Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

COVID-19 and the Challenges of Chemotherapy: The Failure Case of Hydroxychloroquine in the Clinical Treatment of SARS-CoV-2 Infection

Author(s): Pollyanna Stephanie Gomes, Patrícia de Almeida Machado, Andre M.O. Gomes, Andrea C. Oliveira, Jerson L. Silva and Herbert Leonel de Matos Guedes*

Volume 2, Issue 7, 2021

Published on: 12 January, 2021

Article ID: e150721190246 Pages: 11

DOI: 10.2174/2666796702999210112202907

Price: $65

Abstract

In December 2019, in Wuhan, China, an outbreak of a respiratory disease was reported, and the causative agent of which was discovered to be the new coronavirus. This disease spread rapidly around the world, and in March 2020, the WHO declared a state of pandemic. According to the WHO situation in October report, more than 41,570.883 were affected, and 1,134.940 deaths had occurred. Thus, the urgency to find therapeutic targets to prevent viral replication and a vaccine to protect against the disease became a great challenge for researchers around the world. A French group began using, in patients, a drug that had already been approved for human use, hydroxychloroquine (HQ) alone or in combination with azithromycin. The use of a drug already approved by regulatory agencies can enable treatment strategies to be put in place rapidly; however, even though in vitro may indicate success, this is not always guaranteed. For HQ, some studies have shown a satisfactory response in patients, while in many others, the result was not positive and patients actually died. Furthermore, many adverse effects of HQ have been described. In this review, we will briefly discuss how this therapy became an option for the treatment of SARS-CoV-2 infection. We will address the use of HQ in different pathologies and COVID-19 specifically; describing the doses used, as well as the main adverse effects. The take-home message is that more efforts are still required to conclude the efficacy of HQ against COVID-19, however, most of the studies carried out currently are showing that the use of HQ does not bring benefits during treatment of COVID-19.

Keywords: COVID-19, SARS-CoV-2, clinical trial, hydroxychloroquine, coronaviridae, SL-CoVZC45.

Graphical Abstract

[1]
Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 2020; 585(7826): 584-7.
[http://dx.doi.org/10.1038/s41586-020-2558-4] [PMID: 32698191]
[2]
Science. Novel human virus? Pneumonia cases linked to seafood market in China stir concern. 2020. Available from: https://www.sciencemag.org/news/2020/01/novel-human-virus-pneumonia-cases-linked-seafood-market-china-stir-concern
[3]
Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 2015; 28(2): 465-522.
[http://dx.doi.org/10.1128/CMR.00102-14] [PMID: 25810418]
[4]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 580(7803): E7.
[http://dx.doi.org/10.1038/s41586-020-2202-3] [PMID: 32296181]
[5]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[6]
Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and Coronaviruses. Viruses 2019; 11(1): 11.
[http://dx.doi.org/10.3390/v11010041] [PMID: 30634396]
[7]
Lam TT, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583(7815): 282-5.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[8]
Cyranoski D. Mystery deepens over animal source of coronavirus. Nature 2020; 579(7797): 18-9.
[http://dx.doi.org/10.1038/d41586-020-00548-w] [PMID: 32127703]
[9]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-80.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[10]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[11]
Future Medicine.. Lii Y, Yang X, Wang N, et al. The divergence between SARS- CoV-2 and RaTG13 might be overestimated due to the extensive RNA modification. Future Medicine 2020. Available from: https://www.futuremedicine.com/doi/10.2217/fvl- 2020-0066
[12]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[13]
Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol 2020; 92(4): 455-9.
[http://dx.doi.org/10.1002/jmv.25688] [PMID: 31994738]
[14]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[15]
Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS- CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020; 30: 1346-51.e2
[http://dx.doi.org/10.1016/j.cub.2020.03.022]
[16]
Izaguirre G. The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses 2019; 11(9): 11.
[http://dx.doi.org/10.3390/v11090837] [PMID: 31505793]
[17]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[18]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[19]
Jia Y, Shen G, Zhang Y, et al. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. bioRxiv 2020; .04.09.034942. [Preprint paper].
[http://dx.doi.org/10.1101/2020.04.09.034942]
[20]
Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS- CoV-2 in the Icelandic Population. N Engl J Med 2020; 382: 2302-15.
[http://dx.doi.org/10.1056/NEJMoa2006100]
[21]
Yao Hangping, Lu Xiangyun, Chen Qiong, et al. Patient-derived mutations impact pathogenicity of SARS-CoV-2. Medrxiv 2020; 04.14.20060160.
[http://dx.doi.org/10.1101/2020.04.14.20060160]
[22]
Longdon B, Brockhurst MA, Russell CA, Welch JJ, Jiggins FM. The evolution and genetics of virus host shifts. PLoS Pathog 2014; 10(11): e1004395.
[http://dx.doi.org/10.1371/journal.ppat.1004395] [PMID: 25375777]
[23]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[24]
Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020; 181(2): 223-7.
[http://dx.doi.org/10.1016/j.cell.2020.03.035] [PMID: 32220310]
[25]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): 94.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[26]
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 16(10): 1686-97.
[http://dx.doi.org/10.7150/ijbs.45472] [PMID: 32226286]
[27]
Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell host microbe 2020; 27(6): 992-1000.e3.
[http://dx.doi.org/10.1016/j.chom.2020.04.009] [PMID: 32320677]
[28]
Zhou G, Chen S, Chen Z. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med 2020; 14(2): 117-25.
[http://dx.doi.org/10.1007/s11684-020-0773-x] [PMID: 32318975]
[29]
WHO. Coronavirus disease (COVID-19) Pandemic. 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[30]
Centers for Disease Control and Prevention. Coronavirus diseases 2019 (COVID-19). Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html
[31]
Liu X, Zhou H, Zhou Y, et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients J infect 2020; 81(1): e95-7.
[http://dx.doi.org/10.1016/j.jinf.2020.04.008] [PMID: 32305490]
[32]
Sungnak W, Huang N, Bécavin C, et al. HCA lung biological network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26(5): 681-7.
[http://dx.doi.org/10.1038/s41591-020-0868-6] [PMID: 32327758]
[33]
Tanenbaum L, Tuffanelli DL. Antimalarial agents. Chloroquine, hydroxychloroquine, and quinacrine. Arch Dermatol 1980; 116(5): 587-91.
[http://dx.doi.org/10.1001/archderm.1980.01640290097026] [PMID: 6990871]
[34]
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020; 16(3): 155-66.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[35]
Ponticelli C, Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf 2017; 16(3): 411-9.
[http://dx.doi.org/10.1080/14740338.2017.1269168] [PMID: 27927040]
[36]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6: 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[37]
Niles JC, Derisi JL, Marletta MA. Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers. Proc Natl Acad Sci USA 2009; 106(32): 13266-71.
[http://dx.doi.org/10.1073/pnas.0906370106] [PMID: 19633187]
[38]
Schaer CA, Laczko E, Schoedon G, Schaer DJ, Vallelian F. Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent. Oxid Med Cell Longev 2013; 2013: 870472.
[http://dx.doi.org/10.1155/2013/870472] [PMID: 23840921]
[39]
Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 2012; 42(2): 145-53.
[http://dx.doi.org/10.1007/s12016-010-8243-x] [PMID: 21221847]
[40]
van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol 1997; 24(1): 55-60.
[PMID: 9002011]
[41]
Cook KL, Wärri A, Soto-Pantoja DR, et al. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin Cancer Res 2014; 20(12): 3222-32.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3227] [PMID: 24928945]
[42]
Mahalingam D, Mita M, Sarantopoulos J, et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 2014; 10(8): 1403-14.
[http://dx.doi.org/10.4161/auto.29231] [PMID: 24991835]
[43]
Vogl DT, Stadtmauer EA, Tan KS, et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 2014; 10(8): 1380-90.
[http://dx.doi.org/10.4161/auto.29264] [PMID: 24991834]
[44]
FIOCRUZ. Medicamentos como a hidroxicloroquina e a cloroquina funcionam contra o coronavírus? 2020. Available from: https://portal.fiocruz.br/pergunta/fiocruz-vai-testar-hidroxicloroquina-e-cloroquina-para-pacientes-de-covid-19
[45]
Lacava AC. Complicações oculares da terapêutica com a cloroquina e derivados. Arq Bras Oftalmol 2010; 73(4): 384-9.
[http://dx.doi.org/10.1590/S0004-27492010000400019] [PMID: 20944948]
[46]
Raoult D, Houpikian P, Tissot Dupont H, Riss JM, Arditi-Djiane J, Brouqui P. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 1999; 159(2): 167-73.
[http://dx.doi.org/10.1001/archinte.159.2.167] [PMID: 9927100]
[47]
Adamptey B, Rudnisky CJ, MacDonald IM. Effect of stopping hydroxychloroquine therapy on the multifocal electroretinogram in patients with rheumatic disorders. Can J Ophthalmol 2020; 55(1): 38-44.
[http://dx.doi.org/10.1016/j.jcjo.2019.05.013] [PMID: 31712033]
[48]
Carter KL, Do DV. Hydroxychloroquine-induced retinal Toxicity. J Rheumatol 2020; 47(4): 632.
[http://dx.doi.org/10.3899/jrheum.190538] [PMID: 32238544]
[49]
Fellahi JL, Dumazer P, Delayance S, Vernier I, Conte JJ. Cardiomyopathy under treatment with hydroxychloroquine disclosed by complete auriculoventricular block. Rev Med Interne 1993; 14(4): 275-6.
[http://dx.doi.org/10.1016/S0248-8663(05)82498-1] [PMID: 8378663]
[50]
Nord JE, Shah PK, Rinaldi RZ, Weisman MH. Hydroxychloroquine cardiotoxicity in systemic lupus erythematosus: a report of 2 cases and review of the literature. Semin Arthritis Rheum 2004; 33(5): 336-51.
[http://dx.doi.org/10.1016/j.semarthrit.2003.09.012] [PMID: 15079764]
[51]
Putko BN, Yogasundaram H, Oudit GY. Cardiovascular pathophysiology: is it a tumour necrosis factor superfamily affair? Can J Cardiol 2014; 30(12): 1492-5.
[http://dx.doi.org/10.1016/j.cjca.2014.09.006] [PMID: 25475449]
[52]
Joyce E, Fabre A, Mahon N. Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: key diagnostic features and literature review. Eur Heart J Acute Cardiovasc Care 2013; 2(1): 77-83.
[http://dx.doi.org/10.1177/2048872612471215] [PMID: 24062937]
[53]
Bahloul E, Jallouli M, Garbaa S, et al. Hydroxychloroquine-induced hyperpigmentation in systemic diseases: prevalence, clinical features and risk factors: a cross-sectional study of 41 cases. Lupus 2017; 26(12): 1304-8.
[http://dx.doi.org/10.1177/0961203317700486] [PMID: 28355984]
[54]
Yogasundaram H, Putko BN, Tien J, et al. Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment. Can J Cardiol 2014; 30(12): 1706-15.
[http://dx.doi.org/10.1016/j.cjca.2014.08.016] [PMID: 25475472]
[55]
Spinelli J, Byard RW, Van Den Heuvel C, Collins-Praino LE. Medullary Astrogliosis in sudden infant death syndrome varies with sleeping environment: evidence for different mechanisms of death in alone versus co-sleepers? J Child Neurol 2018; 33(4): 269-74.
[http://dx.doi.org/10.1177/0883073817750498] [PMID: 29357731]
[56]
Singh DK, Muhieddine L, Einstadter D, Ballou S. Incidence of blindness in a population of rheumatic patients treated with hydroxychloroquine. Rheumatol Adv Pract 2019; 3: rkz00.
[http://dx.doi.org/10.1093/rap/rkz009]
[57]
Santamarina L, Godfrey J. Retinal detachment in a patient with hydroxychloroquine toxicity. J Ophthalmic Vis Res 2019; 14(2): 226-8.
[http://dx.doi.org/10.4103/jovr.jovr_263_17] [PMID: 31114662]
[58]
Lenfant T, Dion J, Maisonobe T, Costedoat-Chalumeau N. A rare cause of impaired general condition: muscular and cardiac toxicity of antimalarials. Rev Med Interne 2020; 41: 335-8.
[http://dx.doi.org/10.1016/j.revmed.2020.04.006]
[59]
Proano C, Kimball GP. Hydroxychloroquine retinal toxicity. N Engl J Med 2019; 380(17): e27.
[http://dx.doi.org/10.1056/NEJMicm1304542] [PMID: 31018072]
[60]
Keating RJ, Bhatia S, Amin S, Williams A, Sinak LJ, Edwards WD. Hydroxychloroquine-induced cardiotoxicity in a 39-year-old woman with systemic lupus erythematosus and systolic dysfunction. J Am Soc Echocardiogr 2005; 18(9): 981.
[http://dx.doi.org/10.1016/j.echo.2005.01.012] [PMID: 16153529]
[61]
Ruberto G, Bruttini C, Tinelli C, Cavagna L, Bianchi A, Milano G. Early morpho-functional changes in patients treated with hydroxychloroquine: a prospective cohort study. Graefes Arch Clin Exp Ophthalmol 2018; 256(11): 2201-10.
[http://dx.doi.org/10.1007/s00417-018-4103-9] [PMID: 30151601]
[62]
Pasaoglu I, Onmez FE. Macular toxicity after short-term hydroxychloroquine therapy. Indian J Ophthalmol 2019; 67(2): 289-92.
[http://dx.doi.org/10.4103/ijo.IJO_732_18] [PMID: 30672499]
[63]
Iannetta M, Ippolito G, Nicastri E. Azithromycin shows anti-zika virus activity in human glial cells. Antimicrob Agents Chemother 2017; 61(9): 61.
[http://dx.doi.org/10.1128/AAC.01152-17] [PMID: 28839081]
[64]
Salata C, Calistri A, Alvisi G, Celestino M, Parolin C, Palù G. Ebola virus entry: from molecular characterization to drug discovery. Viruses 2019; 11(3): 11.
[http://dx.doi.org/10.3390/v11030274] [PMID: 30893774]
[65]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[66]
Chatre C, Roubille F, Vernhet H, Jorgensen C, Pers YM. Cardiac complications attributed to chloroquine and hydroxychloroquine: A systematic review of the literature. Drug saf 2018; 41(10): 919-31.
[http://dx.doi.org/10.1007/s40264-018-0689-4] [PMID: 29858838]
[67]
Chatre C, Filippi N, Roubille F, Pers YM. Heart Involvement in a woman treated with hydroxychloroquine for systemic lupus erythematosus revealing fabry disease. J Rheumatol 2016; 43(5): 997-8.
[http://dx.doi.org/10.3899/jrheum.151357] [PMID: 27134281]
[68]
Ministério da Saúde Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde Departamento de Assistência Farmacêu!ca e Insumos Estratégicos. NOTA INFORMATIVA Nº 5/2020-DAF/SCTIE/MS 2020. Available from: https://static.poder360.com.br/2020/04/portaria-MS.pdf
[69]
The NY Times. Worst-case estimates for U.S. coronavirus deaths. 2020. Available from: https://www.nytimes.com/2020/03/13/us/coronavirus-deaths-estimate.html
[70]
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[71]
Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 2006; 49(9): 2845-9.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[72]
Rosenke K, Jarvis MA, Feldmann F, et al. Hydroxychloroquine proves ineffective in hamsters and macaques infected with SARS-CoV-2. bioRxiv 2020. [Preprint paper].
[PMID: 32577633]
[73]
Hoffmann M, Mösbauer K, Hofmann-Winkler H, et al. Chloroquine does not inhibit infection of human lung cells with SARS- CoV-2. Nature 2020; 585(7826): 588-90.
[http://dx.doi.org/10.1038/s41586-020-2575-3] [PMID: 32698190]
[74]
Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw Open 2020; 3(4): e208857.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[75]
Lenzer J. Covid-19: US gives emergency approval to hydroxychloroquine despite lack of evidence. BMJ 2020; 369: m1335.
[http://dx.doi.org/10.1136/bmj.m1335] [PMID: 32238355]
[76]
Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ 2020; 369: m1432.
[http://dx.doi.org/10.1136/bmj.m1432] [PMID: 32269046]
[77]
Chen Jun LD, Li Liu, Ping Liu, Xu Qingnian. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci) 2020; 49(2): 215-9.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.03.03] [http://dx.doi.org/32391667]
[78]
Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 2020; 382(25): 2411-8.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[79]
Mahévas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ 2020; 369: m1844.
[http://dx.doi.org/10.1136/bmj.m1844] [PMID: 32409486]
[80]
Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA 2020.
[http://dx.doi.org/10.1001/jama.2020.8630]
[81]
Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ 2020; 369: m1849.
[http://dx.doi.org/10.1136/bmj.m1849] [PMID: 32409561]
[82]
Mehra MR, Desai SS, Ruschitzka F, Patel AN. RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 2020; S0140-6736(20): 31180-6.
[http://dx.doi.org/10.1016/S0140-6736(20)31180-6] [PMID: 32450107]
[83]
Recovery Statement from the Chief Investigators of the Randomised Evaluation of COVid-19 therapy (RECOVERY) Trial on lopinavir-ritonavir 2020. Available from: https://www.recoverytrial.net/files/lopinavir-ritonavir-recovery-statement-29062020_final.pdf
[84]
ClinicalTrials.gov. Database. 2020. Available from: https://clinicaltrials.gov/ct2/home
[85]
Falcao MB, Pamplona de Goes Cavalcanti L, Filgueiras Filho NM, Antunes de Brito CA. Case report: hepatotoxicity associated with the use of hydroxychloroquine in a patient with novel coronavirus disease (COVID-19). Am J Trop Med Hyg 2020; 102(6): 1214-6.
[http://dx.doi.org/10.4269/ajtmh.20-0276] [PMID: 32314698]
[86]
Chen Zhaowei, Hu Jijia, Zhang Zongwei, Jiang Shan, Han Shoumeng, Yan Dandan. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Medrxiv 2020; 20040758.
[http://dx.doi.org/10.1101/2020.03.22.20040758]
[87]
Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020; 50(4): 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[88]
Cavalcanti FGZAB, Rosa RG, Azevedo LCP, et al. Hydroxychloroquine with or without Azithromycin in mild-to-moderate Covid-19. N Engl J Med 2020; 383: 2041-52.
[http://dx.doi.org/10.1056/NEJMoa2019014]
[89]
Horby P, Mafham M, Linsell L, et al. Recovery collaborative group. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 2020; 383(21): 2030-40.
[http://dx.doi.org/10.1056/NEJMoa2022926] [PMID: 33031652]
[90]
Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5(1): e00293.
[http://dx.doi.org/10.1002/prp2.293] [PMID: 28596841]
[91]
Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6(2): 67-9.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[92]
Savarino A, Lucia MB, Giordano F, Cauda R. Risks and benefits of chloroquine use in anticancer strategies. Lancet Oncol 2006; 7(10): 792-3.
[http://dx.doi.org/10.1016/S1470-2045(06)70875-0] [PMID: 17012039]
[93]
Mingo RM, Simmons JA, Shoemaker CJ, et al. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J Virol 2015; 89(5): 2931-43.
[http://dx.doi.org/10.1128/JVI.03398-14] [PMID: 25552710]
[94]
Negri EM, Piloto B, Morinaga LK, et al. Heparin therapy improving hypoxia in COVID-19 patients - a case series. Medrxiv 2020.04.15.20067017.2020;
[http://dx.doi.org/10.1101/2020.04.15.20067017]
[95]
Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy