Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mucoadhesive Nanosystems for Nose-to-Brain Drug Delivery in the Treatment of Central Nervous System Diseases

Author(s): Leonardo Delello Di Filippo, Jonatas Duarte, Bruno Fonseca-Santos, Alberto Gomes Tavares Júnior, Victor Araújo, Cesar Augusto Roque Borda, Eduardo Festozo Vicente and Marlus Chorilli*

Volume 29, Issue 17, 2022

Published on: 05 January, 2022

Page: [3079 - 3110] Pages: 32

DOI: 10.2174/0929867328666210813154019

Price: $65

Abstract

The diseases affecting the Central Nervous System (CNS) can have varied etiopathology, but they have in common silent progression, global incidence, and significant impacts on the quality of life of patients and public health systems. With the advance of biomedicine and pharmaceutical technology, new and more modern diagnostic methods and treatments were developed, repurposing the use of drugs currently available for the treatment of CNS diseases. An attractive approach is the use of alternative drug delivery platforms, such as nanocarriers, and less invasive administration routes, such as the noseto- brain, extensively explored for the delivery of drugs into the CNS. Despite many promising results, the nose-to-brain route has some physiological limitations that make it difficult to deliver drugs satisfactorily to exert therapeutic activity in the CNS. To overcome these limitations, nanostructured systems with mucoadhesive properties have stood out over the last few years in pharmaceutical R&D. In this review; we discuss how the noseto- brain route limitations can influence the delivery of drugs to the CNS and highlight the benefits that mucoadhesion can bring to these nanostructured systems. The main findings in the literature are brought together and discussed critically, focusing on how mucoadhesion can improve the biopharmaceutical properties of molecules used in the clinic, as well as their biological performance. Finally, conclusions are drawn about the points of strength of mucoadhesive nanosystems and the points that still need attention to successfully use the nose-to-brain route for the treatment of diseases that affect the CNS.

Keywords: Neurodegenerative diseases, brain cancer, brain infection, mood disorders, nose-to-brain, mucoadhesion, drug delivery nanosystems.

[1]
Bors, L.A.; Erdö, F. Overcoming the blood-brain barrier challenges and tricks for CNS drug delivery. Sci. Pharm., 2019, 87(1), 6.
[http://dx.doi.org/10.3390/scipharm87010006]
[2]
Neurological Disorders. Public Health Challenges; Geneva, 2006.
[3]
Kumar, K.; Sharma, S.; Kumar, P.; Deshmukh, R. Therapeutic potential of GABAB receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol. Biochem. Behav., 2013, 174-184.
[http://dx.doi.org/10.1016/j.pbb.2013.07.003] [PMID: 23872369]
[4]
Daigre, C.; Roncero, C.; Grau-López, L.; Martínez-Luna, N.; Prat, G.; Valero, S.; Tejedor, R.; Ramos-Quiroga, J.A.; Casas, M. Attention deficit hyperactivity disorder in cocaine-dependent adults: A psychiatric comorbidity analysis. Am. J. Addict., 2013, 22(5), 466-473.
[http://dx.doi.org/10.1111/j.1521-0391.2013.12047.x] [PMID: 23952892]
[5]
Naeem, S.; Najam, R.; Khan, S.S.; Mirza, T.; Sikandar, B. Neuroprotective effect of diclofenac on chlorpromazine induced catalepsy in rats. Metab. Brain Dis., 2019, 34(4), 1191-1199.
[http://dx.doi.org/10.1007/s11011-019-00416-1] [PMID: 31055785]
[6]
Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. The Lancet, 2019, 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0]
[7]
Tamil Selvan, S.; Padmanabhan, P.; Zoltán Gulyás, B. Nanotechnology-based diagnostics and therapy for pathogen-related infections in the CNS. ACS Chem. Neurosci., 2020, 11(16), 2371-2377.
[http://dx.doi.org/10.1021/acschemneuro.9b00470] [PMID: 31726008]
[8]
Lee, B.J.; Vu, B.N.; Seddon, A.N.; Hodgson, H.A.; Wang, S.K. Treatment considerations for CNS infections caused by vancomycin-resistant Enterococcus Faecium: A focused review of linezolid and daptomycin. Ann. Pharmacother., 2020, 54(12), 1243-1251.
[http://dx.doi.org/10.1177/1060028020932513] [PMID: 32506921]
[9]
Nozuma, S.; Jacobson, S. Neuroimmunology of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Front. Microbiol., 2019, 10, 885.
[http://dx.doi.org/10.3389/fmicb.2019.00885] [PMID: 31105674]
[10]
Dobson, R.; Giovannoni, G. Multiple sclerosis - a review. Eur. J. Neurol., 2019, 26(1), 27-40.
[http://dx.doi.org/10.1111/ene.13819] [PMID: 30300457]
[11]
Tan, C.H.; Bonham, L.W.; Fan, C.C.; Mormino, E.C.; Sugrue, L.P.; Broce, I.J.; Hess, C.P.; Yokoyama, J.S.; Rabinovici, G.D.; Miller, B.L.; Yaffe, K.; Schellenberg, G.D.; Kauppi, K.; Holland, D.; McEvoy, L.K.; Kukull, W.A.; Tosun, D.; Weiner, M.W.; Sperling, R.A.; Bennett, D.A.; Hyman, B.T.; Andreassen, O.A.; Dale, A.M.; Desikan, R.S. Polygenic hazard score, amyloid deposition and Alzheimer’s neurodegeneration. Brain, 2019, 142(2), 460-470.
[http://dx.doi.org/10.1093/brain/awy327] [PMID: 30689776]
[12]
di Domenico, A.; Carola, G.; Calatayud, C.; Pons-Espinal, M.; Muñoz, J.P.; Richaud-Patin, Y.; Fernandez-Carasa, I.; Gut, M.; Faella, A.; Parameswaran, J.; Soriano, J.; Ferrer, I.; Tolosa, E.; Zorzano, A.; Cuervo, A.M.; Raya, A.; Consiglio, A. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s Disease. Stem Cell Reports, 2019, 12(2), 213-229.
[http://dx.doi.org/10.1016/j.stemcr.2018.12.011] [PMID: 30639209]
[13]
Morton, A.J.; Middleton, B.; Rudiger, S.; Bawden, C.S.; Kuchel, T.R.; Skene, D.J. Increased plasma melatonin in presymptomatic huntington disease sheep (ovis aries): Compensatory neuroprotection in a neurodegenerative disease? J. Pineal Res., 2020, 68(2), e12624.
[http://dx.doi.org/10.1111/jpi.12624] [PMID: 31742766]
[14]
Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the blood - brain barrier in drug discovery and development. Nat. Rev. Drug Discov., 2007, 650-661.
[http://dx.doi.org/10.1038/nrd2368]
[15]
Kuhnline Sloan, C.D.; Nandi, P.; Linz, T.H.; Aldrich, J.V.; Audus, K.L.; Lunte, S.M. Analytical and biological methods for probing the blood-brain barrier. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2012, 5(1), 505-531.
[http://dx.doi.org/10.1146/annurev-anchem-062011-143002] [PMID: 22708905]
[16]
Merkus, P.; Guchelaar, H.J.; Bosch, D.A.; Merkus, F.W.H.M. Direct access of drugs to the human brain after intranasal drug administration? Neurology, 2003, 60(10), 1669-1671.
[http://dx.doi.org/10.1212/01.WNL.0000067993.60735.77] [PMID: 12771261]
[17]
Lawrence, R.N. William pardridge discusses the lack of BBB research. Drug Discov. Today, 2002, 223-226.
[http://dx.doi.org/10.1016/S1359-6446(02)02195-5]
[18]
Chen, Y.; Dalwadi, G.; Benson, H.A. Drug delivery across the blood-brain barrier. Curr. Drug Deliv., 2004, 1(4), 361-376.
[http://dx.doi.org/10.2174/1567201043334542] [PMID: 16305398]
[19]
Graff, C.L.; Pollack, G.M. Nasal drug administration: potential for targeted central nervous system delivery. J. Pharm. Sci., 2005, 1187-1195.
[http://dx.doi.org/10.1002/jps.20318]
[20]
Amorim, C. de M. Desenvolvimento de sistemas de liberação nanoestruturados mucoadesivos contendo o ácido elágico visando o tratamento da doença de Alzheimer., Available at: https://repositorio.ufsc.br/handle/123456789/129682
[21]
Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics, 2018, 10(3), 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116]
[22]
Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm., 2007, 337(1-2), 1-24.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.025] [PMID: 17475423]
[23]
Heinemann, L. New ways of insulin delivery. Int. J. Clin. Pract. Suppl., 2011, (170), 31-46.
[http://dx.doi.org/10.1111/j.1742-1241.2010.02577.x] [PMID: 21323811]
[24]
Tong, Un. Nasal administration of quercetin liposomes modulate cognitive impairment and inhibit acetylcholinesterase activity in hippocampus. Am. J. Neurosci., 2010, 1(1), 21-27.
[http://dx.doi.org/10.3844/ajnsp.2010.21.27]
[25]
Ugwoke, M.I.; Agu, R.U.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv. Drug Deliv. Rev., 2005, 57(11), 1640-1665.
[http://dx.doi.org/10.1016/j.addr.2005.07.009] [PMID: 16182408]
[26]
Pardeshi, C.V.; Belgamwar, V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10(7), 957-972.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[27]
de Araújo, P.R.; Calixto, G.M.F.; da Silva, I.C.; de Paula Zago, L.H.; Oshiro, Junior J.A.; Pavan, F.R.; Ribeiro, A.O.; Fontana, C.R.; Chorilli, M. Mucoadhesive in situ gelling liquid crystalline precursor system to improve the vaginal administration of drugs. AAPS PharmSciTech, 2019, 20(6), 225.
[http://dx.doi.org/10.1208/s12249-019-1439-3] [PMID: 31214798]
[28]
Gan, L.; Cookson, M.R.; Petrucelli, L.; La Spada, A.R. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci., 2018, 21(10), 1300-1309.
[http://dx.doi.org/10.1038/s41593-018-0237-7] [PMID: 30258237]
[29]
Piccardo, P.; Asher, D.M. Complex proteinopathies and neurodegeneration: Insights from the study of transmissible spongiform encephalopathies. Arq. Neuropsiquiatr., 2018, 76(10), 705-712.
[http://dx.doi.org/10.1590/0004-282x20180111] [PMID: 30427511]
[30]
Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; Wild, E.J.; Tabrizi, S.J. Huntington disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[31]
Groen, E.J.N.; Talbot, K.; Gillingwater, T.H. Advances in therapy for spinal muscular atrophy: Promises and challenges. Nat. Rev. Neurol., 2018, 14(4), 214-224.
[http://dx.doi.org/10.1038/nrneurol.2018.4] [PMID: 29422644]
[32]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[33]
Katsuno, M.; Sahashi, K.; Iguchi, Y.; Hashizume, A. Preclinical progression of neurodegenerative diseases. Nagoya J. Med. Sci., 2018, 80(3), 289-298.
[http://dx.doi.org/10.18999/nagjms.80.3.289] [PMID: 30214078]
[34]
Levenson, R.W.; Sturm, V.E.; Haase, C.M. Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology. Annu. Rev. Clin. Psychol., 2014, 10, 581-606.
[http://dx.doi.org/10.1146/annurev-clinpsy-032813-153653] [PMID: 24437433]
[35]
Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Primers, 2019, 5(1), 24.
[http://dx.doi.org/10.1038/s41572-019-0074-3] [PMID: 30975995]
[36]
Sullivan, R.; Yau, W.Y.; O’Connor, E.; Houlden, H. Spinocerebellar ataxia: An update. J. Neurol., 2019, 266(2), 533-544.
[http://dx.doi.org/10.1007/s00415-018-9076-4] [PMID: 30284037]
[37]
Nichols, M.J.; Newsome, W.T. The neurobiology of cognition. Nature, 1999, 402(6761)(Suppl.), C35-C38.
[http://dx.doi.org/10.1038/35011531] [PMID: 10591223]
[38]
Trojsi, F.; Christidi, F.; Migliaccio, R.; Santamaría-García, H.; Santangelo, G. Behavioural and cognitive changes in neurodegenerative diseases and brain injury. Behav. Neurol., 2018, 2018, 4935915.
[http://dx.doi.org/10.1155/2018/4935915] [PMID: 30147810]
[39]
Arnaoutoglou, N.A.; O’Brien, J.T.; Underwood, B.R. Dementia with Lewy bodies - from scientific knowledge to clinical insights. Nat. Rev. Neurol., 2019, 15(2), 103-112.
[http://dx.doi.org/10.1038/s41582-018-0107-7] [PMID: 30559465]
[40]
Elahi, F.M.; Miller, B.L. A clinicopathological approach to the diagnosis of dementia. Nat. Rev. Neurol., 2017, 13(8), 457-476.
[http://dx.doi.org/10.1038/nrneurol.2017.96] [PMID: 28708131]
[41]
Hinz, F.I.; Geschwind, D.H. Molecular genetics of neurodegenerative dementias. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a023705.
[http://dx.doi.org/10.1101/cshperspect.a023705] [PMID: 27940516]
[42]
Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol., 2020, 19(3), 255-265.
[http://dx.doi.org/10.1016/S1474-4422(19)30411-9] [PMID: 31813850]
[43]
Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[44]
Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; Abraham, J.; Ackerman, I.; Aggarwal, R.; Ahn, S.Y.; Ali, M.K.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Bahalim, A.N.; Barker-Collo, S.; Barrero, L.H.; Bartels, D.H.; Basáñez, M.G.; Baxter, A.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bernabé, E.; Bhalla, K.; Bhandari, B.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Black, J.A.; Blencowe, H.; Blore, J.D.; Blyth, F.; Bolliger, I.; Bonaventure, A.; Boufous, S.; Bourne, R.; Boussinesq, M.; Braithwaite, T.; Brayne, C.; Bridgett, L.; Brooker, S.; Brooks, P.; Brugha, T.S.; Bryan-Hancock, C.; Bucello, C.; Buchbinder, R.; Buckle, G.; Budke, C.M.; Burch, M.; Burney, P.; Burstein, R.; Calabria, B.; Campbell, B.; Canter, C.E.; Carabin, H.; Carapetis, J.; Carmona, L.; Cella, C.; Charlson, F.; Chen, H.; Cheng, A.T.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahiya, M.; Dahodwala, N.; Damsere-Derry, J.; Danaei, G.; Davis, A.; De Leo, D.; Degenhardt, L.; Dellavalle, R.; Delossantos, A.; Denenberg, J.; Derrett, S.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dherani, M.; Diaz-Torne, C.; Dolk, H.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Edmond, K.; Elbaz, A.; Ali, S.E.; Erskine, H.; Erwin, P.J.; Espindola, P.; Ewoigbokhan, S.E.; Farzadfar, F.; Feigin, V.; Felson, D.T.; Ferrari, A.; Ferri, C.P.; Fèvre, E.M.; Finucane, M.M.; Flaxman, S.; Flood, L.; Foreman, K.; Forouzanfar, M.H.; Fowkes, F.G.; Fransen, M.; Freeman, M.K.; Gabbe, B.J.; Gabriel, S.E.; Gakidou, E.; Ganatra, H.A.; Garcia, B.; Gaspari, F.; Gillum, R.F.; Gmel, G.; Gonzalez-Medina, D.; Gosselin, R.; Grainger, R.; Grant, B.; Groeger, J.; Guillemin, F.; Gunnell, D.; Gupta, R.; Haagsma, J.; Hagan, H.; Halasa, Y.A.; Hall, W.; Haring, D.; Haro, J.M.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Higashi, H.; Hill, C.; Hoen, B.; Hoffman, H.; Hotez, P.J.; Hoy, D.; Huang, J.J.; Ibeanusi, S.E.; Jacobsen, K.H.; James, S.L.; Jarvis, D.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Jonas, J.B.; Karthikeyan, G.; Kassebaum, N.; Kawakami, N.; Keren, A.; Khoo, J.P.; King, C.H.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Laden, F.; Lalloo, R.; Laslett, L.L.; Lathlean, T.; Leasher, J.L.; Lee, Y.Y.; Leigh, J.; Levinson, D.; Lim, S.S.; Limb, E.; Lin, J.K.; Lipnick, M.; Lipshultz, S.E.; Liu, W.; Loane, M.; Ohno, S.L.; Lyons, R.; Mabweijano, J.; MacIntyre, M.F.; Malekzadeh, R.; Mallinger, L.; Manivannan, S.; Marcenes, W.; March, L.; Margolis, D.J.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGill, N.; McGrath, J.; Medina-Mora, M.E.; Meltzer, M.; Mensah, G.A.; Merriman, T.R.; Meyer, A.C.; Miglioli, V.; Miller, M.; Miller, T.R.; Mitchell, P.B.; Mock, C.; Mocumbi, A.O.; Moffitt, T.E.; Mokdad, A.A.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moran, A.; Morawska, L.; Mori, R.; Murdoch, M.E.; Mwaniki, M.K.; Naidoo, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nelson, P.K.; Nelson, R.G.; Nevitt, M.C.; Newton, C.R.; Nolte, S.; Norman, P.; Norman, R.; O’Donnell, M.; O’Hanlon, S.; Olives, C.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Page, A.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Patten, S.B.; Pearce, N.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Pesudovs, K.; Phillips, D.; Phillips, M.R.; Pierce, K.; Pion, S.; Polanczyk, G.V.; Polinder, S.; Pope, C.A., III; Popova, S.; Porrini, E.; Pourmalek, F.; Prince, M.; Pullan, R.L.; Ramaiah, K.D.; Ranganathan, D.; Razavi, H.; Regan, M.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Richardson, K.; Rivara, F.P.; Roberts, T.; Robinson, C.; De Leòn, F.R.; Ronfani, L.; Room, R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Saha, S.; Sampson, U.; Sanchez-Riera, L.; Sanman, E.; Schwebel, D.C.; Scott, J.G.; Segui-Gomez, M.; Shahraz, S.; Shepard, D.S.; Shin, H.; Shivakoti, R.; Singh, D.; Singh, G.M.; Singh, J.A.; Singleton, J.; Sleet, D.A.; Sliwa, K.; Smith, E.; Smith, J.L.; Stapelberg, N.J.; Steer, A.; Steiner, T.; Stolk, W.A.; Stovner, L.J.; Sudfeld, C.; Syed, S.; Tamburlini, G.; Tavakkoli, M.; Taylor, H.R.; Taylor, J.A.; Taylor, W.J.; Thomas, B.; Thomson, W.M.; Thurston, G.D.; Tleyjeh, I.M.; Tonelli, M.; Towbin, J.A.; Truelsen, T.; Tsilimbaris, M.K.; Ubeda, C.; Undurraga, E.A.; van der Werf, M.J.; van Os, J.; Vavilala, M.S.; Venketasubramanian, N.; Wang, M.; Wang, W.; Watt, K.; Weatherall, D.J.; Weinstock, M.A.; Weintraub, R.; Weisskopf, M.G.; Weissman, M.M.; White, R.A.; Whiteford, H.; Wiebe, N.; Wiersma, S.T.; Wilkinson, J.D.; Williams, H.C.; Williams, S.R.; Witt, E.; Wolfe, F.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Zaidi, A.K.; Zheng, Z.J.; Zonies, D.; Lopez, A.D.; AlMazroa, M.A.; Memish, Z.A. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the global burden of disease study 2010. Lancet, 2012, 380(9859), 2197-2223.
[http://dx.doi.org/10.1016/S0140-6736(12)61689-4] [PMID: 23245608]
[45]
Shubhakaran, K.P.; Chin, J.H. The global burden of neurologic diseases. Neurology, 2015, 84(7), 758.
[http://dx.doi.org/10.1212/WNL.0000000000001251] [PMID: 25688151]
[46]
Association, A. 2020 Alzheimer’s Disease Facts and Figures, 2020.
[47]
Marras, C.; Beck, J.C.; Bower, J.H.; Roberts, E.; Ritz, B.; Ross, G.W.; Abbott, R.D.; Savica, R.; Van Den Eeden, S.K.; Willis, A.W.; Tanner, C.M. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis., 2018, 4(1), 21.
[http://dx.doi.org/10.1038/s41531-018-0058-0] [PMID: 30003140]
[48]
Mehta, P.; Kaye, W.; Raymond, J.; Punjani, R.; Larson, T.; Cohen, J.; Muravov, O.; Horton, K. Prevalence of amyotrophic lateral sclerosis - United States, 2015. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(46), 1285-1289.
[http://dx.doi.org/10.15585/mmwr.mm6746a1] [PMID: 30462626]
[49]
Burns, A.; Iliffe, S. Alzheimer’s disease. BMJ, 2009, 338, b158.
[http://dx.doi.org/10.1136/bmj.b158] [PMID: 19196745]
[50]
Guarino, A.; Favieri, F.; Boncompagni, I.; Agostini, F.; Cantone, M.; Casagrande, M. Executive functions in Alzheimer disease: A systematic review. Front. Aging Neurosci., 2019, 10, 437.
[http://dx.doi.org/10.3389/fnagi.2018.00437] [PMID: 30697157]
[51]
Cooper, C.; Katona, C.; Orrell, M.; Livingston, G. Coping strategies, anxiety and depression in caregivers of people with Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2008, 23(9), 929-936.
[http://dx.doi.org/10.1002/gps.2007] [PMID: 18383189]
[52]
Ferretti, L.; McCurry, S.M.; Logsdon, R.; Gibbons, L.; Teri, L. Anxiety and Alzheimer’s disease. J. Geriatr. Psychiatry Neurol., 2001, 14(1), 52-58.
[http://dx.doi.org/10.1177/089198870101400111] [PMID: 11281317]
[53]
Garcez, M.L.; Falchetti, A.C.B.; Mina, F.; Budni, J. Alzheimer’s disease associated with psychiatric comorbidities. An. Acad. Bras. Cienc., 2015, 87(2), 1461-1473.
[http://dx.doi.org/10.1590/0001-3765201520140716] [PMID: 26312426]
[54]
Du, X.; Wang, X.; Geng, M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener., 2018, 7, 2.
[http://dx.doi.org/10.1186/s40035-018-0107-y] [PMID: 29423193]
[55]
Mohandas, E.; Rajmohan, V.; Raghunath, B. Neurobiology of Alzheimer’s disease. Indian J. Psychiatry, 2009, 51(1), 55-61.
[http://dx.doi.org/10.4103/0019-5545.44908] [PMID: 19742193]
[56]
Amakiri, N.; Kubosumi, A.; Tran, J.; Reddy, P.H. Amyloid beta and microRNAs in alzheimer’s disease. Front. Neurosci., 2019, 13(430), 430.
[http://dx.doi.org/10.3389/fnins.2019.00430] [PMID: 31130840]
[57]
Lee, H.G.; Zhu, X.; Nunomura, A.; Perry, G.; Smith, M.A. Amyloid beta: The alternate hypothesis. Curr. Alzheimer Res., 2006, 3(1), 75-80.
[http://dx.doi.org/10.2174/156720506775697124] [PMID: 16472207]
[58]
Gralle, M.; Ferreira, S.T. Structure and functions of the human amyloid precursor protein: The whole is more than the sum of its parts. Prog. Neurobiol., 2007, 82(1), 11-32.
[http://dx.doi.org/10.1016/j.pneurobio.2007.02.001] [PMID: 17428603]
[59]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[60]
Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[61]
Masters, C.L.; Selkoe, D.J. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(6), a006262.
[http://dx.doi.org/10.1101/cshperspect.a006262] [PMID: 22675658]
[62]
Bartus, R. T.; Dean, R. L., 3rd; Beer, B.; Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science (80-. ), 1982, 217(4558), 408-414.
[http://dx.doi.org/10.1126/science.7046051]
[63]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[64]
Tumiatti, V.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Milelli, A.; Matera, R.; Melchiorre, C. Progress in acetylcholinesterase inhibitors for Alzheimer’s disease: An update. Expert Opin. Ther. Pat., 2008, 18(4), 387-401.
[http://dx.doi.org/10.1517/13543776.18.4.387]
[65]
Saify, Z.S.; Sultana, N. Chapter 7- Role of acetylcholinesterase inhibitors and alzheimer disease.In: Drug Design and Discovery in Alzheimer’s Disease; Atta ur, R; Choudhary, M.I., Ed.; Elsevier, 2014, pp. 387-425.
[66]
Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun., 2019, 40(10), e1800917.
[http://dx.doi.org/10.1002/marc.201800917] [PMID: 30835923]
[67]
Castro, K. C. ; de, ; Costa, J. M.; Campos, M. G. N. DrugLoaded polymeric nanoparticles: A review. Int. J. Poly. Mater. Poly. Biomat., 2020.
[http://dx.doi.org/10.1080/00914037.2020.1798436]
[68]
Dhas, N.; Mehta, T. Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative stress in effective treatment of Alzheimer’s disease: A non-invasive approach. Int. J. Pharm., 2020, 586, 119553.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119553] [PMID: 32561306]
[69]
Beddoes, C.M.; Case, C.P.; Briscoe, W.H. Understanding nanoparticle cellular entry: A physicochemical perspective. Adv. Colloid Interface Sci., 2015, 218, 48-68.
[http://dx.doi.org/10.1016/j.cis.2015.01.007] [PMID: 25708746]
[70]
Kou, L.; Sun, J.; Zhai, Y.; He, Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J. Pharm. Sci., 2013, 8(1), 10.
[71]
Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Sharifi-Rad, J.; Mendoza-Muñoz, N.; González-Torres, M.; Urbán-Morlán, Z.; Florán, B.; Cortes, H.; Leyva-Gómez, G. Chitosan-decorated nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol., 2020, 59, 101896.
[http://dx.doi.org/10.1016/j.jddst.2020.101896]
[72]
Sunena; Singh, S.K.; Mishra, D.N. Nose to brain delivery of galantamine loaded nanoparticles: In vivo pharmacodynamic and biochemical study in mice. Curr. Drug Deliv., 2019, 16(1), 51-58.
[http://dx.doi.org/10.2174/1567201815666181004094707] [PMID: 30289074]
[73]
Hanafy, A.S.; Farid, R.M.; Helmy, M.W.; ElGamal, S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv., 2016, 23(8), 3111-3122.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[74]
Hanafy, A.S.; Farid, R.M.; ElGamal, S.S. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer’s disease management: Preparation and detection in rat brain. Drug Dev. Ind. Pharm., 2015, 41(12), 2055-2068.
[http://dx.doi.org/10.3109/03639045.2015.1062897] [PMID: 26133084]
[75]
McNeela, E.A.; O’Connor, D.; Jabbal-Gill, I.; Illum, L.; Davis, S.S.; Pizza, M.; Peppoloni, S.; Rappuoli, R.; Mills, K.H. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine, 2000, 19(9-10), 1188-1198.
[http://dx.doi.org/10.1016/S0264-410X(00)00309-1] [PMID: 11137256]
[76]
Alves, S.; Churlaud, G.; Audrain, M.; Michaelsen-Preusse, K.; Fol, R.; Souchet, B.; Braudeau, J.; Korte, M.; Klatzmann, D.; Cartier, N. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice. Brain, 2017, 140(3), 826-842.
[http://dx.doi.org/10.1093/brain/aww330] [PMID: 28003243]
[77]
Heydari, S.; Hedayati, Ch.M.; Saadat, F.; Abedinzade, M.; Nikokar, I.; Aboutaleb, E.; Khafri, A.; Mokarram, A.R. Diphtheria toxoid nanoparticles improve learning and memory impairment in animal model of Alzheimer’s disease. Pharmacol. Rep., 2020, 72(4), 814-826.
[http://dx.doi.org/10.1007/s43440-019-00017-w] [PMID: 32048245]
[78]
Zameer, S.; Ali, J.; Vohora, D.; Najmi, A.K.; Akhtar, M. Development, optimisation and evaluation of chitosan nanoparticles of alendronate against alzheimer’s disease in Intracerebroventricular streptozotocin model for brain delivery. J. Drug Target., 2021, 29(2), 199-216.
[http://dx.doi.org/10.1080/1061186X.2020.1817041] [PMID: 32876502]
[79]
Cardia, M.C.; Carta, A.R.; Caboni, P.; Maccioni, A.M.; Erbì, S.; Boi, L.; Meloni, M.C.; Lai, F.; Sinico, C. Trimethyl chitosan hydrogel nanoparticles for progesterone delivery in neurodegenerative disorders. Pharmaceutics, 2019, 11(12), 657.
[http://dx.doi.org/10.3390/pharmaceutics11120657] [PMID: 31817711]
[80]
Shamarekh, K.S.; Gad, H.A.; Soliman, M.E.; Sammour, O.A. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In vitro and in vivo Assessment. J. Drug Deliv. Sci. Technol., 2020, 57, 101724.
[http://dx.doi.org/10.1016/j.jddst.2020.101724]
[81]
Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2018, 70(1), 59-69.
[http://dx.doi.org/10.1111/jphp.12836] [PMID: 29034965]
[82]
Liu, Q.; Zhang, Q. 10 - nanoparticle systems for nose-to-brain delivery.In: Brain Targeted Drug Delivery System; Gao, H.; Gao, X., Eds.; Academic Press, 2019, pp. 219-239.
[http://dx.doi.org/10.1016/B978-0-12-814001-7.00010-X]
[83]
Shen, Y.; Chen, J.; Liu, Q.; Feng, C.; Gao, X.; Wang, L.; Zhang, Q.; Jiang, X. Effect of wheat germ agglutinin density on cellular uptake and toxicity of wheat germ agglutinin conjugated PEG-PLA nanoparticles in Calu-3 cells. Int. J. Pharm., 2011, 413(1-2), 184-193.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.026] [PMID: 21550388]
[84]
Su, Y.; Sun, B.; Gao, X.; Dong, X.; Fu, L.; Zhang, Y.; Li, Z.; Wang, Y.; Jiang, H.; Han, B. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front. Pharmacol., 2020, 11, 1165.
[http://dx.doi.org/10.3389/fphar.2020.01165] [PMID: 32848773]
[85]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[86]
Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci., 2016, 92, 224-234.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[87]
Al Harthi, S.; Alavi, S.E.; Radwan, M.A.; El Khatib, M.M.; AlSarra, I.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci. Rep., 2019, 9(1), 9563.
[http://dx.doi.org/10.1038/s41598-019-46032-y] [PMID: 31266990]
[88]
Nageeb El-Helaly, S.; Abd Elbary, A.; Kassem, M.A.; El-Nabarawi, M.A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: Preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[89]
Al Asmari, A.K.; Ullah, Z.; Tariq, M.; Fatani, A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther., 2016, 10, 205-215.
[http://dx.doi.org/10.2147/DDDT.S93937] [PMID: 26834457]
[90]
Sibinovska, N.; Žakelj, S.; Roškar, R.; Kristan, K. Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. Int. J. Pharm., 2020, 585, 119484.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119484] [PMID: 32485216]
[91]
Witschi, C.; Mrsny, R.J. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm. Res., 1999, 16(3), 382-390.
[http://dx.doi.org/10.1023/A:1018869601502] [PMID: 10213368]
[92]
Furubayashi, T.; Inoue, D.; Nishiyama, N.; Tanaka, A.; Yutani, R.; Kimura, S.; Katsumi, H.; Yamamoto, A.; Sakane, T. Comparison of various cell lines and three-dimensional mucociliary tissue model systems to estimate drug permeability using an in vitro transport study to predict nasal drug absorption in rats. Pharmaceutics, 2020, 12(1), 79.
[http://dx.doi.org/10.3390/pharmaceutics12010079] [PMID: 31963555]
[93]
Inoue, D.; Furubayashi, T.; Tanaka, A.; Sakane, T.; Sugano, K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur. J. Pharm. Biopharm., 2020, 149, 145-153.
[http://dx.doi.org/10.1016/j.ejpb.2020.02.004] [PMID: 32057906]
[94]
Zhang, L.; Du, S-Y.; Lu, Y.; Liu, C.; Tian, Z-H.; Yang, C.; Wu, H-C.; Wang, Z. Puerarin transport across a Calu-3 cell monolayer - an in vitro model of nasal mucosa permeability and the influence of paeoniflorin and menthol. Drug Des. Devel. Ther., 2016, 10, 2227-2237.
[http://dx.doi.org/10.2147/DDDT.S110247] [PMID: 27468226]
[95]
Zheng, X.; Shao, X.; Zhang, C.; Tan, Y.; Liu, Q.; Wan, X.; Zhang, Q.; Xu, S.; Jiang, X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm. Res., 2015, 32(12), 3837-3849.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[96]
Katdare, A.; Khunt, D.; Thakkar, S.; Polaka, S.N.; Misra, M. Comparative evaluation of fish oil and butter oil in modulating delivery of galantamine hydrobromide to brain via intranasal route: Pharmacokinetic and oxidative stress studies. Drug Deliv. Transl. Res., 2020, 10(4), 1136-1146.
[http://dx.doi.org/10.1007/s13346-020-00739-y] [PMID: 32219727]
[97]
Shah, B.; Khunt, D.; Misra, M.; Padh, H. Formulation and in vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting. Pharm. Res., 2018, 35(1), 8.
[http://dx.doi.org/10.1007/s11095-017-2279-z] [PMID: 29294189]
[98]
Sharma, D.; Singh, M.; Kumar, P.; Vikram, V.; Mishra, N. Development and characterization of morin hydrate loaded microemulsion for the management of Alzheimer’s disease. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1620-1630.
[http://dx.doi.org/10.1080/21691401.2016.1276919] [PMID: 28102083]
[99]
Kaur, A.; Nigam, K.; Srivastava, S.; Tyagi, A.; Dang, S. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease. J. Microencapsul., 2020, 37(5), 355-365.
[http://dx.doi.org/10.1080/02652048.2020.1756971] [PMID: 32293915]
[100]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[101]
McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[102]
Casadomé-Perales, Á.; Matteis, L.; Alleva, M.; Infantes-Rodríguez, C.; Palomares-Pérez, I.; Saito, T.; Saido, T.C.; Esteban, J.A.; Nebreda, A.R.; de la Fuente, J.M.; Dotti, C.G. Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules. Nanomedicine (Lond.), 2019, 14(18), 2409-2422.
[http://dx.doi.org/10.2217/nnm-2018-0496] [PMID: 31456488]
[103]
Kaur, A.; Nigam, K.; Bhatnagar, I.; Sukhpal, H.; Awasthy, S.; Shankar, S.; Tyagi, A.; Dang, S. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach. Drug Deliv. Transl. Res., 2020, 10(6), 1862-1875.
[http://dx.doi.org/10.1007/s13346-020-00754-z] [PMID: 32297166]
[104]
Jiang, Y.; Liu, C.; Zhai, W.; Zhuang, N.; Han, T.; Ding, Z. The optimization design of lactoferrin loaded HupA nanoemulsion for targeted drug transport via intranasal route. Int. J. Nanomedicine, 2019, 14, 9217-9234.
[http://dx.doi.org/10.2147/IJN.S214657] [PMID: 31819426]
[105]
Rajput, A.; Bariya, A.; Allam, A.; Othman, S.; Butani, S.B. In situ nanostructured hydrogel of resveratrol for brain targeting: In vitro in vivo characterization. Drug Deliv. Transl. Res., 2018, 8(5), 1460-1470.
[http://dx.doi.org/10.1007/s13346-018-0540-6] [PMID: 29785574]
[106]
Ceulemans, J.; Vinckier, I.; Ludwig, A. The use of xanthan gum in an ophthalmic liquid dosage form: Rheological characterization of the interaction with mucin. J. Pharm. Sci., 2002, 91(4), 1117-1127.
[http://dx.doi.org/10.1002/jps.10106] [PMID: 11948550]
[107]
de Oliveira Cardoso, V.M.; Gremião, M.P.D.; Cury, B.S.F. Mucin-polysaccharide interactions: A rheological approach to evaluate the effect of pH on the mucoadhesive properties. Int. J. Biol. Macromol., 2020, 149, 234-245.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.235] [PMID: 31982533]
[108]
Mahdi, M.H.; Conway, B.R.; Smith, A.M. Development of mucoadhesive sprayable gellan gum fluid gels. Int. J. Pharm., 2015, 488(1-2), 12-19.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.011] [PMID: 25863119]
[109]
Menchicchi, B.; Fuenzalida, J.P.; Hensel, A.; Swamy, M.J.; David, L.; Rochas, C.; Goycoolea, F.M. Biophysical analysis of the molecular interactions between polysaccharides and mucin. Biomacromolecules, 2015, 16(3), 924-935.
[http://dx.doi.org/10.1021/bm501832y] [PMID: 25630032]
[110]
Osmałek, T.Z.; Froelich, A.; Jadach, B.; Krakowski, M. Rheological investigation of high-acyl gellan gum hydrogel and its mixtures with simulated body fluids. J. Biomater. Appl., 2018, 32(10), 1435-1449.
[http://dx.doi.org/10.1177/0885328218762361] [PMID: 29534627]
[111]
Ham, T.J.; Nollen, E.A.A. Caenorhabditis elegans as a model organism for dementia.In: Animal Models of Dementia , 2011; pp. 241-253.
[http://dx.doi.org/10.1007/978-1-60761-898-0_13]
[112]
Van Pelt, K.M.; Truttmann, M.C. Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Transl. Med. Aging, 2020, 4, 60-72.
[http://dx.doi.org/10.1016/j.tma.2020.05.001]
[113]
Alexander, A.G.; Marfil, V.; Li, C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front. Genet., 2014, 5, 279.
[http://dx.doi.org/10.3389/fgene.2014.00279] [PMID: 25250042]
[114]
Wang, Y.A.; Kammenga, J.E.; Harvey, S.C. Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans. Hum. Genomics, 2017, 11(1), 12.
[http://dx.doi.org/10.1186/s40246-017-0108-4] [PMID: 28545550]
[115]
Anand, A.; Arya, M.; Kaithwas, G.; Singh, G.; Saraf, S.A. Sucrose stearate as a biosurfactant for development of rivastigmine containing nanostructured lipid carriers and assessment of its activity against dementia in C. Elegans Model. J. Drug Deliv. Sci. Technol., 2019, 49, 219-226.
[http://dx.doi.org/10.1016/j.jddst.2018.11.021]
[116]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[117]
Clarke, C.E. Parkinson’s disease. BMJ, 2007, 335(7617), 441-445.
[http://dx.doi.org/10.1136/bmj.39289.437454.AD] [PMID: 17762036]
[118]
Heijmans, M.; Habets, J.G.V.; Herff, C.; Aarts, J.; Stevens, A.; Kuijf, M.L.; Kubben, P.L. Monitoring Parkinson’s disease symptoms during daily life: A feasibility study. NPJ Parkinsons Dis., 2019, 5(1), 21.
[http://dx.doi.org/10.1038/s41531-019-0093-5] [PMID: 31583270]
[119]
Barnes, J.; David, A.S. Visual hallucinations in Parkinson’s disease: A review and phenomenological survey. J. Neurol. Neurosurg. Psychiatry, 2001, 70(6), 727-733.
[http://dx.doi.org/10.1136/jnnp.70.6.727] [PMID: 11385004]
[120]
Fénelon, G.; Mahieux, F.; Huon, R.; Ziégler, M. Hallucinations in Parkinson’s disease: Prevalence, phenomenology and risk factors. Brain, 2000, 123(Pt 4), 733-745.
[http://dx.doi.org/10.1093/brain/123.4.733] [PMID: 10734005]
[121]
Holroyd, S.; Currie, L.; Wooten, G.F. Prospective study of hallucinations and delusions in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2001, 70(6), 734-738.
[http://dx.doi.org/10.1136/jnnp.70.6.734] [PMID: 11385005]
[122]
Aarsland, D.; Brønnick, K.; Ehrt, U.; De Deyn, P.P.; Tekin, S.; Emre, M.; Cummings, J.L. Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: Frequency, profile and associated care giver stress. J. Neurol. Neurosurg. Psychiatry, 2007, 78(1), 36-42.
[http://dx.doi.org/10.1136/jnnp.2005.083113] [PMID: 16820421]
[123]
Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. & Psychiatry, 2008, 79(4), 368.
[http://dx.doi.org/10.1136/jnnp.2007.131045]
[124]
De Pablo-Fernandez, E.; Tur, C.; Revesz, T.; Lees, A.J.; Holton, J.L.; Warner, T.T. Association of autonomic dysfunction with disease progression and survival in Parkinson disease. JAMA Neurol., 2017, 74(8), 970-976.
[http://dx.doi.org/10.1001/jamaneurol.2017.1125] [PMID: 28655059]
[125]
Gomperts, S.N. Lewy body dementias: Dementia with lewy bodies and parkinson disease dementia. Continuum (Minneap. Minn)., 2016, 22(2), 435-463.
[http://dx.doi.org/10.1212/CON.0000000000000309]
[126]
Outeiro, T.F.; Koss, D.J.; Erskine, D.; Walker, L.; Kurzawa-Akanbi, M.; Burn, D.; Donaghy, P.; Morris, C.; Taylor, J-P.; Thomas, A.; Attems, J.; McKeith, I. Dementia with lewy bodies: An update and outlook. Mol. Neurodegener., 2019, 14(1), 5.
[http://dx.doi.org/10.1186/s13024-019-0306-8] [PMID: 30665447]
[127]
Vaillancourt, D.E.; Mitchell, T. Parkinson’s disease progression in the substantia nigra: Location, location, location. Brain, 2020, 143(9), 2628-2630.
[http://dx.doi.org/10.1093/brain/awaa252] [PMID: 32947614]
[128]
Cheong, S.L.; Federico, S.; Spalluto, G.; Klotz, K-N.; Pastorin, G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: transition from single-target to multitarget therapy. Drug Discov. Today, 2019, 24(9), 1769-1783.
[http://dx.doi.org/10.1016/j.drudis.2019.05.003] [PMID: 31102728]
[129]
Levodopa and the progression of parkinson’s disease. N. Engl. J. Med., 2004, 351(24), 2498-2508.
[http://dx.doi.org/10.1056/NEJMoa033447] [PMID: 15590952]
[130]
Dhall, R.; Kreitzman, D.L. Advances in levodopa therapy for Parkinson disease: Review of RYTARY (carbidopa and levodopa) clinical efficacy and safety. Neurology, 2016, 86(14)(Suppl. 1), S13-S24.
[http://dx.doi.org/10.1212/WNL.0000000000002510] [PMID: 27044646]
[131]
Dezsi, L.; Vecsei, L. Monoamine oxidase B inhibitors in parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2017, 16(4), 425-439.
[http://dx.doi.org/10.2174/1871527316666170124165222] [PMID: 28124620]
[132]
Konta, B.; Frank, W. The treatment of Parkinson’s disease with dopamine agonists. GMS Health Technol. Assess., 2008, 4, Doc05-Doc05.
[PMID: 21289911]
[133]
Müller, T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs, 2015, 75(2), 157-174.
[http://dx.doi.org/10.1007/s40265-014-0343-0] [PMID: 25559423]
[134]
Holloway, R.; Frank, S. Review: Anticholinergic drugs improve motor function and disability in parkinson disease. ACP J. Club, 2004, 140(1), 15.
[135]
Katzenschlager, R.; Sampaio, C.; Costa, J.; Lees, A. Anticholinergics for symptomatic management of parkinson’s disease. Cochrane Database Syst. Rev., 2002, (3)
[http://dx.doi.org/10.1002/14651858.CD003735] [PMID: 12804486]
[136]
Meredith, G.E.; Rademacher, D.J. MPTP mouse models of Parkinson’s disease: An update. J. Parkinsons Dis., 2011, 1(1), 19-33.
[http://dx.doi.org/10.3233/JPD-2011-11023] [PMID: 23275799]
[137]
Arisoy, S.; Sayiner, O.; Comoglu, T.; Onal, D.; Atalay, O.; Pehlivanoglu, B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm. Dev. Technol., 2020, 25(6), 735-747.
[http://dx.doi.org/10.1080/10837450.2020.1740257] [PMID: 32141798]
[138]
Tang, S.; Wang, A.; Yan, X.; Chu, L.; Yang, X.; Song, Y.; Sun, K.; Yu, X.; Liu, R.; Wu, Z.; Xue, P. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv., 2019, 26(1), 700-707.
[http://dx.doi.org/10.1080/10717544.2019.1636420] [PMID: 31290705]
[139]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[140]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[141]
Mittal, D.; Md, S.; Hasan, Q.; Fazil, M.; Ali, A.; Baboota, S.; Ali, J. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv., 2016, 23(1), 130-139.
[http://dx.doi.org/10.3109/10717544.2014.907372] [PMID: 24786489]
[142]
Lu, C.T.; Jin, R.R.; Jiang, Y.N.; Lin, Q.; Yu, W.Z.; Mao, K.L.; Tian, F.R.; Zhao, Y.P.; Zhao, Y.Z. Gelatin nanoparticle-mediated intranasal delivery of substance P protects against 6-hydroxydopamine-induced apoptosis: An in vitro and in vivo study. Drug Des. Devel. Ther., 2015, 9, 1955-1962.
[http://dx.doi.org/10.2147/DDDT.S77237] [PMID: 25897205]
[143]
Wei, H.; Liu, T.; Jiang, N.; Zhou, K.; Yang, K.; Ning, W.; Yu, Y. A novel delivery system of cyclovirobuxine d for brain targeting: Angiopep-conjugated polysorbate 80-coated liposomes via intranasal administration. J. Biomed. Nanotechnol., 2018, 14(7), 1252-1262.
[http://dx.doi.org/10.1166/jbn.2018.2581] [PMID: 29944099]
[144]
Das Mandal, S.; Mandal, S.; Patel, J. Intranasal mucoadhesivemicroemulsion for neuroprotective effect of curcuminin Mptp induced Parkinson model. Braz. J. Pharm. Sci., 2017, 53.
[http://dx.doi.org/10.1590/s2175-97902017000215223]
[145]
Pardeshi, C.V.; Belgamwar, V.S.N. N N,N-trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. Int. J. Biol. Macromol., 2018, 120(Pt B), 2560-2571.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.032] [PMID: 30201564]
[146]
Mandal, S.; Das Mandal, S.; Chuttani, K.; Sawant, K.K.; Subudhi, B.B. Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPTP induced parkinson model. J. Pharm. Investig., 2016, 46(1), 41-53.
[http://dx.doi.org/10.1007/s40005-015-0212-1]
[147]
de Oliveira, Junior E.R.; Truzzi, E.; Ferraro, L.; Fogagnolo, M.; Pavan, B.; Beggiato, S.; Rustichelli, C.; Maretti, E.; Lima, E.M.; Leo, E.; Dalpiaz, A. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson’s disease. J. Control. Release, 2020, 321, 540-552.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.033] [PMID: 32092370]
[148]
Pardeshi, C.V.; Belgamwar, V.S. Improved brain pharmacokinetics following intranasal administration of N,N,N-trimethyl chitosan tailored mucoadhesive NLCs. Mater. Technol., 2020, 35(5), 249-266.
[http://dx.doi.org/10.1080/10667857.2019.1674522]
[149]
Hernando, S.; Herran, E.; Figueiro-Silva, J.; Pedraz, J.L.; Igartua, M.; Carro, E.; Hernandez, R.M. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol. Neurobiol., 2018, 55(1), 145-155.
[http://dx.doi.org/10.1007/s12035-017-0728-7] [PMID: 28866799]
[150]
Gartziandia, O.; Herrán, E.; Ruiz-Ortega, J.A.; Miguelez, C.; Igartua, M.; Lafuente, J.V.; Pedraz, J.L.; Ugedo, L.; Hernández, R.M. Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J. Biomed. Nanotechnol., 2016, 12(12), 2220-2230.
[http://dx.doi.org/10.1166/jbn.2016.2313] [PMID: 29372975]
[151]
Daubner, S.C.; Le, T.; Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys., 2011, 508(1), 1-12.
[http://dx.doi.org/10.1016/j.abb.2010.12.017] [PMID: 21176768]
[152]
Chen, Y.; Fan, H.; Xu, C.; Hu, W.; Yu, B. Efficient cholera toxin B subunit-based nanoparticles with MRI capability for drug delivery to the brain following intranasal administration. Macromol. Biosci., 2019, 19(2), e1800340.
[http://dx.doi.org/10.1002/mabi.201800340] [PMID: 30536989]
[153]
World Health Organization. WHO Guidelines for the Pharmacological and Radiotherapeutic Management of Cancer Pain in Adults and Adolescent, 2018.
[154]
Li, J.; Zhao, J.; Tan, T.; Liu, M.; Zeng, Z.; Zeng, Y.; Zhang, L.; Fu, C.; Chen, D.; Xie, T. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int. J. Nanomedicine, 2020, 15, 2563-2582.
[http://dx.doi.org/10.2147/IJN.S243223] [PMID: 32368041]
[155]
International agency for research on cancer. Global cancer observatory (GLOBOCAN)..
[156]
Filbin, M.G.; Stiles, C.D. of brains and blood: Developmental origins of glioma diversity? Cancer Cell, 2015, 28(4), 403-404.
[http://dx.doi.org/10.1016/j.ccell.2015.09.013] [PMID: 26461085]
[157]
Geldenhuys, W.; Mbimba, T.; Bui, T.; Harrison, K.; Sutariya, V. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J. Drug Target., 2011, 19(9), 837-845.
[http://dx.doi.org/10.3109/1061186X.2011.589435] [PMID: 21692650]
[158]
Ferreira, N.N.; Granja, S.; Boni, F.I.; Prezotti, F.G.; Ferreira, L.M.B.; Cury, B.S.F.; Reis, R.M.; Baltazar, F.; Gremião, M.P.D. Modulating chitosan-PLGA nanoparticle properties to design a co-delivery platform for glioblastoma therapy intended for nose-to-brain route. Drug Deliv. Transl. Res., 2020, 10(6), 1729-1747.
[http://dx.doi.org/10.1007/s13346-020-00824-2] [PMID: 32683647]
[159]
Ullah, I.; Chung, K.; Bae, S.; Li, Y.; Kim, C.; Choi, B.; Nam, H.Y.; Kim, S.H.; Yun, C.O.; Lee, K.Y.; Kumar, P.; Lee, S.K. Nose-to-brain delivery of cancer-targeting paclitaxel-loaded nanoparticles potentiates antitumor effects in malignant glioblastoma. Mol. Pharm., 2020, 17(4), 1193-1204.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01215] [PMID: 31944768]
[160]
de Oliveira, Junior E.R.; Nascimento, T.L.; Salomão, M.A.; da Silva, A.C.G.; Valadares, M.C.; Lima, E.M. Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm. Res., 2019, 36(9), 131.
[http://dx.doi.org/10.1007/s11095-019-2662-z] [PMID: 31263962]
[161]
Sukumar, U.K.; Bose, R.J.C.; Malhotra, M.; Babikir, H.A.; Afjei, R.; Robinson, E.; Zeng, Y.; Chang, E.; Habte, F.; Sinclair, R.; Gambhir, S.S.; Massoud, T.F.; Paulmurugan, R. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials, 2019, 218, 119342.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119342] [PMID: 31326657]
[162]
Chen, Y.S.; Chiu, Y.H.; Li, Y.S.; Lin, E.Y.; Hsieh, D.K.; Lee, C.H.; Huang, M.H.; Chuang, H.M.; Lin, S.Z.; Harn, H.J.; Chiou, T.W. Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors. Int. J. Nanomedicine, 2019, 14, 3601-3613.
[http://dx.doi.org/10.2147/IJN.S193617] [PMID: 31190814]
[163]
Chu, L.; Wang, A.; Ni, L.; Yan, X.; Song, Y.; Zhao, M.; Sun, K.; Mu, H.; Liu, S.; Wu, Z.; Zhang, C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv., 2018, 25(1), 1634-1641.
[http://dx.doi.org/10.1080/10717544.2018.1494226] [PMID: 30176744]
[164]
Van Woensel, M.; Wauthoz, N.; Rosière, R.; Mathieu, V.; Kiss, R.; Lefranc, F.; Steelant, B.; Dilissen, E.; Van Gool, S.W.; Mathivet, T.; Gerhardt, H.; Amighi, K.; De Vleeschouwer, S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release, 2016, 227, 71-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.032] [PMID: 26902800]
[165]
Colombo, M.; Figueiró, F.; de Fraga Dias, A.; Teixeira, H.F.; Battastini, A.M.O.; Koester, L.S. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int. J. Pharm., 2018, 543(1-2), 214-223.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.055] [PMID: 29605695]
[166]
Blatzer, M.; Lanternier, F.; Latgé, J-P.; Beauvais, A.; Bretagne, S.; Chrétien, F.; Jouvion, G. Fungal infections of the CNS.In: Infections of the Central Nervous System: Pathology and Genetics; Chrétien, F.; Wong, K.T.; Sharer, L.R., Eds.; Wiley Online Library, 2020, Vol. 1, pp. 419-436.
[http://dx.doi.org/10.1002/9781119467748.ch44]
[167]
Somand, D.; Meurer, W. Central nervous system infections. Emerg. Med. Clin. North Am., 2009, 27(1), 89-100. , ix.
[http://dx.doi.org/10.1016/j.emc.2008.07.00] [PMID: 19218021]
[168]
Giovane, R.A.; Lavender, P.D. Central nervous system infections. Pract., 2018, 45(3), 505-518.
[http://dx.doi.org/10.1016/j.pop.2018.05.007] [PMID: 30115337]
[169]
Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev., 2010, 23(4), 858-883.
[http://dx.doi.org/10.1128/CMR.00007-10] [PMID: 20930076]
[170]
Fowler, M.J.; Cotter, J.D.; Knight, B.E.; Sevick-Muraca, E.M.; Sandberg, D.I.; Sirianni, R.W. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev., 2020, 165-166, 77-95.
[http://dx.doi.org/10.1016/j.addr.2020.02.006] [PMID: 32142739]
[171]
Manda, P.; Hargett, J.K.; Vaka, S.R.K.; Repka, M.A.; Murthy, S.N. Delivery of cefotaxime to the brain via intranasal administration. Drug Dev. Ind. Pharm., 2011, 37(11), 1306-1310.
[http://dx.doi.org/10.3109/03639045.2011.571696] [PMID: 21702731]
[172]
Eid, H.M.; Elkomy, M.H.; El Menshawe, S.F.; Salem, H.F. Transfersomal nanovesicles for nose-to-brain delivery of ofloxacin for better management of bacterial meningitis: formulation, optimization by box-behnken design, characterization and in vivo pharmacokinetic study. J. Drug Deliv. Sci. Technol., 2019, 54(July), 101304.
[http://dx.doi.org/10.1016/j.jddst.2019.101304]
[173]
Giuliani, A.; Balducci, A.G.; Zironi, E.; Colombo, G.; Bortolotti, F.; Lorenzini, L.; Galligioni, V.; Pagliuca, G.; Scagliarini, A.; Calzà, L.; Sonvico, F. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv., 2018, 25(1), 376-387.
[http://dx.doi.org/10.1080/10717544.2018.1428242] [PMID: 29382237]
[174]
Du, W.; Li, H.; Tian, B.; Sai, S.; Gao, Y.; Lan, T.; Meng, Y.; Ding, C. Development of nose-to-brain delivery of ketoconazole by nanostructured lipid carriers against cryptococcal meningoencephalitis in mice. Colloids Surf. B Biointerfaces, 2019, 183, 110446.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110446] [PMID: 31465938]
[175]
Xia, F.; Kheirbek, M.A. Circuit-based biomarkers for mood and anxiety disorders. Trends Neurosci., 2020, 43(11), 902-915.
[http://dx.doi.org/10.1016/j.tins.2020.08.004] [PMID: 32917408]
[176]
Marvel, C.L.; Paradiso, S. Cognitive and neurological impairment in mood disorders. Psychiatr. Clin. North Am., 2004, 27(1), 19-36. vii-viii.
[http://dx.doi.org/10.1016/S0193-953X(03)00106-0] [PMID: 15062628]
[177]
Rakofsky, J.; Rapaport, M. Mood disorders. Continuum, 2018, 24(3), 804-827.
[http://dx.doi.org/10.1212/CON.0000000000000604] [PMID: 29851879]
[178]
Marneros, A. Mood disorders: Epidemiology and natural history. Psychiatry, 2009, 8(2), 52-55.
[http://dx.doi.org/10.1016/j.mppsy.2008.10.022]
[179]
Li, X.; Frye, M.A.; Shelton, R.C. Review of pharmacological treatment in mood disorders and future directions for drug development. Neuropsychopharmacology, 2012, 37(1), 77-101.
[http://dx.doi.org/10.1038/npp.2011.198] [PMID: 21900884]
[180]
Penn, E.; Tracy, D.K. The drugs don’t work? antidepressants and the current and future pharmacological management of depression. Ther. Adv. Psychopharmacol., 2012, 2(5), 179-188.
[http://dx.doi.org/10.1177/2045125312445469] [PMID: 23983973]
[181]
Nemeroff, C.B.; Owens, M.J. Treatment of mood disorders. Nat. Neurosci., 2002, 5(S11), 1068-1070.
[http://dx.doi.org/10.1038/nn943] [PMID: 12403988]
[182]
O’Brien, F.E.; Dinan, T.G.; Griffin, B.T.; Cryan, J.F. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: Clinical significance of in vitro and in vivo findings. Br. J. Pharmacol., 2012, 165(2), 289-312.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01557.x] [PMID: 21718296]
[183]
Pires, P.C.; Santos, A.O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J. Control. Release, 2018, 270(270), 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.047] [PMID: 29199063]
[184]
Tavakoli, J.; Tang, Y. Hydrogel based sensors for biomedical applications: An updated review. Polymers (Basel), 2017, 9(8), 364.
[http://dx.doi.org/10.3390/polym9080364] [PMID: 30971040]
[185]
Wang, Q.S.; Li, K.; Gao, L.N.; Zhang, Y.; Lin, K.M.; Cui, Y.L. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater. Sci., 2020, 8(10), 2853-2865.
[http://dx.doi.org/10.1039/C9BM02006C] [PMID: 32270794]
[186]
Alam, M.I.; Baboota, S.; Ahuja, A.; Ali, M.; Ali, J.; Sahni, J.K.; Bhatnagar, A. Pharmacoscintigraphic evaluation of potential of lipid nanocarriers for nose-to-brain delivery of antidepressant drug. Int. J. Pharm., 2014, 470(1-2), 99-106.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.004] [PMID: 24810241]
[187]
El-Setouhy, D.A.; Ibrahim, A.B.; Amin, M.M.; Khowessah, O.M.; Elzanfaly, E.S. Intranasal haloperidol-loaded miniemulsions for brain targeting: Evaluation of locomotor suppression and in vivo biodistribution. Eur. J. Pharm. Sci., 2016, 92, 244-254.
[http://dx.doi.org/10.1016/j.ejps.2016.05.002] [PMID: 27154259]
[188]
Yasir, M.; Sara, U.V.S. Solid lipid nanoparticles for nose to brain delivery of haloperidol: In vitro drug release and pharmacokinetics evaluation. Acta Pharm. Sin. B, 2014, 4(6), 454-463.
[http://dx.doi.org/10.1016/j.apsb.2014.10.005] [PMID: 26579417]
[189]
Haque, S.; Md, S.; Sahni, J.K.; Ali, J.; Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res., 2014, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.011] [PMID: 24231512]
[190]
Haque, S.; Md, S.; Fazil, M.; Kumar, M.; Sahni, J.K.; Ali, J.; Baboota, S. Venlafaxine loaded chitosan NPs for brain targeting: pharmacokinetic and pharmacodynamic evaluation. Carbohydr. Polym., 2012, 89(1), 72-79.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.051] [PMID: 24750606]
[191]
Xu, D.; Lu, Y.R.; Kou, N.; Hu, M.J.; Wang, Q.S.; Cui, Y.L. Intranasal delivery of icariin via a nanogel-thermoresponsive hydrogel compound system to improve its antidepressant-like activity. Int. J. Pharm., 2020, 586(January), 119550.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119550] [PMID: 32554031]
[192]
Kaur, P.; Garg, T.; Vaidya, B.; Prakash, A.; Rath, G.; Goyal, A.K. Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: behavioral and biochemical assessment. J. Drug Target., 2015, 23(3), 275-286.
[http://dx.doi.org/10.3109/1061186X.2014.994097] [PMID: 25539073]
[193]
Mittal, D.; Ali, A.; Md, S.; Baboota, S.; Sahni, J.K.; Ali, J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Deliv., 2014, 21(2), 75-86.
[http://dx.doi.org/10.3109/10717544.2013.838713] [PMID: 24102636]
[194]
Vitorino, C.; Silva, S.; Bicker, J.; Falcão, A.; Fortuna, A. Antidepressants and nose-to-brain delivery: Drivers, restraints, opportunities and challenges. Drug Discov. Today, 2019, 24(9), 1911-1923.
[http://dx.doi.org/10.1016/j.drudis.2019.06.001] [PMID: 31181188]
[195]
Warnken, Z.N.; Smyth, H.D.C.; Watts, A.B.; Weitman, S.; Kuhn, J.G.; Williams, R.O. Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci. Technol., 2016, 35, 213-222.
[http://dx.doi.org/10.1016/j.jddst.2016.05.003]
[196]
Alexander, A.; Agrawal, M.; Bhupal Chougule, M.; Saraf, S.; Saraf, S. Nose-to-brain drug delivery.In: Nanopharmaceuticals; Elsevier, 2020, pp. 175-200.
[http://dx.doi.org/10.1016/B978-0-12-817778-5.00009-9]
[197]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine (Lond.), 2019, 14(1), 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[198]
Nijhara, R.; Balakrishnan, K. Bringing nanomedicines to market: Regulatory challenges, opportunities, and uncertainties. Nanomedicine, 2006, 2(2), 127-136.
[http://dx.doi.org/10.1016/j.nano.2006.04.005] [PMID: 17292125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy