Review Article

工程外泌体:一种有前途的脑部疾病药物递送策略

卷 29, 期 17, 2022

发表于: 02 September, 2021

页: [3111 - 3124] 页: 14

弟呕挨: 10.2174/0929867328666210902142015

价格: $65

摘要

外泌体是从各种细胞释放的纳米级天然膜囊泡的异质组,存在于体液中。与以前对外泌体作为“垃圾桶”的功能的理解不同,外泌体作为载体,具有多种生物活性分子(例如蛋白质,脂质和核酸),在细胞 - 细胞通讯中起重要作用。近年来越来越多的证据表明,外泌体在某些脑部疾病的发病机制、诊断和治疗方式中也发挥着一些作用,包括缺血性脑卒中、阿尔茨海默病、帕金森病、多发性硬化症和脑癌。外泌体作为脑药物递送的治疗药物载体受到了广泛的关注,外泌体可以克服血脑屏障(BBB)。然而,天然外泌体的低靶向能力和大小依赖性细胞摄取可能深刻影响外泌体的递送性能。最近的研究表明,工程外泌体可以提高药物摄取效率和随后的药物疗效。在本文中,我们将简要介绍工程外泌体在脑部疾病治疗中的工程方法和应用,然后重点讨论基于外泌体的药物递送平台的优势和挑战,以进一步丰富和促进外泌体作为脑部疾病药物递送策略的发展。

关键词: 外泌体,脑部疾病,药物递送,供体细胞工程,外泌体工程,人工外泌体模拟。

[1]
Kooijmans, S.A.A.; Vader, P.; van Dommelen, S.M.; van Solinge, W.W.; Schiffelers, R.M. Exosome mimetics: A novel class of drug delivery systems. Int. J. Nanomedicine, 2012, 7, 1525-1541.
[PMID: 22619510]
[2]
Xie, F.; Xu, M.; Lu, J.; Mao, L.; Wang, S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol. Cancer, 2019, 18(1), 146.
[http://dx.doi.org/10.1186/s12943-019-1074-3] [PMID: 31647023]
[3]
Vader, P.; Mol, E.A.; Pasterkamp, G.; Schiffelers, R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 148-156.
[http://dx.doi.org/10.1016/j.addr.2016.02.006] [PMID: 26928656]
[4]
Jabbari, N.; Akbariazar, E.; Feqhhi, M.; Rahbarghazi, R.; Rezaie, J. Breast cancer-derived exosomes: Tumor progression and therapeutic agents. J. Cell. Physiol., 2020, 235(10), 6345-6356.
[http://dx.doi.org/10.1002/jcp.29668] [PMID: 32216070]
[5]
Desrochers, L.M.; Antonyak, M.A.; Cerione, R.A. Extracellular vesicles: Satellites of information transfer in cancer and stem cell biology. Dev. Cell, 2016, 37(4), 301-309.
[http://dx.doi.org/10.1016/j.devcel.2016.04.019] [PMID: 27219060]
[6]
de Jong, O.G.; Kooijmans, S.A.A.; Murphy, D.E.; Jiang, L.; Evers, M.J.W.; Sluijter, J.P.G.; Vader, P.; Schiffelers, R.M. Drug delivery with extracellular vesicles: From imagination to innovation. Acc. Chem. Res., 2019, 52(7), 1761-1770.
[http://dx.doi.org/10.1021/acs.accounts.9b00109] [PMID: 31181910]
[7]
Srivastava, A.; Amreddy, N.; Pareek, V.; Chinnappan, M.; Ahmed, R.; Mehta, M.; Razaq, M.; Munshi, A.; Ramesh, R. Progress in extracellular vesicle biology and their application in cancer medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(4), e1621.
[http://dx.doi.org/10.1002/wnan.1621] [PMID: 32131140]
[8]
García-Manrique, P.; Gutiérrez, G.; Blanco-López, M.C. Fully artificial exosomes: Towards new theranostic biomaterials. Trends Biotechnol., 2018, 36(1), 10-14.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.005] [PMID: 29074309]
[9]
Elsharkasy, O.M.; Nordin, J.Z.; Hagey, D.W.; de Jong, O.G.; Schiffelers, R.M.; Andaloussi, S.E.; Vader, P. Extracellular vesicles as drug delivery systems: Why and how? Adv. Drug Deliv. Rev., 2020, 159, 332-343.
[http://dx.doi.org/10.1016/j.addr.2020.04.004] [PMID: 32305351]
[10]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[11]
Shlosberg, D.; Benifla, M.; Kaufer, D.; Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol., 2010, 6(7), 393-403.
[http://dx.doi.org/10.1038/nrneurol.2010.74] [PMID: 20551947]
[12]
Rufino-Ramos, D.; Albuquerque, P.R.; Carmona, V.; Perfeito, R.; Nobre, R.J.; Pereira de Almeida, L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J. Control. Release, 2017, 262, 247-258.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.001] [PMID: 28687495]
[13]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[14]
Pullan, J.E.; Confeld, M.I.; Osborn, J.K.; Kim, J.; Sarkar, K.; Mallik, S. Exosomes as drug carriers for cancer therapy. Mol. Pharm., 2019, 16(5), 1789-1798.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00104] [PMID: 30951627]
[15]
Coleman, B.M.; Hill, A.F. Extracellular vesicles--Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin. Cell Dev. Biol., 2015, 40, 89-96.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.007] [PMID: 25704308]
[16]
D’Asti, E.; Chennakrishnaiah, S.; Lee, T.H.; Rak, J. Extracellular vesicles in brain tumor progression. Cell. Mol. Neurobiol., 2016, 36(3), 383-407.
[http://dx.doi.org/10.1007/s10571-015-0296-1] [PMID: 26993504]
[17]
Lauritzen, I.; Bécot, A.; Bourgeois, A.; Pardossi-Piquard, R.; Biferi, M.G.; Barkats, M.; Checler, F. Targeting γ-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Transl. Neurodegener., 2019, 8, 35.
[http://dx.doi.org/10.1186/s40035-019-0176-6] [PMID: 31827783]
[18]
Vanherle, S.; Haidar, M.; Irobi, J.; Bogie, J.F.J.; Hendriks, J.J.A. Extracellular vesicle-associated lipids in central nervous system disorders. Adv. Drug Deliv. Rev., 2020, 159, 322-331.
[http://dx.doi.org/10.1016/j.addr.2020.04.011] [PMID: 32360577]
[19]
Chen, C.C.; Liu, L.; Ma, F.; Wong, C.W.; Guo, X.E.; Chacko, J.V.; Farhoodi, H.P.; Zhang, S.X.; Zimak, J.; Ségaliny, A.; Riazifar, M.; Pham, V.; Digman, M.A.; Pone, E.J.; Zhao, W. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell. Mol. Bioeng., 2016, 9(4), 509-529.
[http://dx.doi.org/10.1007/s12195-016-0458-3] [PMID: 28392840]
[20]
Matsumoto, J.; Stewart, T.; Banks, W.A.; Zhang, J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr. Pharm. Des., 2017, 23(40), 6206-6214.
[http://dx.doi.org/10.2174/1381612823666170913164738] [PMID: 28914201]
[21]
Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res., 2015, 32(6), 2003-2014.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[22]
Caponnetto, F.; Manini, I.; Skrap, M.; Palmai-Pallag, T.; Di Loreto, C.; Beltrami, A.P.; Cesselli, D.; Ferrari, E. Size-dependent cellular uptake of exosomes. Nanomedicine, 2017, 13(3), 1011-1020.
[http://dx.doi.org/10.1016/j.nano.2016.12.009] [PMID: 27993726]
[23]
Horibe, S.; Tanahashi, T.; Kawauchi, S.; Murakami, Y.; Rikitake, Y. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer, 2018, 18(1), 47.
[http://dx.doi.org/10.1186/s12885-017-3958-1] [PMID: 29306323]
[24]
Jiang, Y.; Xu, C.; Leung, W.; Lin, M.; Cai, X.; Guo, H.; Zhang, J.; Yang, F. Role of exosomes in photodynamic anticancer therapy. Curr. Med. Chem., 2020, 27(40), 6815-6824.
[http://dx.doi.org/10.2174/0929867326666190918122221] [PMID: 31533597]
[25]
Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine, 2020, 15, 6917-6934.
[http://dx.doi.org/10.2147/IJN.S264498] [PMID: 33061359]
[26]
Jadli, A.S.; Ballasy, N.; Edalat, P.; Patel, V.B. Inside(sight) of tiny communicator: Exosome biogenesis, secretion, and uptake. Mol. Cell. Biochem., 2020, 467(1-2), 77-94.
[http://dx.doi.org/10.1007/s11010-020-03703-z] [PMID: 32088833]
[27]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[28]
Hood, J.L. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond.), 2016, 11(13), 1745-1756.
[http://dx.doi.org/10.2217/nnm-2016-0102] [PMID: 27348448]
[29]
Tang, K.; Zhang, Y.; Zhang, H.; Xu, P.; Liu, J.; Ma, J.; Lv, M.; Li, D.; Katirai, F.; Shen, G.X.; Zhang, G.; Feng, Z.H.; Ye, D.; Huang, B. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat. Commun., 2012, 3, 1282.
[http://dx.doi.org/10.1038/ncomms2282] [PMID: 23250412]
[30]
Pascucci, L.; Coccè, V.; Bonomi, A.; Ami, D.; Ceccarelli, P.; Ciusani, E.; Viganò, L.; Locatelli, A.; Sisto, F.; Doglia, S.M.; Parati, E.; Bernardo, M.E.; Muraca, M.; Alessandri, G.; Bondiolotti, G.; Pessina, A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J. Control. Release, 2014, 192, 262-270.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.042] [PMID: 25084218]
[31]
Mathiyalagan, P.; Sahoo, S. Exosomes-based gene therapy for microRNA delivery. Methods Mol. Biol., 2017, 1521, 139-152.
[http://dx.doi.org/10.1007/978-1-4939-6588-5_9] [PMID: 27910046]
[32]
Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun., 2018, 9(1), 1305.
[http://dx.doi.org/10.1038/s41467-018-03733-8] [PMID: 29610454]
[33]
Sterzenbach, U.; Putz, U.; Low, L.H.; Silke, J.; Tan, S.S.; Howitt, J. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther., 2017, 25(6), 1269-1278.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.030] [PMID: 28412169]
[34]
Yang, J.; Zhang, X.; Chen, X.; Wang, L.; Yang, G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids, 2017, 7, 278-287.
[http://dx.doi.org/10.1016/j.omtn.2017.04.010] [PMID: 28624203]
[35]
Kim, H.Y.; Kim, T.J.; Kang, L.; Kim, Y.J.; Kang, M.K.; Kim, J.; Ryu, J.H.; Hyeon, T.; Yoon, B.W.; Ko, S.B.; Kim, B.S. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials, 2020, 243, 119942.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119942] [PMID: 32179302]
[36]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[37]
György, B.; Fitzpatrick, Z.; Crommentuijn, M.H.; Mu, D.; Maguire, C.A. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo. Biomaterials, 2014, 35(26), 7598-7609.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.032] [PMID: 24917028]
[38]
Ingato, D.; Lee, J.U.; Sim, S.J.; Kwon, Y.J. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. J. Control. Release, 2016, 241, 174-185.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.016] [PMID: 27667180]
[39]
Frydrychowicz, M.; Kolecka-Bednarczyk, A.; Madejczyk, M.; Yasar, S.; Dworacki, G. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol., 2015, 81(1), 2-10.
[http://dx.doi.org/10.1111/sji.12247] [PMID: 25359529]
[40]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[41]
Zhuang, X.; Xiang, X.; Grizzle, W.; Sun, D.; Zhang, S.; Axtell, R.C.; Ju, S.; Mu, J.; Zhang, L.; Steinman, L.; Miller, D.; Zhang, H.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther., 2011, 19(10), 1769-1779.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[42]
Qu, M.; Lin, Q.; Huang, L.; Fu, Y.; Wang, L.; He, S.; Fu, Y.; Yang, S.; Zhang, Z.; Zhang, L.; Sun, X. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control. Release, 2018, 287, 156-166.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.035] [PMID: 30165139]
[43]
Didiot, M.C.; Hall, L.M.; Coles, A.H.; Haraszti, R.A.; Godinho, B.M.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J.F.; Hassler, M.R.; Echeverria, D.; Raj, L.; Morrissey, D.V.; DiFiglia, M.; Aronin, N.; Khvorova, A. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA Silencing. Mol. Ther., 2016, 24(10), 1836-1847.
[http://dx.doi.org/10.1038/mt.2016.126] [PMID: 27506293]
[44]
Biscans, A.; Haraszti, R.A.; Echeverria, D.; Miller, R.; Didiot, M.C.; Nikan, M.; Roux, L.; Aronin, N.; Khvorova, A. Hydrophobicity of lipid-conjugated siRNAs predicts productive loading to small extracellular vesicles. Mol. Ther., 2018, 26(6), 1520-1528.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.019] [PMID: 29699940]
[45]
Wang, J.; Chen, D.; Ho, E.A. Challenges in the development and establishment of exosome-based drug delivery systems. J. Control. Release, 2021, 329, 894-906.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.020] [PMID: 33058934]
[46]
Armstrong, J.P.; Holme, M.N.; Stevens, M.M. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano, 2017, 11(1), 69-83.
[http://dx.doi.org/10.1021/acsnano.6b07607] [PMID: 28068069]
[47]
Kooijmans, S.A.A.; Stremersch, S.; Braeckmans, K.; de Smedt, S.C.; Hendrix, A.; Wood, M.J.A.; Schiffelers, R.M.; Raemdonck, K.; Vader, P. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control. Release, 2013, 172(1), 229-238.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.014] [PMID: 23994516]
[48]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S.D.; Kabanov, A.V.; Batrakova, E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine, 2016, 12(3), 655-664.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[49]
Zhao, X.; Wu, D.; Ma, X.; Wang, J.; Hou, W.; Zhang, W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed. Pharmacother., 2020, 128, 110237.
[http://dx.doi.org/10.1016/j.biopha.2020.110237] [PMID: 32470747]
[50]
Sato, Y.T.; Umezaki, K.; Sawada, S.; Mukai, S.A.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep., 2016, 6, 21933.
[http://dx.doi.org/10.1038/srep21933] [PMID: 26911358]
[51]
Fuhrmann, G.; Serio, A.; Mazo, M.; Nair, R.; Stevens, M.M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release, 2015, 205, 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.029] [PMID: 25483424]
[52]
Jamur, M.C.; Oliver, C. Permeabilization of cell membranes. Methods Mol. Biol., 2010, 588, 63-66.
[http://dx.doi.org/10.1007/978-1-59745-324-0_9] [PMID: 20012820]
[53]
Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev., 2010, 9(3), 425-474.
[http://dx.doi.org/10.1007/s11101-010-9183-z] [PMID: 20835386]
[54]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrakova, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[55]
Gopalan, D.; Pandey, A.; Udupa, N.; Mutalik, S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J. Control. Release, 2020, 319, 183-200.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.034] [PMID: 31866505]
[56]
Tian, T.; Zhang, H.X.; He, C.P.; Fan, S.; Zhu, Y.L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[57]
Jia, G.; Han, Y.; An, Y.; Ding, Y.; He, C.; Wang, X.; Tang, Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials, 2018, 178, 302-316.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.029] [PMID: 29982104]
[58]
Nasiri, K. A.; Kastaniegaard, K.; Greening, D.W.; Shambrook, M.; Stensballe, A.; Cheng, L.; Hill, A.F. Proteomic and post-translational modification profiling of exosome-mimetic nanovesicles compared to exosomes. Proteomics, 2019, 19, e1800161.
[http://dx.doi.org/10.1002/pmic.201800161]
[59]
Kalimuthu, S.; Gangadaran, P.; Rajendran, R.L.; Zhu, L.; Oh, J.M.; Lee, H.W.; Gopal, A.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front. Pharmacol., 2018, 9, 1116.
[http://dx.doi.org/10.3389/fphar.2018.01116] [PMID: 30319428]
[60]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[61]
Lunavat, T.R.; Jang, S.C.; Nilsson, L.; Park, H.T.; Repiska, G.; Lässer, C.; Nilsson, J.A.; Gho, Y.S.; Lötvall, J. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer. Biomaterials, 2016, 102, 231-238.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.024] [PMID: 27344366]
[62]
Jang, S.C.; Gho, Y.S. Could bioengineered exosome-mimetic nanovesicles be an efficient strategy for the delivery of chemotherapeutics? Nanomedicine (Lond.), 2014, 9(2), 177-180.
[http://dx.doi.org/10.2217/nnm.13.206] [PMID: 24552557]
[63]
Goh, W.J.; Zou, S.; Ong, W.Y.; Torta, F.; Alexandra, A.F.; Schiffelers, R.M.; Storm, G.; Wang, J.W.; Czarny, B.; Pastorin, G. Bioinspired cell-derived nanovesicles versus exosomes as drug delivery systems: A cost-effective alternative. Sci. Rep., 2017, 7(1), 14322.
[http://dx.doi.org/10.1038/s41598-017-14725-x] [PMID: 29085024]
[64]
Li, S.P.; Lin, Z.X.; Jiang, X.Y.; Yu, X.Y. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol. Sin., 2018, 39(4), 542-551.
[http://dx.doi.org/10.1038/aps.2017.178] [PMID: 29417947]
[65]
Kim, O.Y.; Lee, J.; Gho, Y.S. Extracellular vesicle mimetics: Novel alternatives to extracellular vesicle-based theranostics, drug delivery, and vaccines. Semin. Cell Dev. Biol., 2017, 67, 74-82.
[http://dx.doi.org/10.1016/j.semcdb.2016.12.001] [PMID: 27916566]
[66]
Witwer, K.W.; Théry, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles, 2019, 8(1), 1648167.
[http://dx.doi.org/10.1080/20013078.2019.1648167] [PMID: 31489144]
[67]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[68]
Zabeo, D.; Cvjetkovic, A.; Lässer, C.; Schorb, M.; Lötvall, J.; Höög, J.L. Exosomes purified from a single cell type have diverse morphology. J. Extracell. Vesicles, 2017, 6(1), 1329476.
[http://dx.doi.org/10.1080/20013078.2017.1329476] [PMID: 28717422]
[69]
Burger, D.; Turner, M.; Xiao, F.; Munkonda, M.N.; Akbari, S.; Burns, K.D. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia, 2017, 60(9), 1791-1800.
[http://dx.doi.org/10.1007/s00125-017-4331-2] [PMID: 28601907]
[70]
Gaurivaud, P.; Ganter, S.; Villard, A.; Manso-Silvan, L.; Chevret, D.; Boulé, C.; Monnet, V.; Tardy, F. Mycoplasmas are no exception to extracellular vesicles release: Revisiting old concepts. PLoS One, 2018, 13(11), e0208160.
[http://dx.doi.org/10.1371/journal.pone.0208160] [PMID: 30485365]
[71]
Zubair, M.; Khan, F.A.; Menghwar, H.; Faisal, M.; Ashraf, M.; Rasheed, M.A.; Marawan, M.A.; Dawood, A.; Chen, Y.; Chen, H.; Guo, A. Progresses on bacterial secretomes enlighten research on Mycoplasma secretome. Microb. Pathog., 2020, 144, 104160.
[http://dx.doi.org/10.1016/j.micpath.2020.104160] [PMID: 32194181]
[72]
Németh, A.; Orgovan, N.; Sódar, B.W.; Osteikoetxea, X.; Pálóczi, K.; Szabó-Taylor, K.É.; Vukman, K.V.; Kittel, Á.; Turiák, L.; Wiener, Z.; Tóth, S.; Drahos, L.; Vékey, K.; Horvath, R.; Buzás, E.I. Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci. Rep., 2017, 7(1), 8202.
[http://dx.doi.org/10.1038/s41598-017-08392-1] [PMID: 28811610]
[73]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[74]
Whiteside, T.L. Tumor-derived exosomes and their role in cancer progression. Adv. Clin. Chem., 2016, 74, 103-141.
[http://dx.doi.org/10.1016/bs.acc.2015.12.005] [PMID: 27117662]
[75]
Chen, Y.; Li, J.; Ma, B.; Li, N.; Wang, S.; Sun, Z.; Xue, C.; Han, Q.; Wei, J.; Zhao, R.C. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY), 2020, 12(18), 18274-18296.
[http://dx.doi.org/10.18632/aging.103692] [PMID: 32966240]
[76]
Guy, R.; Offen, D. Promising opportunities for treating neurodegenerative diseases with mesenchymal stem cell-derived exosomes. Biomolecules, 2020, 10(9), 1320.
[http://dx.doi.org/10.3390/biom10091320] [PMID: 32942544]
[77]
Cui, Y.; Gao, J.; He, Y.; Jiang, L. Plant extracellular vesicles. Protoplasma, 2020, 257(1), 3-12.
[http://dx.doi.org/10.1007/s00709-019-01435-6] [PMID: 31468195]
[78]
Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther., 2021, 29(1), 13-31.
[http://dx.doi.org/10.1016/j.ymthe.2020.11.030] [PMID: 33278566]
[79]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Bovine milk-derived exosomes for drug delivery. Cancer Lett., 2016, 371(1), 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[80]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A.H.; Wilcher, S.A.; Gupta, R.C. Milk exosomes - Natural nanoparticles for siRNA delivery. Cancer Lett., 2019, 449, 186-195.
[http://dx.doi.org/10.1016/j.canlet.2019.02.011] [PMID: 30771430]
[81]
Fernandes, M.; Lopes, I.; Teixeira, J.; Botelho, C.; Gomes, A.C. Exosome-like nanoparticles: A new type of nanocarrier. Curr. Med. Chem., 2020, 27(23), 3888-3905.
[http://dx.doi.org/10.2174/0929867326666190129142604] [PMID: 30706777]
[82]
Wang, Q.; Ren, Y.; Mu, J.; Egilmez, N.K.; Zhuang, X.; Deng, Z.; Zhang, L.; Yan, J.; Miller, D.; Zhang, H.G. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res., 2015, 75(12), 2520-2529.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3095] [PMID: 25883092]
[83]
Yepes-Molina, L.; Martínez-Ballesta, M.C.; Carvajal, M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J. Adv. Res., 2020, 23, 101-111.
[http://dx.doi.org/10.1016/j.jare.2020.02.004] [PMID: 32089878]
[84]
Zhuang, X.; Teng, Y.; Samykutty, A.; Mu, J.; Deng, Z.; Zhang, L.; Cao, P.; Rong, Y.; Yan, J.; Miller, D.; Zhang, H.G. Grapefruit-derived nanovectors delivering therapeutic mir17 through an intranasal route inhibit brain tumor progression. Mol. Ther., 2016, 24(1), 96-105.
[http://dx.doi.org/10.1038/mt.2015.188] [PMID: 26444082]
[85]
Xiao, J.; Feng, S.; Wang, X.; Long, K.; Luo, Y.; Wang, Y.; Ma, J.; Tang, Q.; Jin, L.; Li, X.; Li, M. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ, 2018, 6, e5186.
[http://dx.doi.org/10.7717/peerj.5186] [PMID: 30083436]
[86]
Galley, J.D.; Besner, G.E. The therapeutic potential of breast milk-derived extracellular vesicles. Nutrients, 2020, 12(3), 745.
[http://dx.doi.org/10.3390/nu12030745] [PMID: 32168961]
[87]
Kim, K.U.; Kim, W.H.; Jeong, C.H.; Yi, D.Y.; Min, H. More than nutrition: Therapeutic potential of breast milk-derived exosomes in cancer. Int. J. Mol. Sci., 2020, 21(19), 7327.
[http://dx.doi.org/10.3390/ijms21197327] [PMID: 33023062]
[88]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Mudd, A.M.; Kyakulaga, A.H.; Singh, I.P.; Vadhanam, M.V.; Gupta, R.C. Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett., 2017, 393, 94-102.
[http://dx.doi.org/10.1016/j.canlet.2017.02.004] [PMID: 28202351]
[89]
Gardiner, C.; Di Vizio, D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J. Extracell. Vesicles, 2016, 5, 32945.
[http://dx.doi.org/10.3402/jev.v5.32945] [PMID: 27802845]
[90]
He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics, 2018, 8(1), 237-255.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[91]
Kaminski, V.L.; Ellwanger, J.H.; Chies, J.A.B. Extracellular vesicles in host-pathogen interactions and immune regulation - exosomes as emerging actors in the immunological theater of pregnancy. Heliyon, 2019, 5(8), e02355.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02355] [PMID: 31592031]
[92]
McNamara, R.P.; Dittmer, D.P. Modern techniques for the isolation of extracellular vesicles and viruses. J. Neuroimmune Pharmacol., 2020, 15(3), 459-472.
[http://dx.doi.org/10.1007/s11481-019-09874-x] [PMID: 31512168]
[93]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[94]
García-Manrique, P.; Matos, M.; Gutiérrez, G.; Pazos, C.; Blanco-López, M.C. Therapeutic biomaterials based on extracellular vesicles: Classification of bio-engineering and mimetic preparation routes. J. Extracell. Vesicles, 2018, 7(1), 1422676.
[http://dx.doi.org/10.1080/20013078.2017.1422676] [PMID: 29372017]
[95]
Maroto, R.; Zhao, Y.; Jamaluddin, M.; Popov, V.L.; Wang, H.; Kalubowilage, M.; Zhang, Y.; Luisi, J.; Sun, H.; Culbertson, C.T.; Bossmann, S.H.; Motamedi, M.; Brasier, A.R. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J. Extracell. Vesicles, 2017, 6(1), 1359478.
[http://dx.doi.org/10.1080/20013078.2017.1359478] [PMID: 28819550]
[96]
Royo, F.; Théry, C.; Falcón-Pérez, J.M.; Nieuwland, R.; Witwer, K.W. Methods for Separation and characterization of extracellular vesicles: results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells, 2020, 9(9), 1955.
[http://dx.doi.org/10.3390/cells9091955] [PMID: 32854228]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy