(3-4), 155-161.
[137]
Zerrad-Saadi, A.; Therond, P.; Chantepie, S.; Couturier, M.; Rye, K.A.; Chapman, M.J.; Kontush, A. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler. Thromb. Vasc. Biol., 2009, 29(12), 2169-2175.
[138]
Mastorikou, M.; Mackness, M.; Mackness, B. Defective metabolism of oxidized phospholipid by HDL from people with type 2 diabetes. Diabetes, 2006, 55(11), 3099-3103.
[139]
Gomez Rosso, L.; Lhomme, M.; Meroño, T.; Dellepiane, A.; Sorroche, P.; Hedjazi, L.; Zakiev, E.; Sukhorukov, V.; Orekhov, A.; Gasparri, J.; Chapman, M.J.; Brites, F.; Kontush, A. Poor glycemic control in type 2 diabetes enhances functional and compositional alterations of small, dense HDL3c. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(2), 188-195.
[140]
Dullaart, R.P.; de Boer, J.F.; Annema, W.; Tietge, U.J. The inverse relation of HDL anti-oxidative functionality with serum amyloid a is lost in metabolic syndrome subjects. Obesity (Silver Spring), 2013, 21(2), 361-366.
[141]
Sanguinetti, S.M.; Brites, F.D.; Fasulo, V.; Verona, J.; Elbert, A.; Wikinski, R.L.; Schreier, L.E. HDL oxidability and its protective effect against LDL oxidation in Type 2 diabetic patients. Diabetes Nutr. Metab., 2001, 14(1), 27-36.
[142]
Matsunaga, T.; Iguchi, K.; Nakajima, T.; Koyama, I.; Miyazaki, T.; Inoue, I.; Kawai, S.; Katayama, S.; Hirano, K.; Hokari, S.; Komoda, T. Glycated high-density lipoprotein induces apoptosis of endothelial cells via a mitochondrial dysfunction. Biochem. Biophys. Res. Commun., 2001, 287(3), 714-720.
[143]
Cavallero, E.; Brites, F.; Delfly, B.; Nicolaïew, N.; Decossin, C.; De Geitere, C.; Fruchart, J.C.; Wikinski, R.; Jacotot, B.; Castro, G. Abnormal reverse cholesterol transport in controlled type II diabetic patients. Studies on fasting and postprandial LpA-I particles. Arterioscler. Thromb. Vasc. Biol., 1995, 15(12), 2130-2135.
[144]
Syvänne, M.; Castro, G.; Dengremont, C.; De Geitere, C.; Jauhiainen, M.; Ehnholm, C.; Michelagnoli, S.; Franceschini, G.; Kahri, J.; Taskinen, M.R. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis, 1996, 127(2), 245-253.
[145]
Igau, B.; Castro, G.; Clavey, V.; Slomianny, C.; Bresson, R.; Drouin, P.; Fruchart, J.C.; Fiévet, C. In vivo glucosylated LpA-I subfraction. Evidence for structural and functional alterations. Arterioscler. Thromb. Vasc. Biol., 1997, 17(11), 2830-2836.
[146]
Fievet, C.; Theret, N.; Shojaee, N.; Duchateau, P.; Castro, G.; Ailhaud, G.; Drouin, P.; Fruchart, J.C. Apolipoprotein A-I-containing particles and reverse cholesterol transport in IDDM. Diabetes, 1992, 41(Suppl. 2), 81-85.
[147]
Yancey, P.G.; de la Llera-Moya, M.; Swarnakar, S.; Monzo, P.; Klein, S.M.; Connelly, M.A.; Johnson, W.J.; Williams, D.L.; Rothblat, G.H. High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J. Biol. Chem., 2000, 275(47), 36596-36604.
[148]
Annema, W.; Dikkers, A.; de Boer, J.F.; van Greevenbroek, M.M.; van der Kallen, C.J.; Schalkwijk, C.G.; Stehouwer, C.D.; Dullaart, R.P.; Tietge, U.J. Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study. Sci. Rep., 2016, 6, 27367.
[149]
Lucero, D.; Sviridov, D.; Freeman, L.; López, G.I.; Fassio, E.; Remaley, A.T.; Schreier, L. Increased cholesterol efflux capacity in metabolic syndrome: Relation with qualitative alterations in HDL and LCAT. Atherosclerosis, 2015, 242(1), 236-242.
[150]
Dullaart, R.P.; Groen, A.K.; Dallinga-Thie, G.M.; de Vries, R.; Sluiter, W.J.; van Tol, A. Fibroblast cholesterol efflux to plasma from metabolic syndrome subjects is not defective despite low high-density lipoprotein cholesterol. Eur. J. Endocrinol., 2008, 158(1), 53-60.
[151]
Avina-Zubieta, J.A.; Thomas, J.; Sadatsafavi, M.; Lehman, A.J.; Lacaille, D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis., 2012, 71(9), 1524-1529.
[152]
Fransen, J.; Kazemi-Bajestani, S.M.; Bredie, S.J.; Popa, C.D. Rheumatoid arthritis disadvantages younger patients for cardiovascular diseases: a meta-analysis. PLoS One, 2016, 11(6), e0157360.
[153]
Charakida, M.; Besler, C.; Batuca, J.R.; Sangle, S.; Marques, S.; Sousa, M.; Wang, G.; Tousoulis, D.; Delgado Alves, J.; Loukogeorgakis, S.P.; Mackworth-Young, C.; D’Cruz, D.; Luscher, T.; Landmesser, U.; Deanfield, J.E. Vascular abnormalities, paraoxonase activity, and dysfunctional HDL in primary antiphospholipid syndrome. JAMA, 2009, 302(11), 1210-1217.
[154]
Botta, E.; Meroño, T.; Saucedo, C.; Martín, M.; Tetzlaff, W.; Sorroche, P.; Boero, L.; Malah, V.; Menafra, M.; Gómez Rosso, L.; Chapman, J.M.; Kontush, A.; Soriano, E.; Brites, F. Associations between disease activity, markers of HDL functionality and arterial stiffness in patients with rheumatoid arthritis. Atherosclerosis, 2016, 251, 438-444.
[155]
Baghdadi, L.R.; Woodman, R.J.; Shanahan, E.M.; Mangoni, A.A. The impact of traditional cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid arthritis: a systematic review and meta-analysis. PLoS One, 2015, 10(2), e0117952.
[156]
González-Gay, M.A.; González-Juanatey, C. Inflammation and lipid profile in rheumatoid arthritis: bridging an apparent paradox. Ann. Rheum. Dis., 2014, 73(7), 1281-1283.
[157]
Mathieu, S.; Gossec, L.; Dougados, M.; Soubrier, M. Cardiovascular profile in ankylosing spondylitis: a systematic review and meta-analysis. Arthritis Care Res. (Hoboken), 2011, 63(4), 557-563.
[158]
McMahon, M.; Grossman, J.; Skaggs, B.; Fitzgerald, J.; Sahakian, L.; Ragavendra, N.; Charles-Schoeman, C.; Watson, K.; Wong, W.K.; Volkmann, E.; Chen, W.; Gorn, A.; Karpouzas, G.; Weisman, M.; Wallace, D.J.; Hahn, B.H. Dysfunctional proinflammatory high-density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheum., 2009, 60(8), 2428-2437.
[159]
Charles-Schoeman, C.; Watanabe, J.; Lee, Y.Y.; Furst, D.E.; Amjadi, S.; Elashoff, D.; Park, G.; McMahon, M.; Paulus, H.E.; Fogelman, A.M.; Reddy, S.T. Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. Arthritis Rheum., 2009, 60(10), 2870-2879.
[160]
Gómez Rosso, L.; Lhomme, M.; Meroño, T.; Sorroche, P.; Catoggio, L.; Soriano, E.; Saucedo, C.; Malah, V.; Dauteuille, C.; Boero, L.; Lesnik, P.; Robillard, P.; John Chapman, M.; Brites, F.; Kontush, A. Altered lipidome and antioxidative activity of small, dense HDL in normolipidemic rheumatoid arthritis: relevance of inflammation. Atherosclerosis, 2014, 237(2), 652-660.
[161]
Jorissen, W.; Wouters, E.; Bogie, J.F.; Vanmierlo, T.; Noben, J.P.; Sviridov, D.; Hellings, N.; Somers, V.; Valcke, R.; Vanwijmeersch, B.; Stinissen, P.; Mulder, M.T.; Remaley, A.T.; Hendriks, J.J. Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL. Sci. Rep., 2017, 7, 43410.
[162]
Charles-Schoeman, C.; Lee, Y.Y.; Grijalva, V.; Amjadi, S.; FitzGerald, J.; Ranganath, V.K.; Taylor, M.; McMahon, M.; Paulus, H.E.; Reddy, S.T. Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis. Ann. Rheum. Dis., 2012, 71(7), 1157-1162.
[163]
Vivekanandan-Giri, A.; Slocum, J.L.; Byun, J.; Tang, C.; Sands, R.L.; Gillespie, B.W.; Heinecke, J.W.; Saran, R.; Kaplan, M.J.; Pennathur, S. High density lipoprotein is targeted for oxidation by myeloperoxidase in rheumatoid arthritis. Ann. Rheum. Dis., 2013, 72(10), 1725-1731.
[164]
Tejera-Segura, B.; Macía-Díaz, M.; Machado, J.D.; de Vera-González, A.; García-Dopico, J.A.; Olmos, J.M.; Hernández, J.L.; Díaz-González, F.; González-Gay, M.A.; Ferraz-Amaro, I. HDL cholesterol efflux capacity in rheumatoid arthritis patients: contributing factors and relationship with subclinical atherosclerosis. Arthritis Res. Ther., 2017, 19(1), 113.
[165]
Liao, K.P.; Playford, M.P.; Frits, M.; Coblyn, J.S.; Iannaccone, C.; Weinblatt, M.E.; Shadick, N.S.; Mehta, N.N. The association between reduction in inflammation and changes in lipoprotein levels and HDL cholesterol efflux capacity in rheumatoid arthritis. J. Am. Heart Assoc., 2015, 4(2), e001588.
[166]
Ronda, N.; Favari, E.; Borghi, M.O.; Ingegnoli, F.; Gerosa, M.; Chighizola, C.; Zimetti, F.; Adorni, M.P.; Bernini, F.; Meroni, P.L. Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis., 2014, 73(3), 609-615.
[167]
Krause, B.R.; Remaley, A.T. Reconstituted HDL for the acute treatment of acute coronary syndrome. Curr. Opin. Lipidol., 2013, 24(6), 480-486.
[168]
Gomaraschi, M.; Adorni, M.P.; Banach, M.; Bernini, F.; Franceschini, G.; Calabresi, L. Effects of established hypolipidemic drugs on HDL concentration, subclass distribution, and function. Handb. Exp. Pharmacol., 2015, 224, 593-615.
[169]
de Vries, R.; Groen, A.K.; Perton, F.G.; Dallinga-Thie, G.M.; van Wijland, M.J.; Dikkeschei, L.D.; Wolffenbuttel, B.H.; van Tol, A.; Dullaart, R.P. Increased cholesterol efflux from cultured fibroblasts to plasma from hypertriglyceridemic type 2 diabetic patients: roles of pre beta-HDL, phospholipid transfer protein and cholesterol esterification. Atherosclerosis, 2008, 196(2), 733-741.
[170]
Sviridov, D.; Hoang, A.; Ooi, E.; Watts, G.; Barrett, P.H.; Nestel, P. Indices of reverse cholesterol transport in subjects with metabolic syndrome after treatment with rosuvastatin. Atherosclerosis, 2008, 197(2), 732-739.
[171]
Miyamoto-Sasaki, M.; Yasuda, T.; Monguchi, T.; Nakajima, H.; Mori, K.; Toh, R.; Ishida, T.; Hirata, K. Pitavastatin increases HDL particles functionally preserved with cholesterol efflux capacity and antioxidative actions in dyslipidemic patients. J. Atheroscler. Thromb., 2013, 20(9), 708-716.
[172]
Triolo, M.; Annema, W.; de Boer, J.F.; Tietge, U.J.; Dullaart, R.P. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur. J. Clin. Invest., 2014, 44(3), 240-248.
[173]
Guerin, M.; Egger, P.; Soudant, C.; Le Goff, W.; van Tol, A.; Dupuis, R.; Chapman, M.J. Dose-dependent action of atorvastatin in type IIB hyperlipidemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. Atherosclerosis, 2002, 163(2), 287-296.
[174]
Franceschini, G.; Calabresi, L.; Colombo, C.; Favari, E.; Bernini, F.; Sirtori, C.R. Effects of fenofibrate and simvastatin on HDL-related biomarkers in low-HDL patients. Atherosclerosis, 2007, 195(2), 385-391.
[175]
Antonopoulos, A.S.; Margaritis, M.; Lee, R.; Channon, K.; Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des., 2012, 18(11), 1519-1530.
[176]
Liu, Y.; Wei, J.; Hu, S.; Hu, L. Beneficial effects of statins on endothelial progenitor cells. Am. J. Med. Sci., 2012, 344(3), 220-226.
[177]
Reriani, M.K.; Dunlay, S.M.; Gupta, B.; West, C.P.; Rihal, C.S.; Lerman, L.O.; Lerman, A. Effects of statins on coronary and peripheral endothelial function in humans: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Cardiovasc. Prev. Rehabil., 2011, 18(5), 704-716.
[178]
Igarashi, J.; Miyoshi, M.; Hashimoto, T.; Kubota, Y.; Kosaka, H. Statins induce S1P1 receptors and enhance endothelial nitric oxide production in response to high-density lipoproteins. Br. J. Pharmacol., 2007, 150(4), 470-479.
[179]
Kimura, T.; Mogi, C.; Tomura, H.; Kuwabara, A.; Im, D.S.; Sato, K.; Kurose, H.; Murakami, M.; Okajima, F. Induction of scavenger receptor class B type I is critical for simvastatin enhancement of high-density lipoprotein-induced anti-inflammatory actions in endothelial cells. J. Immunol., 2008, 181(10), 7332-7340.
[180]
Franceschini, G.; Favari, E.; Calabresi, L.; Simonelli, S.; Bondioli, A.; Adorni, M.P.; Zimetti, F.; Gomaraschi, M.; Coutant, K.; Rossomanno, S.; Niesor, E.J.; Bernini, F.; Benghozi, R. Differential effects of fenofibrate and extended-release niacin on high-density lipoprotein particle size distribution and cholesterol efflux capacity in dyslipidemic patients. J. Clin. Lipidol., 2013, 7(5), 414-422.
[181]
Guerin, M.; Le Goff, W.; Frisdal, E.; Schneider, S.; Milosavljevic, D.; Bruckert, E.; Chapman, M.J. Action of ciprofibrate in type IIb hyperlipoproteinemia: modulation of the atherogenic lipoprotein phenotype and stimulation of high-density lipoprotein-mediated cellular cholesterol efflux. J. Clin. Endocrinol. Metab., 2003, 88(8), 3738-3746.
[182]
Maranghi, M.; Hiukka, A.; Badeau, R.; Sundvall, J.; Jauhiainen, M.; Taskinen, M.R. Macrophage cholesterol efflux to plasma and HDL in subjects with low and high homocysteine levels: a FIELD substudy. Atherosclerosis, 2011, 219(1), 259-265.
[183]
Khera, A.V.; Patel, P.J.; Reilly, M.P.; Rader, D.J. The addition of niacin to statin therapy improves high-density lipoprotein cholesterol levels but not metrics of functionality. J. Am. Coll. Cardiol., 2013, 62(20), 1909-1910.
[184]
Yvan-Charvet, L.; Kling, J.; Pagler, T.; Li, H.; Hubbard, B.; Fisher, T.; Sparrow, C.P.; Taggart, A.K.; Tall, A.R. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1430-1438.
[185]
Morgan, J.M.; de la Llera-Moya, M.; Capuzzi, D.M. Effects of niacin and niaspan on HDL lipoprotein cellular SR-BI-mediated cholesterol efflux. J. Clin. Lipidol., 2007, 1(6), 614-619.
[186]
Malik, J.; Melenovsky, V.; Wichterle, D.; Haas, T.; Simek, J.; Ceska, R.; Hradec, J. Both fenofibrate and atorvastatin improve vascular reactivity in combined hyperlipidaemia (fenofibrate versus atorvastatin trial--FAT). Cardiovasc. Res., 2001, 52(2), 290-298.
[187]
Wang, T.D.; Chen, W.J.; Lin, J.W.; Cheng, C.C.; Chen, M.F.; Lee, Y.T. Efficacy of fenofibrate and simvastatin on endothelial function and inflammatory markers in patients with combined hyperlipidemia: relations with baseline lipid profiles. Atherosclerosis, 2003, 170(2), 315-323.
[188]
Koh, K.K.; Quon, M.J.; Han, S.H.; Chung, W.J.; Ahn, J.Y.; Seo, Y.H.; Choi, I.S.; Shin, E.K. Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia. J. Am. Coll. Cardiol., 2005, 45(10), 1649-1653.
[189]
Calabresi, L.; Gomaraschi, M.; Villa, B.; Omoboni, L.; Dmitrieff, C.; Franceschini, G. Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler. Thromb. Vasc. Biol., 2002, 22(4), 656-661.
[190]
Avogaro, A.; Miola, M.; Favaro, A.; Gottardo, L.; Pacini, G.; Manzato, E.; Zambon, S.; Sacerdoti, D.; de Kreutzenberg, S.; Piliego, T.; Tiengo, A.; Del Prato, S. Gemfibrozil improves insulin sensitivity and flow-mediated vasodilatation in type 2 diabetic patients. Eur. J. Clin. Invest., 2001, 31(7), 603-609.
[191]
Evans, M.; Anderson, R.A.; Graham, J.; Ellis, G.R.; Morris, K.; Davies, S.; Jackson, S.K.; Lewis, M.J.; Frenneaux, M.P.; Rees, A. Ciprofibrate therapy improves endothelial function and reduces postprandial lipemia and oxidative stress in type 2 diabetes mellitus. Circulation, 2000, 101(15), 1773-1779.
[192]
Ghani, R.A.; Bin Yaakob, I.; Wahab, N.A.; Zainudin, S.; Mustafa, N.; Sukor, N.; Wan Mohamud, W.N.; Kadir, K.A.; Kamaruddin, N.A. The influence of fenofibrate on lipid profile, endothelial dysfunction, and inflammatory markers in type 2 diabetes mellitus patients with typical and mixed dyslipidemia. J. Clin. Lipidol., 2013, 7(5), 446-453.
[193]
Shinnakasu, A.; Yamamoto, K.; Kurano, M.; Arimura, H.; Arimura, A.; Kikuti, A.; Hashiguchi, H.; Deguchi, T.; Nishio, Y. The combination therapy of fenofibrate and ezetimibe improved lipid profile and vascular function compared with statins in patients with type 2 diabetes. J. Atheroscler. Thromb., 2017, 24(7), 735-748.
[194]
Kuvin, J.T.; Rämet, M.E.; Patel, A.R.; Pandian, N.G.; Mendelsohn, M.E.; Karas, R.H. A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am. Heart J., 2002, 144(1), 165-172.
[195]
Kuvin, J.T.; Dave, D.M.; Sliney, K.A.; Mooney, P.; Patel, A.R.; Kimmelstiel, C.D.; Karas, R.H. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am. J. Cardiol., 2006, 98(6), 743-745.
[196]
Benjó, A.M.; Maranhão, R.C.; Coimbra, S.R.; Andrade, A.C.; Favarato, D.; Molina, M.S.; Brandizzi, L.I.; da Luz, P.L. Accumulation of chylomicron remnants and impaired vascular reactivity occur in subjects with isolated low HDL cholesterol: effects of niacin treatment. Atherosclerosis, 2006, 187(1), 116-122.
[197]
Thoenes, M.; Oguchi, A.; Nagamia, S.; Vaccari, C.S.; Hammoud, R.; Umpierrez, G.E.; Khan, B.V. The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int. J. Clin. Pract., 2007, 61(11), 1942-1948.
[198]
Bregar, U.; Jug, B.; Keber, I.; Cevc, M.; Sebestjen, M. Extended-release niacin/laropiprant improves endothelial function in patients after myocardial infarction. Heart Vessels, 2014, 29(3), 313-319.
[199]
Gomaraschi, M.; Ossoli, A.; Adorni, M.P.; Damonte, E.; Niesor, E.; Veglia, F.; Franceschini, G.; Benghozi, R.; Calabresi, L. Fenofibrate and extended-release niacin improve the endothelial protective effects of HDL in patients with metabolic syndrome. Vascul. Pharmacol., 2015, 74, 80-86.
[200]
Sorrentino, S.A.; Besler, C.; Rohrer, L.; Meyer, M.; Heinrich, K.; Bahlmann, F.H.; Mueller, M.; Horváth, T.; Doerries, C.; Heinemann, M.; Flemmer, S.; Markowski, A.; Manes, C.; Bahr, M.J.; Haller, H.; von Eckardstein, A.; Drexler, H.; Landmesser, U. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation, 2010, 121(1), 110-122.
[201]
Ballantyne, C. M.; Miller, M.; Niesor, E. J.; Burgess, T.; Kallend, D.; Stein, E. A. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. Am. Heart J.,, 2012, 163(3), 515-521, 521.e1-521.e3.
[202]
Ray, K.K.; Ditmarsch, M.; Kallend, D.; Niesor, E.J.; Suchankova, G.; Upmanyu, R.; Anzures-Cabrera, J.; Lehnert, V.; Pauly-Evers, M.; Holme, I.; Štásek, J.; van Hessen, M.W.; Jones, P. The effect of cholesteryl ester transfer protein inhibition on lipids, lipoproteins, and markers of HDL function after an acute coronary syndrome: the dal-ACUTE randomized trial. Eur. Heart J., 2014, 35(27), 1792-1800.
[203]
Lüscher, T.F.; Taddei, S.; Kaski, J.C.; Jukema, J.W.; Kallend, D.; Münzel, T.; Kastelein, J.J.; Deanfield, J.E. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur. Heart J., 2012, 33(7), 857-865.
[204]
Patel, S.; Drew, B.G.; Nakhla, S.; Duffy, S.J.; Murphy, A.J.; Barter, P.J.; Rye, K.A.; Chin-Dusting, J.; Hoang, A.; Sviridov, D.; Celermajer, D.S.; Kingwell, B.A. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J. Am. Coll. Cardiol., 2009, 53(11), 962-971.
[205]
Kallend, D.G.; Reijers, J.A.; Bellibas, S.E.; Bobillier, A.; Kempen, H.; Burggraaf, J.; Moerland, M.; Wijngaard, P.L. A single infusion of MDCO-216 (ApoA-1 Milano/POPC) increases ABCA1-mediated cholesterol efflux and pre-beta 1 HDL in healthy volunteers and patients with stable coronary artery disease. Eur. Heart J. Cardiovasc. Pharmacother., 2016, 2(1), 23-29.
[206]
Kempen, H.J.; Gomaraschi, M.; Simonelli, S.; Calabresi, L.; Moerland, M.; Otvos, J.; Jeyarajah, E.; Kallend, D.; Wijngaard, P.L.J. Persistent changes in lipoprotein lipids after a single infusion of ascending doses of MDCO-216 (apoA-IMilano/POPC) in healthy volunteers and stable coronary artery disease patients. Atherosclerosis, 2016, 255, 17-24.
[207]
Diditchenko, S.; Gille, A.; Pragst, I.; Stadler, D.; Waelchli, M.; Hamilton, R.; Leis, A.; Wright, S.D. Novel formulation of a reconstituted high-density lipoprotein (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler. Thromb. Vasc. Biol., 2013, 33(9), 2202-2211.
[208]
Kootte, R.S.; Smits, L.P.; van der Valk, F.M.; Dasseux, J.L.; Keyserling, C.H.; Barbaras, R.; Paolini, J.F.; Santos, R.D.; van Dijk, T.H.; Dallinga-van Thie, G.M.; Nederveen, A.J.; Mulder, W.J.; Hovingh, G.K.; Kastelein, J.J.; Groen, A.K.; Stroes, E.S. Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J. Lipid Res., 2015, 56(3), 703-712.
[209]
Zheng, K.H.; van der Valk, F.M.; Smits, L.P.; Sandberg, M.; Dasseux, J.L.; Baron, R.; Barbaras, R.; Keyserling, C.; Coolen, B.F.; Nederveen, A.J.; Verberne, H.J.; Nell, T.E.; Vugts, D.J.; Duivenvoorden, R.; Fayad, Z.A.; Mulder, W.J.M.; van Dongen, G.A.M.S.; Stroes, E.S.G. HDL mimetic CER-001 targets atherosclerotic plaques in patients. Atherosclerosis, 2016, 251, 381-388.
[210]
Calkin, A.C.; Drew, B.G.; Ono, A.; Duffy, S.J.; Gordon, M.V.; Schoenwaelder, S.M.; Sviridov, D.; Cooper, M.E.; Kingwell, B.A.; Jackson, S.P. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation, 2009, 120(21), 2095-2104.
[211]
Matsuki, K.; Tamasawa, N.; Yamashita, M.; Tanabe, J.; Murakami, H.; Matsui, J.; Imaizumi, T.; Satoh, K.; Suda, T. Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis, 2009, 206(2), 434-438.
[212]
Machado, A.P.; Pinto, R.S.; Moysés, Z.P.; Nakandakare, E.R.; Quintão, E.C.; Passarelli, M. Aminoguanidine and metformin prevent the reduced rate of HDL-mediated cell cholesterol efflux induced by formation of advanced glycation end products. Int. J. Biochem. Cell Biol., 2006, 38(3), 392-403.
[213]
Ronda, N.; Greco, D.; Adorni, M.P.; Zimetti, F.; Favari, E.; Hjeltnes, G.; Mikkelsen, K.; Borghi, M.O.; Favalli, E.G.; Gatti, R.; Hollan, I.; Meroni, P.L.; Bernini, F. Newly identified antiatherosclerotic activity of methotrexate and adalimumab: complementary effects on lipoprotein function and macrophage cholesterol metabolism. Arthritis Rheumatol., 2015, 67(5), 1155-1164.
[214]
Ormseth, M.J.; Yancey, P.G.; Solus, J.F.; Bridges, S.L., Jr; Curtis, J.R.; Linton, M.F.; Fazio, S.; Davies, S.S.; Roberts, L.J., II; Vickers, K.C.; Kon, V.; Michael Stein, C. Effect of drug therapy on net cholesterol efflux capacity of high-density lipoprotein-enriched serum in rheumatoid arthritis. Arthritis Rheumatol., 2016, 68(9), 2099-2105.
[215]
O’Neill, F.; Charakida, M.; Topham, E.; McLoughlin, E.; Patel, N.; Sutill, E.; Kay, C.W.M.; D’Aiuto, F.; Landmesser, U.; Taylor, P.C.; Deanfield, J. Anti-inflammatory treatment improves high-density lipoprotein function in rheumatoid arthritis. Heart, 2017, 103(10), 766-773.
[216]
Charles-Schoeman, C.; Yin , Lee. Y.; Shahbazian, A.; Wang, X.; Elashoff, D.; Curtis, J. R.; Navarro-Millán, I.; Yang, S.; Chen, L.; Cofield, S. S.; Moreland, L. W.; Paulus, H.; O’Dell, J.; Bathon, J.; Louis Bridges, S. Jr.; Reddy, S. T. Improvement of high-density lipoprotein function in patients with early rheumatoid arthritis treated with methotrexate monotherapy or combination therapies in a randomized controlled trial. Arthritis Rheumatol., 2017, 69(1), 46-57.
[217]
Nordestgaard, B.G.; Tybjærg-Hansen, A. Genetic determinants of LDL, lipoprotein(a), triglyceride-rich lipoproteins and HDL: concordance and discordance with cardiovascular disease risk. Curr. Opin. Lipidol., 2011, 22(2), 113-122.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy