Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

New Insights into Oxidative Damage and Iron Associated Impairment in Traumatic Brain Injury

Author(s): Nicolas Toro-Urrego, Liliana F. Turner and Marco F. Avila-Rodriguez*

Volume 25, Issue 45, 2019

Page: [4737 - 4746] Pages: 10

DOI: 10.2174/1381612825666191111153802

Price: $65

Abstract

Traumatic Brain Injury is considered one of the most prevalent causes of death around the world; more than seventy millions of individuals sustain the condition per year. The consequences of traumatic brain injury on brain tissue are complex and multifactorial, hence, the current palliative treatments are limited to improve patients’ quality of life. The subsequent hemorrhage caused by trauma and the ongoing oxidative process generated by biochemical disturbances in the in the brain tissue may increase iron levels and reactive oxygen species. The relationship between oxidative damage and the traumatic brain injury is well known, for that reason, diminishing factors that potentiate the production of reactive oxygen species have a promissory therapeutic use. Iron chelators are molecules capable of scavenging the oxidative damage from the brain tissue and are currently in use for ironoverload- derived diseases.

Here, we show an updated overview of the underlying mechanisms of the oxidative damage after traumatic brain injury. Later, we introduced the potential use of iron chelators as neuroprotective compounds for traumatic brain injury, highlighting the action mechanisms of iron chelators and their current clinical applications.

Keywords: Traumatic Brain Injury, Iron, Iron chelators, neuroprotection, traumatic brain injury, oxidative damage.

[1]
Voormolen DC, Cnossen MC, Polinder S, von Steinbuechel N, Vos PE, Haagsma JA. Divergent classification methods of post-concussion syndrome after mild traumatic brain injury: prevalence rates, risk factors, and functional outcome. J Neurotrauma 2018; 35(11): 1233-41.
[http://dx.doi.org/10.1089/neu.2017.5257] [PMID: 29350085]
[2]
Corrigan JD, Yang J, Singichetti B, Manchester K, Bogner J. Lifetime prevalence of traumatic brain injury with loss of consciousness. Inj Prev 2018; 24(6): 396-404.
[http://dx.doi.org/10.1136/injuryprev-2017-042371]
[3]
Haarbauer-Krupa J, Lee AH, Bitsko RH, Zhang X, Kresnow-Sedacca MJ. Prevalence of parent-reported traumatic brain injury in children and associated health conditions. JAMA Pediatr 2018; 172(11): 1078-86.
[http://dx.doi.org/10.1001/jamapediatrics.2018.2740] [PMID: 30264150]
[4]
Klose M, Feldt-Rasmussen U. Chronic endocrine consequences of traumatic brain injury - what is the evidence? Nat Rev Endocrinol 2018; 14(1): 57-62.
[http://dx.doi.org/10.1038/nrendo.2017.103] [PMID: 28885623]
[5]
Vos BC, Nieuwenhuijsen K, Sluiter JK. Consequences of traumatic brain injury in professional American football players: a systematic review of the literature. Clin J Sport Med 2018; 28(2): 91.
[http://dx.doi.org/10.1097/JSM.0000000000000432]
[6]
Mouzon BC, Bachmeier C, Ojo JO, et al. Lifelong behavioral and neuropathological consequences of repetitive mild traumatic brain injury. Ann Clin Transl Neurol 2017; 5(1): 64-80.
[http://dx.doi.org/10.1002/acn3.510] [PMID: 29376093]
[7]
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol 2016; 275(Pt 3): 305-15.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.020] [PMID: 25828533]
[8]
Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014; 81(2): 229-48.
[http://dx.doi.org/10.1016/j.neuron.2013.12.034] [PMID: 24462092]
[9]
Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 2007; 22(5): 341-53.
[PMID: 18162698]
[10]
Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017; 360(1): 201-5.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[11]
Tyurin VA, Tyurina YY, Borisenko GG, et al. Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. J Neurochem 2000; 75(5): 2178-89.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0752178.x] [PMID: 11032908]
[12]
Althaus JS, Andrus PK, Williams CM, VonVoigtlander PF, Cazers AR, Hall ED. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Reversal by tirilazad mesylate (U-74006F). Mol Chem Neuropathol 1993; 20(2): 147-62.
[http://dx.doi.org/10.1007/BF02815368] [PMID: 8297419]
[13]
Bayir H, Kochanek PM, Kagan VE. Oxidative stress in immature brain after traumatic brain injury. Dev Neurosci 2006; 28(4-5): 420-31.
[http://dx.doi.org/10.1159/000094168] [PMID: 16943665]
[14]
Terlecky SR, Terlecky LJ, Giordano CR. Peroxisomes, oxidative stress, and inflammation. World J Biol Chem 2012; 3(5): 93-7.
[http://dx.doi.org/10.4331/wjbc.v3.i5.93] [PMID: 22649571]
[15]
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front Neurosci 2018; 12: 632.
[http://dx.doi.org/10.3389/fnins.2018.00632] [PMID: 30250423]
[16]
Dusek P, Schneider SA, Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 2016; 38: 81-92.
[http://dx.doi.org/10.1016/j.jtemb.2016.03.010]
[17]
Lu L, Cao H, Wei X, Li Y, Li W. Iron deposition is positively related to cognitive impairment in patients with chronic mild traumatic brain injury: assessment with susceptibility weighted imaging. BioMed Res Int 2015; 2015: 470676.
[http://dx.doi.org/10.1155/2015/470676] [PMID: 26798636]
[18]
Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 2003; 23(6): 629-52.
[http://dx.doi.org/10.1097/01.WCB.0000073905.87928.6D] [PMID: 12796711]
[19]
Baez E, Echeverria V, Cabezas R, Ávila-Rodriguez M, Garcia-Segura LM, Barreto GE. Protection by neuroglobin expression in brain pathologies. Front Neurol 2016; 7: 146.
[http://dx.doi.org/10.3389/fneur.2016.00146] [PMID: 27672379]
[20]
Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 2016; 433: 35-46.
[http://dx.doi.org/10.1016/j.mce.2016.05.024] [PMID: 27250720]
[21]
Mishra SK, Khushu S, Singh AK, Gangenahalli G. Homing and tracking of iron oxide labelled mesenchymal stem cells after infusion in traumatic brain injury mice: a longitudinal in vivo MRI study. Stem Cell Rev Rep 2018; 14(6): 888-900.
[http://dx.doi.org/10.1007/s12015-018-9828-7] [PMID: 29911289]
[22]
Abdul-Muneer PM, Schuetz H, Wang F, et al. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 2013; 60: 282-91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.029] [PMID: 23466554]
[23]
Ellis EF, Dodson LY, Police RJ. Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J Neurosurg 1991; 75(5): 774-9.
[http://dx.doi.org/10.3171/jns.1991.75.5.0774] [PMID: 1919701]
[24]
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1(4): 172-84.
[http://dx.doi.org/10.1136/svn-2016-000042] [PMID: 28959481]
[25]
Shu W, Dunaief JL. Potential treatment of retinal diseases with iron chelators. Pharmaceuticals (Basel) 2018; 11(4): E112.
[http://dx.doi.org/10.3390/ph11040112] [PMID: 30360383]
[26]
Singh YP, Pandey A, Vishwakarma S, Modi G. A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol Divers 2018; 23(2): 509-26.
[PMID: 30293116]
[27]
Sridharan K, Sivaramakrishnan G. Efficacy and safety of iron chelators in thalassemia and sickle cell disease: a multiple treatment comparison network meta-analysis and trial sequential analysis. Expert Rev Clin Pharmacol 2018; 11(6): 641-50.
[http://dx.doi.org/10.1080/17512433.2018.1473760] [PMID: 29727586]
[28]
Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem 2009; 1(9): 1643-70.
[http://dx.doi.org/10.4155/fmc.09.121] [PMID: 21425984]
[29]
Bayhan T, Ünal Ş, Konuşkan B, Erdem O, Karabulut E, Gümrük F. Assessment of peripheral neuropathy in patients with β-thalassemia via electrophysiological study: reevaluation in the era of iron chelators. Hemoglobin 2018; 42(2): 113-6.
[http://dx.doi.org/10.1080/03630269.2018.1469510] [PMID: 30200834]
[30]
Zhang L, Wang H. Targeting the NF-E2-related factor 2 pathway: a novel strategy for traumatic brain injury. Mol Neurobiol 2018; 55(2): 1773-85.
[http://dx.doi.org/10.1007/s12035-017-0456-z] [PMID: 28224478]
[31]
Yonutas HM, Vekaria HJ, Sullivan PG. Mitochondrial specific therapeutic targets following brain injury. Brain Res. 2016; 1640(PtA): 77-93.
[http://dx.doi.org/10.1016/j.brainres.2016.02.007]
[32]
Venegoni W, Shen Q, Thimmesch AR, Bell M, Hiebert JB, Pierce JD. The use of antioxidants in the treatment of traumatic brain injury. J Adv Nurs 2017; 73(6): 1331-8.
[http://dx.doi.org/10.1111/jan.13259] [PMID: 28103389]
[33]
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2011; 2(4): 492-516.
[http://dx.doi.org/10.1007/s12975-011-0125-x] [PMID: 22299022]
[34]
Cornelius C, Crupi R, Calabrese V, et al. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 2013; 19(8): 836-53.
[http://dx.doi.org/10.1089/ars.2012.4981]
[35]
Potts MB, Koh SE, Whetstone WD, et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx 2006; 3(2): 143-53.
[http://dx.doi.org/10.1016/j.nurx.2006.01.006]
[36]
Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 2015; 5(2): 472-84.
[http://dx.doi.org/10.3390/biom5020472] [PMID: 25884116]
[37]
Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 2013; 62: 170-85.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.016] [PMID: 23000246]
[38]
Schimmel SJ, Acosta S, Lozano D. Neuroinflammation in traumatic brain injury: a chronic response to an acute injury. Brain Circ 2017; 3(3): 135-42.
[http://dx.doi.org/10.4103/bc.bc_18_17] [PMID: 30276315]
[39]
Hüttemann M, Pecina P, Rainbolt M, et al. The multiple functions of cytochrome C and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 2011; 11(3): 369-81.
[http://dx.doi.org/10.1016/j.mito.2011.01.010] [PMID: 21296189]
[40]
Mendes Arent A, de Souza LF, Walz R, Dafre AL. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BioMed Res Int 2014; 2014: 723060.
[http://dx.doi.org/10.1155/2014/723060] [PMID: 24689052]
[41]
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(Pt 2): 335-44.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[42]
Hou Z, Luo W, Sun X, et al. Hydrogen-rich saline protects against oxidative damage and cognitive deficits after mild traumatic brain injury. Brain Res Bull 2012; 88(6): 560-5.
[http://dx.doi.org/10.1016/j.brainresbull.2012.06.006] [PMID: 22742936]
[43]
Kuo JR, Lo CJ, Chang CP, Lin MT, Chio CC. Attenuation of brain nitrostative and oxidative damage by brain cooling during experimental traumatic brain injury. J Biomed Biotechnol 2011; 2011: 145214.
[http://dx.doi.org/10.1155/2011/145214] [PMID: 21318143]
[44]
Xu HL, Liu MD, Yuan XH, Liu CX. Suppression of cortical TRPM7 protein attenuates oxidative damage after traumatic brain injury via Akt/endothelial nitric oxide synthase pathway. Neurochem Int 2018; 112: 197-205.
[http://dx.doi.org/10.1016/j.neuint.2017.07.010] [PMID: 28736242]
[45]
Zhang QG, Laird MD, Han D, et al. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 2012; 7(4): e34504.
[http://dx.doi.org/10.1371/journal.pone.0034504] [PMID: 22485176]
[46]
Hiebert JB, Shen Q, Thimmesch AR, Pierce JD. Traumatic brain injury and mitochondrial dysfunction. Am J Med Sci 2015; 350(2): 132-8.
[http://dx.doi.org/10.1097/MAJ.0000000000000506] [PMID: 26083647]
[47]
Whelan SP, Zuckerbraun BS. Mitochondrial signaling: forwards, backwards, and in between. Oxid Med Cell Longev 2013; 2013: 351613.
[http://dx.doi.org/10.1155/2013/351613] [PMID: 23819011]
[48]
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell death in the developing brain after hypoxia-ischemia. Front Cell Neurosci 2017; 11: 248.
[http://dx.doi.org/10.3389/fncel.2017.00248] [PMID: 28878624]
[49]
Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015; 24(4): 325-40.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[50]
Bredt DS. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 1999; 31(6): 577-96.
[http://dx.doi.org/10.1080/10715769900301161] [PMID: 10630682]
[51]
Kozlov AV, Bahrami S, Redl H, Szabo C. Alterations in nitric oxide homeostasis during traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863(10 Pt B): 2627-32.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.020] [PMID: 28064018]
[52]
Zhou H, Chen L, Gao X, Luo B, Chen J. Moderate traumatic brain injury triggers rapid necrotic death of immature neurons in the hippocampus. J Neuropathol Exp Neurol 2012; 71(4): 348-59.
[http://dx.doi.org/10.1097/NEN.0b013e31824ea078] [PMID: 22437344]
[53]
Karuppagounder SS, Kumar A, Shao DS, et al. Metabolism and epigenetics in the nervous system: creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases Brain Res 2015; 1628(Pt B): 273-87.
[54]
Kawagishi H, Finkel T. Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nat Med 2014; 20(7): 711-3.
[http://dx.doi.org/10.1038/nm.3625] [PMID: 24999942]
[55]
Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter-mediated Ca2+ and iron accumulation in traumatic brain injury. J Cell Mol Med 2019; 23(4): 2995-3009.
[http://dx.doi.org/10.1111/jcmm.14206] [PMID: 30756474]
[56]
Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 2014; 1842(8): 1267-72.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.003] [PMID: 24055979]
[57]
Anthonymuthu TS, Kenny EM, Bayir H. Therapies targeting lipid peroxidation in traumatic brain injury Brain Res 2016; 1640(Pt A): 57-76.
[http://dx.doi.org/10.1016/j.brainres.2016.02.006]
[58]
Cristofori L, Tavazzi B, Gambin R, et al. Early onset of lipid peroxidation after human traumatic brain injury: a fatal limitation for the free radical scavenger pharmacological therapy? J Investig Med 2001; 49(5): 450-8.
[http://dx.doi.org/10.2310/6650.2001.33790]
[59]
Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front Aging Neurosci 2016; 8: 152.
[http://dx.doi.org/10.3389/fnagi.2016.00152] [PMID: 27445795]
[60]
Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H. Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 2014; 179: 64-9.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.11.010] [PMID: 24300280]
[61]
Vähäheikkilä M, Peltomaa T, Róg T, Vazdar M, Pöyry S, Vattulainen I. How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane? Chem Phys Lipids 2018; 214: 15-23.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.04.005] [PMID: 29723518]
[62]
Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 2009; 45(6): 643-50.
[http://dx.doi.org/10.1016/j.ceca.2009.03.012] [PMID: 19368971]
[63]
Cardenas-Rodriguez M, Chatzi A, Tokatlidis K. Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 2018; 23(4): 509-20.
[http://dx.doi.org/10.1007/s00775-018-1548-6]
[64]
Lv H, Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics 2018; 10(7): 899-916.
[http://dx.doi.org/10.1039/C8MT00048D]
[65]
Daglas M, Adlard PA. The involvement of iron in traumatic brain injury and neurodegenerative disease. Front Neurosci 2018; 12: 981.
[http://dx.doi.org/10.3389/fnins.2018.00981] [PMID: 30618597]
[66]
Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab 2010; 30(11): 1793-803.
[http://dx.doi.org/10.1038/jcbfm.2010.137] [PMID: 20736956]
[67]
Sauerbeck A, Schonberg DL, Laws JL, McTigue DM. Systemic iron chelation results in limited functional and histological recovery after traumatic spinal cord injury in rats. Exp Neurol 2013; 248: 53-61.
[http://dx.doi.org/10.1016/j.expneurol.2013.05.011] [PMID: 23712107]
[68]
Ghosh K, Ghosh K. Iron chelators or therapeutic modulators of iron overload: are we anywhere near ideal one? Indian J Med Res 2018; 148(4): 369-72.
[http://dx.doi.org/10.4103/ijmr.IJMR_2001_17] [PMID: 30665999]
[69]
Raz E, Jensen JH, Ge Y, et al. Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study. AJNR Am J Neuroradiol 2011; 32(10): 1851-6.
[http://dx.doi.org/10.3174/ajnr.A2637] [PMID: 21885717]
[70]
Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 2007; 32(7): 1196-208.
[http://dx.doi.org/10.1007/s11064-007-9290-4] [PMID: 17404839]
[71]
Ayton S, Zhang M, Roberts BR, et al. Ceruloplasmin and β-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radic Biol Med 2014; 69: 331-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.041] [PMID: 24509156]
[72]
Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 2011; 42(6): 1781-6.
[http://dx.doi.org/10.1161/STROKEAHA.110.596718] [PMID: 21527759]
[73]
Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H. The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury. Neurotox Res 2009; 16(4): 378-89.
[http://dx.doi.org/10.1007/s12640-009-9081-6] [PMID: 19590930]
[74]
Thomsen GM, Le Belle JE, Harnisch JA, et al. Traumatic brain injury reveals novel cell lineage relationships within the subventricular zone. Stem Cell Res (Amst) 2014; 13(1): 48-60.
[http://dx.doi.org/10.1016/j.scr.2014.04.013] [PMID: 24835668]
[75]
Han SR, Yee GT, Choi CY, Lee CH. Cortical laminar necrosis in an infant with severe traumatic brain injury. J Korean Neurosurg Soc 2011; 50(5): 472-4.
[http://dx.doi.org/10.3340/jkns.2011.50.5.472] [PMID: 22259698]
[76]
Khuman J, Meehan WP III, Zhu X, et al. Tumor necrosis factor alpha and Fas receptor contribute to cognitive deficits independent of cell death after concussive traumatic brain injury in mice. J Cereb Blood Flow Metab 2011; 31(2): 778-89.
[http://dx.doi.org/10.1038/jcbfm.2010.172] [PMID: 20940727]
[77]
Tado M, Mori T, Fukushima M, et al. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats. J Neurotrauma 2014; 31(7): 691-8.
[http://dx.doi.org/10.1089/neu.2013.2940] [PMID: 24294928]
[78]
Hekierski H, Pastor P, Curvello V, Armstead WM. Inhaled nitric oxide protects cerebral autoregulation and reduces hippocampal neuronal cell necrosis after traumatic brain injury in newborn and juvenile pigs. J Neurotrauma 2019; 36(4): 630-8.
[http://dx.doi.org/10.1089/neu.2018.5824] [PMID: 30051755]
[79]
Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, et al. Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 1999; 19(15): 6248-56.
[http://dx.doi.org/10.1523/JNEUROSCI.19-15-06248.1999] [PMID: 10414954]
[80]
Lin X, Chen Q, Huang C, Xu X. CYLD promotes TNF-α-induced cell necrosis mediated by RIP-1 in human lung cancer cells. Mediators Inflamm 2016; 20161542786
[http://dx.doi.org/10.1155/2016/1542786] [PMID: 27738385]
[81]
Sun J, Yu X, Wang C, et al. RIP-1/c-FLIPL induce hepatic cancer cell apoptosis through regulating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Med Sci Monit 2017; 23: 1190-9.
[http://dx.doi.org/10.12659/MSM.899727] [PMID: 28270653]
[82]
Wu JR, Tuo QZ, Lei P. A recent defined form of critical cell death in neurological disorders. J Mol Neurosci 2018; 66(2): 197-206.
[http://dx.doi.org/10.1007/s12031-018-1155-6]
[83]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273-85.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[84]
Vágner A, Forgács A, Brücher E, et al. Equilibrium thermodynamics, formation, and dissociation kinetics of trivalent iron and gallium complexes of triazacyclononane-triphosphinate (TRAP) chelators: unraveling the foundations of highly selective Ga-68 labeling. Front Chem 2018; 6: 170.
[http://dx.doi.org/10.3389/fchem.2018.00170] [PMID: 29876344]
[85]
Bishop GM, Scheiber IF, Dringen R, Robinson SR. Synergistic accumulation of iron and zinc by cultured astrocytes. J Neural Transm (Vienna) 2010; 117(7): 809-17.
[http://dx.doi.org/10.1007/s00702-010-0420-9] [PMID: 20549524]
[86]
Le Houedec S, Thibault de Chanvalon A, Mouret A, et al. 2D image quantification of microbial iron chelators (siderophores) using diffusive equilibrium in thin films method. Anal Chem 2019; 91(2): 1399-407.
[http://dx.doi.org/10.1021/acs.analchem.8b04021] [PMID: 30547582]
[87]
Santos TMA, Lammers MG, Zhou M, et al. Small molecule chelators reveal that iron starvation inhibits late stages of bacterial cytokinesis. ACS Chem Biol 2018; 13(1): 235-46.
[http://dx.doi.org/10.1021/acschembio.7b00560] [PMID: 29227619]
[88]
Youdim MBH. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm (Vienna) 2018; 125(11): 1719-33.
[http://dx.doi.org/10.1007/s00702-018-1942-9] [PMID: 30341696]
[89]
Zhang L, Hu R, Li M, et al. Deferoxamine attenuates iron-induced long-term neurotoxicity in rats with traumatic brain injury. Neurol Sci 2013; 34(5): 639-45.
[http://dx.doi.org/10.1007/s10072-012-1090-1]
[90]
Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke 2014; 45(1): 290-2.
[http://dx.doi.org/10.1161/STROKEAHA.113.003033] [PMID: 24172580]
[91]
Long DA, Ghosh K, Moore AN, Dixon CE, Dash PK. Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res 1996; 717(1-2): 109-17.
[http://dx.doi.org/10.1016/0006-8993(95)01500-0] [PMID: 8738260]
[92]
Panter SS, Braughler JM, Hall ED. Dextran-coupled deferoxamine improves outcome in a murine model of head injury. J Neurotrauma 1992; 9(1): 47-53.
[http://dx.doi.org/10.1089/neu.1992.9.47] [PMID: 1377753]
[93]
Cheng JL, Yang YJ, Li HL, Wang J, Wang MH, Zhang Y. In vivo tracing of superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells transplanted for traumatic brain injury by susceptibility weighted imaging in a rat model. Chin J Traumatol 2010; 13(3): 173-7.
[94]
Banerjee P, Sahoo A, Anand S, Bir A, Chakrabarti S. The oral iron chelator, deferasirox, reverses the age-dependent alterations in iron and amyloid-β homeostasis in rat brain: implications in the therapy of Alzheimer’s disease. J Alzheimers Dis 2016; 49(3): 681-93.
[http://dx.doi.org/10.3233/JAD-150514] [PMID: 26484920]
[95]
Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience 2019; 406: 1-21.
[http://dx.doi.org/10.1016/j.neuroscience.2019.02.020] [PMID: 30825584]
[96]
Gutierres VO, Assis RP, Arcaro CA, et al. Curcumin improves the effect of a reduced insulin dose on glycemic control and oxidative stress in streptozotocin-diabetic rats. Phytother Res 2019; 33(4): 976-88.
[http://dx.doi.org/10.1002/ptr.6291] [PMID: 30656757]
[97]
Hua C, Kai K, Bi W, Shi W, Liu Y, Zhang D. Curcumin induces oxidative stress in Botrytis cinerea, resulting in a reduction in gray mold decay in kiwifruit. J Agric Food Chem 2019; 67(28): 7968-76.
[http://dx.doi.org/10.1021/acs.jafc.9b00539] [PMID: 31062982]
[98]
Scheff SW, Ansari MA. Natural compounds as a therapeutic intervention following traumatic brain injury: the role of phytochemicals. J Neurotrauma 2017; 34(8): 1491-510.
[http://dx.doi.org/10.1089/neu.2016.4718] [PMID: 27846772]
[99]
Khalaf S, Ahmad AS, Chamara KVDR, Doré S. Unique properties associated with the brain penetrant iron chelator HBED reveal remarkable beneficial effects after brain trauma. J Neurotrauma 2018.
[PMID: 29743006]
[100]
Liang LP, Jarrett SG, Patel M. Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. J Neurosci 2008; 28(45): 11550-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3016-08.2008] [PMID: 18987191]
[101]
Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT, Verkman AS. Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma 2015; 32(19): 1458-64.
[http://dx.doi.org/10.1089/neu.2014.3675] [PMID: 25790314]
[102]
Zhao J, Chen Z, Xi G, Keep RF, Hua Y. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res 2014; 5(5): 586-94.
[http://dx.doi.org/10.1007/s12975-014-0353-y] [PMID: 24935175]
[103]
Cui HJ, He HY, Yang AL, et al. Efficacy of deferoxamine in animal models of intracerebral hemorrhage: a systematic review and stratified meta-analysis. PLoS One 2015; 10(5): e0127256.
[http://dx.doi.org/10.1371/journal.pone.0127256] [PMID: 26000830]
[104]
Klein NC, Cunha BA. Tetracyclines. Med Clin North Am 1995; 79(4): 789-801.
[http://dx.doi.org/10.1016/S0025-7125(16)30039-6] [PMID: 7791423]
[105]
Switzer JA, Sikora A, Ergul A, Waller JL, Hess DC, Fagan SC. Minocycline prevents IL-6 increase after acute ischemic stroke. Transl Stroke Res 2012; 3(3): 363-8.
[http://dx.doi.org/10.1007/s12975-012-0150-4] [PMID: 23105953]
[106]
Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke 2011; 42(12): 3587-93.
[http://dx.doi.org/10.1161/STROKEAHA.111.623926] [PMID: 21998050]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy