Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Copper and Neurotoxicity in Autism Spectrum Disorder

Author(s): Gesivaldo Santos*, Julita M.P. Borges, Marco Avila-Rodriguez, Silvana B. Gaíno, George E. Barreto, Érika P. Rúbio, Rosane M. Aguiar, Eduardo Galembeck, Cattiúscia B. Bromochenkel and Djalma M. de Oliveira

Volume 25, Issue 45, 2019

Page: [4747 - 4754] Pages: 8

DOI: 10.2174/1381612825666191217091939

Price: $65

Abstract

Free radicals (FR) act on living organisms and present unpaired electrons in the molecular orbitals of oxygen or nitrogen species. They are classified as redox reactions and account for a wide range of processes in biological systems. Genetic and environmental factors may alter the levels of FR in the cell, leading to deleterious consequences such as membrane lipid peroxidation, protein nitration, enzyme, carbohydrate and DNA damage, ultimately resulting in premature aging and a pro-inflammatory microenvironment as observed in Alzheimer’s disease (AD) and autism spectrum disorder (ASD). O2 radical ability to act as a Lewis base and to form a complex with metal transition such as iron and copper (Lewis acids) leads to biomolecules oxidation at physiological pH, thus increasing the possibility of injury and oxidative damage in biological tissues. In this review, we discuss the role of metals, like copper, and the amyloid precursor protein (APP) derivative (s-APP-alpha) as an antioxidant and a possible adjuvant in the treatment of some autistic spectrum disorder symptoms (ASD).

Keywords: Autism, copper, free radicals, amyloid precursor protein, s-APP-alpha, insulin, metabolomics.

[1]
Ray B, Long JM, Sokol DK, Lahiri DK. Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 2011; 6(6): e20405.
[http://dx.doi.org/10.1371/journal.pone.0020405] [PMID: 21731612]
[2]
Zeidán-Chuliá F, de Oliveira BH, Salmina AB, et al. Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death Dis 2014; 5: e1250.
[http://dx.doi.org/10.1038/cddis.2014.227] [PMID: 24853428]
[3]
Lee KJ, Moussa CE, Lee Y, et al. Beta amyloid-independent role of amyloid precursor protein in generation and maintenance of dendritic spines. Neuroscience 2010; 169(1): 344-56.
[http://dx.doi.org/10.1016/j.neuroscience.2010.04.078] [PMID: 20451588]
[4]
Jung M, Kosaka H, Saito DN, et al. Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits. Mol Autism 2014; 5: 35.
[http://dx.doi.org/10.1186/2040-2392-5-35] [PMID: 24955232]
[5]
Kesler SR. Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging 2014; 35(Suppl. 2): S11-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.036] [PMID: 24913897]
[6]
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1): 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[7]
Connolly NMC, Theurey P, Pizzo P. Glucose dysregulation in pre-clinical Alzheimer’s disease. Aging (Albany NY) 2019; 11(15): 5296-7.
[http://dx.doi.org/10.18632/aging.102146] [PMID: 31386625]
[8]
Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev 2013; 2013: 963520.
[http://dx.doi.org/10.1155/2013/963520] [PMID: 24381719]
[9]
Cerpa WF, Barría MI, Chacón MA, et al. The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo. FASEB J 2004; 18(14): 1701-3.
[http://dx.doi.org/10.1096/fj.03-1349fje] [PMID: 15345692]
[10]
Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res Int 2014; 2014: 761264.
[http://dx.doi.org/10.1155/2014/761264] [PMID: 24587990]
[11]
Siama Z, Zosang-Zuali M, Vanlalruati A, Jagetia GC, Pau KS, Kumar NS. Chronic low dose exposure of hospital workers to ionizing radiation leads to increased micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. Int J Radiat Biol 2019; 95(6): 697-709.
[http://dx.doi.org/10.1080/09553002.2019.1571255] [PMID: 30668213]
[12]
Reddy VD, Padmavathi P, Bulle S, et al. Association between alcohol-induced oxidative stress and membrane properties in synaptosomes: a protective role of vitamin E. Neurotoxicol Teratol 2017; 63: 60-5.
[http://dx.doi.org/10.1016/j.ntt.2017.07.004] [PMID: 28778836]
[13]
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun 2017; 482(3): 419-25.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086] [PMID: 28212725]
[14]
Halliwell B, Evans P, Whiteman M. Assessment of peroxynitrite scavengers in vitro. Methods Enzymol 1999; 301: 333-42.
[http://dx.doi.org/10.1016/S0076-6879(99)01097-6] [PMID: 9919582]
[15]
Chiurchiù V, Orlacchio A, Maccarrone M. Is Modulation of oxidative stress an answer? the state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid Med Cell Longev 2016; 2016: 7909380.
[http://dx.doi.org/10.1155/2016/7909380] [PMID: 26881039]
[16]
Milani P, Gagliardi S, Cova E, Cereda C. SOD1 Transcriptional and posttranscriptional regulation and its potential implications in ALS. Neurol Res Int 2011; 2011: 458427.
[http://dx.doi.org/10.1155/2011/458427] [PMID: 21603028]
[17]
Liu LL, Stephan DW. Radicals derived from Lewis acid/base pairs. Chem Soc Rev 2019; 48(13): 3454-63.
[http://dx.doi.org/10.1039/C8CS00940F] [PMID: 30724924]
[18]
Lyngsie G, Krumina L, Tunlid A, Persson P. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Sci Rep 2018; 8(1): 10834.
[http://dx.doi.org/10.1038/s41598-018-29075-5] [PMID: 30018415]
[19]
Krężel A, Maret W. The biological inorganic chemistry of zinc ions. Arch Biochem Biophys 2016; 611: 3-19.
[http://dx.doi.org/10.1016/j.abb.2016.04.010] [PMID: 27117234]
[20]
Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ. Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 2009; 234(10): 1140-54.
[http://dx.doi.org/10.3181/0903-MR-104] [PMID: 19596823]
[21]
Zabiszak M, Nowak M, Taras-Goslinska K, Kaczmarek MT, Hnatejko Z, Jastrzab R. Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J Inorg Biochem 2018; 182: 37-47.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.01.017] [PMID: 29407868]
[22]
L Sagripanti J. DNA damage mediated by metal ions with special reference to copper and iron. Met Ions Biol Syst 1999; 36: 179-209.
[23]
Valdez CE, Smith QA, Nechay MR, Alexandrova AN. Mysteries of metals in metalloenzymes. Acc Chem Res 2014; 47(10): 3110-7.
[http://dx.doi.org/10.1021/ar500227u] [PMID: 25207938]
[24]
Al-Ayadhi LY, Ben Bacha AG, Kotb M, El-Ansary AK. A novel study on amyloid β peptide 40, 42 and 40/42 ratio in Saudi autistics. Behav Brain Funct 2012; 8: 4.
[http://dx.doi.org/10.1186/1744-9081-8-4] [PMID: 22239861]
[25]
Rubino JT, Franz KJ. Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function. J Inorg Biochem 2012; 107(1): 129-43.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.11.024] [PMID: 22204943]
[26]
Frackowiak J, Mazur-Kolecka B, Schanen NC, Brown WT, Wegiel J. The link between intraneuronal N-truncated amyloid-β peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism. Acta Neuropathol Commun 2013; 1: 61.
[http://dx.doi.org/10.1186/2051-5960-1-61] [PMID: 24252310]
[27]
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue copper proteins: a rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584: 134-48.
[http://dx.doi.org/10.1016/j.abb.2015.08.020] [PMID: 26334718]
[28]
Mufti AR, Burstein E, Csomos RA, et al. XIAP Is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Mol Cell 2006; 21(6): 775-85.
[http://dx.doi.org/10.1016/j.molcel.2006.01.033] [PMID: 16543147]
[29]
Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 2004; 90(6): 1281-9.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02572.x] [PMID: 15341512]
[30]
Ames BN. Mitochondrial decay, a major cause of aging, can be delayed. J Alzheimers Dis 2004; 6(2): 117-21.
[http://dx.doi.org/10.3233/JAD-2004-6202] [PMID: 15096694]
[31]
Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012; 26(3): 383-92.
[http://dx.doi.org/10.1016/j.bbi.2011.08.007] [PMID: 21906670]
[32]
Napoli E, Hung C, Wong S, Giulivi C. Toxicity of the flame-retardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background. Toxicol Sci 2013; 132(1): 196-210.
[http://dx.doi.org/10.1093/toxsci/kfs339] [PMID: 23288049]
[33]
Genoud S, Roberts BR, Gunn AP, et al. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain. Metallomics 2017; 9(10): 1447-55.
[http://dx.doi.org/10.1039/C7MT00244K] [PMID: 28944802]
[34]
Cloëz I, Bourre JM. Copper, manganese and zinc in the developing brain of control and quaking mice. Neurosci Lett 1987; 83(1-2): 118-22.
[http://dx.doi.org/10.1016/0304-3940(87)90226-6] [PMID: 3441290]
[35]
Shimizu N. [Diagnosis and treatment of Wilson disease in Japan Rinsho Shinkeigaku 2019; 59(9): 565-9.
[36]
Wang X, Garrick MD, Collins JF. Animal models of normal and disturbed iron and copper metabolism. J Nutr 2019; 149(12): 2085-100.
[http://dx.doi.org/10.1093/jn/nxz172] [PMID: 31504675]
[37]
Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol 2015; 14(1): 103-13.
[http://dx.doi.org/10.1016/S1474-4422(14)70190-5] [PMID: 25496901]
[38]
Saldanha Tschinkel PF, Bjørklund G, Conón LZZ, Chirumbolo S, Nascimento VA. Plasma concentrations of the trace elements copper, zinc and selenium in Brazilian children with autism spectrum disorder. Biomed Pharmacother 2018; 106: 605-9.
[http://dx.doi.org/10.1016/j.biopha.2018.06.174] [PMID: 29990849]
[39]
Bjorklund G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp (Warsz) 2013; 73(2): 225-36.
[PMID: 23823984]
[40]
Curtin P, Austin C, Curtin A, et al. For the emergent dynamical systems group. dynamical features in fetal and postnatal zinc-copper metabolic cycles predict the emergence of autism spectrum disorder. Sci Adv 2018; 4(5): aat1293.
[http://dx.doi.org/10.1126/sciadv.aat1293] [PMID: 29854952]
[41]
Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019; 74: 230-41.
[http://dx.doi.org/10.1016/j.neuro.2019.07.007] [PMID: 31377220]
[42]
Giacconi R, Giuli C, Casoli T, et al. Acetylcholinesterase inhibitors in Alzheimer’s disease influence zinc and copper homeostasis. J Trace Elem Med Biol 2019; 55: 58-63.
[http://dx.doi.org/10.1016/j.jtemb.2019.06.001] [PMID: 31345366]
[43]
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting approaches in Alzheimer’s disease: how to improve the fallouts obtained from in vitro studies. Inorg Chem 2019; 58(20): 13509-27.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00995] [PMID: 31247877]
[44]
Hoshina T, Nozaki S, Hamazaki T, et al. Disulfiram enhanced delivery of orally administered copper into the central nervous system in Menkes disease mouse model. J Inherit Metab Dis 2018; 41(6): 1285-91.
[http://dx.doi.org/10.1007/s10545-018-0239-3] [PMID: 30132231]
[45]
Lorincz MT. Wilson disease and related copper disorders. Handb Clin Neurol 2018; 147: 279-92.
[http://dx.doi.org/10.1016/B978-0-444-63233-3.00018-X] [PMID: 29325617]
[46]
Cruces-Sande A, Rodríguez-Pérez AI, Herbello-Hermelo P, et al. Copper increases brain oxidative stress and enhances the ability of 6-hydroxydopamine to cause dopaminergic degeneration in a rat model of parkinson’s disease. Mol Neurobiol 2019; 56(4): 2845-54.
[http://dx.doi.org/10.1007/s12035-018-1274-7] [PMID: 30066305]
[47]
Tiwari MK, Leinisch F, Sahin C, et al. Early events in copper-ion catalyzed oxidation of α-synuclein. Free Radic Biol Med 2018; 121: 38-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.559] [PMID: 29689296]
[48]
Karpenko MN, Ilyicheva EY, Muruzheva ZM, Milyukhina IV, Orlov YA, Puchkova LV. Role of copper dyshomeostasis in the pathogenesis of Parkinson’s disease. Bull Exp Biol Med 2018; 164(5): 596-600.
[http://dx.doi.org/10.1007/s10517-018-4039-4] [PMID: 29577200]
[49]
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12964-018-0277-3] [PMID: 30348177]
[50]
Peña MM, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 1999; 129(7): 1251-60.
[http://dx.doi.org/10.1093/jn/129.7.1251] [PMID: 10395584]
[51]
Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 2008; 4(3): 176-85.
[http://dx.doi.org/10.1038/nchembio.72] [PMID: 18277979]
[52]
Leary SC, Cobine PA, Nishimura T, et al. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux. Mol Biol Cell 2013; 24(6): 683-91.
[http://dx.doi.org/10.1091/mbc.e12-09-0705] [PMID: 23345593]
[53]
Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 2001; 8(9): 751-5.
[http://dx.doi.org/10.1038/nsb0901-751] [PMID: 11524675]
[54]
Petris MJ, Voskoboinik I, Cater M, et al. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 2002; 277(48): 46736-42.
[http://dx.doi.org/10.1074/jbc.M208864200] [PMID: 12228238]
[55]
Banci L, Bertini I, Chasapis CT, Rosato A, Tenori L. Interaction of the two soluble metal-binding domains of yeast Ccc2 with copper(I)-Atx1. Biochem Biophys Res Commun 2007; 364(3): 645-9.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.045] [PMID: 17961510]
[56]
Cobine PA, Ojeda LD, Rigby KM, Winge DR. Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem 2004; 279(14): 14447-55.
[http://dx.doi.org/10.1074/jbc.M312693200] [PMID: 14729672]
[57]
Horn D, Barrientos A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008; 60(7): 421-9.
[http://dx.doi.org/10.1002/iub.50] [PMID: 18459161]
[58]
Longen S, Bien M, Bihlmaier K, et al. Systematic analysis of the twin cx(9)c protein family. J Mol Biol 2009; 393(2): 356-68.
[http://dx.doi.org/10.1016/j.jmb.2009.08.041] [PMID: 19703468]
[59]
Leary SC. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid Redox Signal 2010; 13(9): 1403-16.
[http://dx.doi.org/10.1089/ars.2010.3116] [PMID: 20136502]
[60]
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87(3): 1011-46.
[http://dx.doi.org/10.1152/physrev.00004.2006] [PMID: 17615395]
[61]
Semprine J, Ferrarotti N, Musacco-Sebio R, et al. Brain antioxidant responses to acute iron and copper intoxications in rats. Metallomics 2014; 6(11): 2083-9.
[http://dx.doi.org/10.1039/C4MT00159A] [PMID: 25174705]
[62]
Rose S, Frye RE, Slattery J, et al. Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines. Transl Psychiatry 2014; 4: e377.
[http://dx.doi.org/10.1038/tp.2014.15] [PMID: 24690598]
[63]
Liao Q, Owen MC, Bali S, Barz B, Strodel B. Aβ under stress: the effects of acidosis, Cu2+-binding, and oxidation on amyloid β-peptide dimers. Chem Commun (Camb) 2018; 54(56): 7766-9.
[http://dx.doi.org/10.1039/C8CC02263A] [PMID: 29947363]
[64]
Hane F, Leonenko Z. Effect of metals on kinetic pathways of amyloid-β aggregation. Biomolecules 2014; 4(1): 101-16.
[http://dx.doi.org/10.3390/biom4010101] [PMID: 24970207]
[65]
Garcia-Osta A, Alberini CM. Amyloid beta mediates memory formation. Learn Mem 2009; 16(4): 267-72.
[http://dx.doi.org/10.1101/lm.1310209] [PMID: 19318468]
[66]
Turner PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003; 70(1): 1-32.
[http://dx.doi.org/10.1016/S0301-0082(03)00089-3] [PMID: 12927332]
[67]
Ludewig S, Korte M. Novel insights into the physiological function of the APP (Gene) family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci 2017; 9: 161.
[http://dx.doi.org/10.3389/fnmol.2016.00161] [PMID: 28163673]
[68]
De Felice FG, Vieira MN, Bomfim TR, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 2009; 106(6): 1971-6.
[http://dx.doi.org/10.1073/pnas.0809158106] [PMID: 19188609]
[69]
Chiu SL, Cline HT. Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 2010; 5: 7.
[http://dx.doi.org/10.1186/1749-8104-5-7] [PMID: 20230616]
[70]
Wild K, August A, Pietrzik CU, Kins S. Structure and synaptic function of metal binding to the amyloid precursor protein and its proteolytic fragments. Front Mol Neurosci 2017; 10: 21.
[http://dx.doi.org/10.3389/fnmol.2017.00021] [PMID: 28197076]
[71]
Bowling H, Klann E. Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy. Neuron 2014; 83(5): 994-6.
[http://dx.doi.org/10.1016/j.neuron.2014.08.021] [PMID: 25189205]
[72]
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489(7416): 391-9.
[http://dx.doi.org/10.1038/nature11405] [PMID: 22996553]
[73]
Barnham KJ, McKinstry WJ, Multhaup G, et al. Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem 2003; 278(19): 17401-7.
[http://dx.doi.org/10.1074/jbc.M300629200] [PMID: 12611883]
[74]
Jiang D, Men L, Wang J, et al. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Biochemistry 2007; 46(32): 9270-82.
[http://dx.doi.org/10.1021/bi700508n] [PMID: 17636872]
[75]
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[76]
Chasseigneaux S, Dinc L, Rose C, et al. Secreted amyloid precursor protein β and secreted amyloid precursor protein α induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 2011; 6(1): e16301.
[http://dx.doi.org/10.1371/journal.pone.0016301] [PMID: 21298006]
[77]
Owens SE, Summar ML, Ryckman KK, et al. Lack of association between autism and four heavy metal regulatory genes. Neurotoxicology 2011; 32(6): 769-75.
[http://dx.doi.org/10.1016/j.neuro.2011.07.003] [PMID: 21798283]
[78]
Fluegge Ba K. Zinc and copper metabolism and risk of autism: a reply to Sayehmiri et al. Iran J Child Neurol 2017; 11(3): 66-9.
[PMID: 28883881]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy