Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Neuroinflammation in Demyelinating Diseases: Oxidative Stress as a Modulator of Glial Cross-Talk

Author(s): Rodrigo Varas and Fernando C. Ortiz*

Volume 25, Issue 45, 2019

Page: [4755 - 4762] Pages: 8

DOI: 10.2174/1381612825666191216125725

Price: $65

Abstract

Myelin is a specialized membrane allowing for saltatory conduction of action potentials in neurons, an essential process to achieve the normal communication across the nervous system. Accordingly, in diseases characterized by the loss of myelin and myelin forming cells -oligodendrocytes in the CNS-, patients show severe neurological disabilities. After a demyelinated insult, microglia, astrocytes and oligodendrocyte precursor cells invade the lesioned area initiating a spontaneous process of myelin repair (i.e. remyelination). A preserved hallmark of this neuroinflammatory scenario is a local increase of oxidative stress, where several cytokines and chemokines are released by glial and other cells. This generates an environment that determines cell interaction resulting in oligodendrocyte maturity and the ability to synthesize new myelin. Herein we review the main features of the regulatory aspect of these molecules based on recent findings and propose new putative signal molecules involved in the remyelination process, focused in the etiology of Multiple Sclerosis, one of the main demyelinating diseases causing disabilities in the population.

Keywords: Multiple Sclerosis, neuroinflammation, oxidative stress, glial cross-talk, remyelination, microglia.

[1]
Sherman DL, Brophy PJ. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 2005; 6(9): 683-90.
[http://dx.doi.org/10.1038/nrn1743] [PMID: 16136172]
[2]
Nave KA. Myelination and support of axonal integrity by glia. Nature 2010; 468(7321): 244-52.
[http://dx.doi.org/10.1038/nature09614] [PMID: 21068833]
[3]
Wang S, Young KM. White matter plasticity in adulthood. Neuroscience 2014; 276: 148-60.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.018] [PMID: 24161723]
[4]
Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 2008; 9(11): 839-55.
[http://dx.doi.org/10.1038/nrn2480] [PMID: 18931697]
[5]
Franklin RJM, Ffrench-Constant C. Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 2017; 18(12): 753-69.
[http://dx.doi.org/10.1038/nrn.2017.136] [PMID: 29142295]
[6]
Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet 2018; 391(10130): 1622-36.
[http://dx.doi.org/10.1016/S0140-6736(18)30481-1] [PMID: 29576504]
[7]
Schmidt C. Biology: a degenerative affliction. Nature 2016; 540(7631): S2-3.
[http://dx.doi.org/10.1038/540S2a] [PMID: 27902683]
[8]
Humphries C. Progressive multiple sclerosis: the treatment gap. Nature 2012; 484(7393): S10.
[http://dx.doi.org/10.1038/nature11108] [PMID: 22509511]
[9]
van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S. In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets 2012; 11(5): 570-88.
[http://dx.doi.org/10.2174/187152712801661284] [PMID: 22583443]
[10]
Burton JM, O’Connor PW, Hohol M, Beyene J. Oral versus intravenous steroids for treatment of relapses in multiple sclerosis. Cochrane Database Syst Rev 2012; 12(3): CD006921.
[http://dx.doi.org/10.1002/14651858.CD006921.pub3] [PMID: 23235634]
[11]
Pearce EJ, Reiner SL. Induction of Th2 responses in infectious diseases. Curr Opin Immunol 1995; 7(4): 497-504.
[http://dx.doi.org/10.1016/0952-7915(95)80094-8] [PMID: 7495513]
[12]
Walker JA, McKenzie ANJ. TH2 cell development and function. Nat Rev Immunol 2018; 18(2): 121-33.
[http://dx.doi.org/10.1038/nri.2017.118] [PMID: 29082915]
[13]
Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2): 233-40.
[http://dx.doi.org/10.1084/jem.20041257] [PMID: 15657292]
[14]
Bystrom J, Clanchy FIL, Taher TE, et al. Functional and phenotypic heterogeneity of Th17 cells in health and disease. Eur J Clin Invest 2018; 49(1): e13032.
[PMID: 30289986]
[15]
Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci 2013; 333(1-2): 76-87.
[http://dx.doi.org/10.1016/j.jns.2013.03.002] [PMID: 23578791]
[16]
McQuillan K, Lynch MA, Mills KH. Activation of mixed glia by Abeta-specific Th1 and Th17 cells and its regulation by Th2 cells. Brain Behav Immun 2010; 24(4): 598-607.
[http://dx.doi.org/10.1016/j.bbi.2010.01.003] [PMID: 20060887]
[17]
Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 2017; 140(3): 527-46.
[PMID: 27794524]
[18]
Sochocka M, Diniz BS, Leszek J. Inflammatory response in the cns: friend or foe? Mol Neurobiol 2017; 54(10): 8071-89.
[http://dx.doi.org/10.1007/s12035-016-0297-1] [PMID: 27889895]
[19]
Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011; 238(1-2): 1-11.
[http://dx.doi.org/10.1016/j.jneuroim.2011.07.002] [PMID: 21820744]
[20]
Herx LM, Rivest S, Yong VW. Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1 beta is required for the production of ciliary neurotrophic factor. J Immunol 2000; 165(4): 2232-9.
[http://dx.doi.org/10.4049/jimmunol.165.4.2232] [PMID: 10925311]
[21]
Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016; 22(6): 586-97.
[http://dx.doi.org/10.1038/nm.4106] [PMID: 27158906]
[22]
Ishibashi T, Dakin KA, Stevens B, et al. Astrocytes promote myelination in response to electrical impulses. Neuron 2006; 49(6): 823-32.
[http://dx.doi.org/10.1016/j.neuron.2006.02.006] [PMID: 16543131]
[23]
Fulmer CG, VonDran MW, Stillman AA, Huang Y, Hempstead BL, Dreyfus CF. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci 2014; 34(24): 8186-96.
[http://dx.doi.org/10.1523/JNEUROSCI.4267-13.2014] [PMID: 24920623]
[24]
Miyamoto N, Maki T, Shindo A, et al. Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci 2015; 35(41): 14002-8.
[http://dx.doi.org/10.1523/JNEUROSCI.1592-15.2015] [PMID: 26468200]
[25]
Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC. The multifaceted role of astrocytes in regulating myelinationExp Neurol 2016; 283(Pt. B): 541-9.
[http://dx.doi.org/10.1016/j.expneurol.2016.03.009]
[26]
Winter CG, Saotome Y, Levison SW, Hirsh D. A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc Natl Acad Sci USA 1995; 92(13): 5865-9.
[http://dx.doi.org/10.1073/pnas.92.13.5865] [PMID: 7597043]
[27]
Williams A, Piaton G, Lubetzki C. Astrocytes-friends or foes in multiple sclerosis? Glia 2007; 55(13): 1300-12.
[http://dx.doi.org/10.1002/glia.20546] [PMID: 17626262]
[28]
Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 2004; 89(5): 1092-100.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02420.x] [PMID: 15147501]
[29]
Nash B, Thomson CE, Linington C, et al. Functional duality of astrocytes in myelination. J Neurosci 2011; 31(37): 13028-38.
[http://dx.doi.org/10.1523/JNEUROSCI.1449-11.2011] [PMID: 21917786]
[30]
Dallner C, Woods AG, Deller T, Kirsch M, Hofmann HD. CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain. Glia 2002; 37(4): 374-8.
[http://dx.doi.org/10.1002/glia.10048] [PMID: 11870876]
[31]
Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD. Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 2009; 106(16): 6832-6.
[http://dx.doi.org/10.1073/pnas.0812500106] [PMID: 19342494]
[32]
Duncan ID, Marik RL, Broman AT, Heidari M. Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. Proc Natl Acad Sci USA 2017; 114(45): E9685-91.
[http://dx.doi.org/10.1073/pnas.1714183114] [PMID: 29078396]
[33]
Remaud S, Ortiz FC, Perret-Jeanneret M, et al. Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain. eLife 2017; 6: e29996.
[http://dx.doi.org/10.7554/eLife.29996] [PMID: 28875931]
[34]
Ortiz FC, Habermacher C, Graciarena M, et al. Neuronal activity in vivo enhances functional myelin repair. JCI Insight 2019; 5: 123434.
[http://dx.doi.org/10.1172/jci.insight.123434] [PMID: 30896448]
[35]
Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 2010; 68(4): 668-81.
[http://dx.doi.org/10.1016/j.neuron.2010.09.009] [PMID: 21092857]
[36]
Hughes EG, Kang SH, Fukaya M, Bergles DE. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 2013; 16(6): 668-76.
[http://dx.doi.org/10.1038/nn.3390] [PMID: 23624515]
[37]
Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 2018; 21(5): 696-706.
[http://dx.doi.org/10.1038/s41593-018-0121-5] [PMID: 29556025]
[38]
Czopka T, Ffrench-Constant C, Lyons DA. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell 2013; 25(6): 599-609.
[http://dx.doi.org/10.1016/j.devcel.2013.05.013] [PMID: 23806617]
[39]
Miron VE, Boyd A, Zhao JW, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013; 16(9): 1211-8.
[http://dx.doi.org/10.1038/nn.3469] [PMID: 23872599]
[40]
Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 2001; 35(3): 204-12.
[http://dx.doi.org/10.1002/glia.1085] [PMID: 11494411]
[41]
Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002; 3(9): 705-14.
[http://dx.doi.org/10.1038/nrn917] [PMID: 12209119]
[42]
Boyd A, Zhang H, Williams A. Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 2013; 125(6): 841-59.
[http://dx.doi.org/10.1007/s00401-013-1112-y] [PMID: 23595275]
[43]
Moyon S, Dubessy AL, Aigrot MS, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci 2015; 35(1): 4-20.
[http://dx.doi.org/10.1523/JNEUROSCI.0849-14.2015] [PMID: 25568099]
[44]
Kipp M, Victor M, Martino G, Franklin RJ. Endogeneous remyelination: findings in human studies. CNS Neurol Disord Drug Targets 2012; 11(5): 598-609.
[http://dx.doi.org/10.2174/187152712801661257] [PMID: 22583436]
[45]
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol 2016; 4: 71.
[46]
Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, Krause KH. NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression. J Innate Immun 2009; 1(6): 570-81.
[http://dx.doi.org/10.1159/000235563] [PMID: 20375612]
[47]
Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010; 7(4): 354-65.
[http://dx.doi.org/10.1016/j.nurt.2010.05.014] [PMID: 20880500]
[48]
Gimenez MA, Sim JE, Russell JH. TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J Neuroimmunol 2004; 151(1-2): 116-25.
[http://dx.doi.org/10.1016/j.jneuroim.2004.02.012] [PMID: 15145610]
[49]
Argaw AT, Asp L, Zhang J, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 2012; 122(7): 2454-68.
[http://dx.doi.org/10.1172/JCI60842] [PMID: 22653056]
[50]
Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278(3): 1910-4.
[http://dx.doi.org/10.1074/jbc.M207577200] [PMID: 12417590]
[51]
Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 1988; 23(4): 339-46.
[http://dx.doi.org/10.1002/ana.410230405] [PMID: 3132891]
[52]
Sharief MK, Hentges R. Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 1991; 325(7): 467-72.
[http://dx.doi.org/10.1056/NEJM199108153250704] [PMID: 1852181]
[53]
Akassoglou K, Bauer J, Kassiotis G, et al. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 1998; 153(3): 801-13.
[http://dx.doi.org/10.1016/S0002-9440(10)65622-2] [PMID: 9736029]
[54]
Bitsch A, Kuhlmann T, Da Costa C, Bunkowski S, Polak T, Brück W. Tumour necrosis factor alpha mRNA expression in early multiple sclerosis lesions: correlation with demyelinating activity and oligodendrocyte pathology. Glia 2000; 29(4): 366-75.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000215)29:::4<366::AID-GLIA7>3.0.CO;2-Y] [PMID: 10652446]
[55]
Silberstein FC, De Simone R, Levi G, Aloisi F. Cytokine-regulated expression of platelet-derived growth factor gene and protein in cultured human astrocytes. J Neurochem 1996; 66(4): 1409-17.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66041409.x] [PMID: 8627292]
[56]
Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia 2014; 62(2): 272-83.
[http://dx.doi.org/10.1002/glia.22605] [PMID: 24310780]
[57]
Endo F, Komine O, Fujimori-Tonou N, et al. Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep 2015; 11(4): 592-604.
[http://dx.doi.org/10.1016/j.celrep.2015.03.053] [PMID: 25892237]
[58]
Baror R, Neumann B, Segel M, et al. Transforming growth factor-beta renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors. Glia 2019; 67(7): 1374-84.
[http://dx.doi.org/10.1002/glia.23612] [PMID: 30861188]
[59]
Nataf S, Barritault M, Pays L. A unique TGFB1-Driven genomic program links astrocytosis, low-grade inflammation and partial demyelination in spinal cord periplaques from progressive multiple sclerosis patients. Int J Mol Sci 2017; 18(10): E2097.
[http://dx.doi.org/10.3390/ijms18102097] [PMID: 28981455]
[60]
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[61]
Chrissobolis S, Faraci FM. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 2008; 14(11): 495-502.
[http://dx.doi.org/10.1016/j.molmed.2008.09.003] [PMID: 18929509]
[62]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[63]
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 2019; 20(3): 148-60.
[http://dx.doi.org/10.1038/s41583-019-0132-6] [PMID: 30737462]
[64]
Haider L, Fischer MT, Frischer JM, et al. Oxidative damage in multiple sclerosis lesions. Brain 2011; 134(Pt. 7): 1914-24.
[http://dx.doi.org/10.1093/brain/awr128] [PMID: 21653539]
[65]
Giacci MK, Bartlett CA, Smith NM, et al. Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo. J Neurosci 2018; 38(29): 6491-504.
[http://dx.doi.org/10.1523/JNEUROSCI.1898-17.2018] [PMID: 29915135]
[66]
Kilanczyk E, Saraswat Ohri S, Whittemore SR, Hetman M. Antioxidant protection of NADPH-Depleted oligodendrocyte precursor cells is dependent on supply of reduced glutathione. ASN Neuro 2016; 8(4): 1759091416660404.
[http://dx.doi.org/10.1177/1759091416660404] [PMID: 27449129]
[67]
Takase H, Liang AC, Miyamoto N, et al. Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neurosci Lett 2018; 668: 120-5.
[http://dx.doi.org/10.1016/j.neulet.2018.01.018] [PMID: 29337010]
[68]
Vilhardt F, Haslund-Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signalling. Br J Pharmacol 2017; 174(12): 1719-32.
[http://dx.doi.org/10.1111/bph.13426] [PMID: 26754582]
[69]
Jackson TC, Kotermanski SE, Kochanek PM, Jackson EK. Oxidative stress induces release of 2′-AMP from microglia. Brain Res 2019; 1706: 101-9.
[http://dx.doi.org/10.1016/j.brainres.2018.11.002] [PMID: 30395838]
[70]
van Horssen J, Schreibelt G, Drexhage J, et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 2008; 45(12): 1729-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.09.023] [PMID: 18930811]
[71]
Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 2004; 77(4): 540-51.
[http://dx.doi.org/10.1002/jnr.20180] [PMID: 15264224]
[72]
Gao HM, Hong JS, Zhang W, Liu B. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 2003; 23(4): 1228-36.
[http://dx.doi.org/10.1523/JNEUROSCI.23-04-01228.2003] [PMID: 12598611]
[73]
Levesque S, Taetzsch T, Lull ME, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect 2011; 119(8): 1149-55.
[http://dx.doi.org/10.1289/ehp.1002986] [PMID: 21561831]
[74]
El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PM. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 2016; 273(1): 180-93.
[http://dx.doi.org/10.1111/imr.12447] [PMID: 27558335]
[75]
Singel KL, Segal BH. NOX2-dependent regulation of inflammation. Clin Sci (Lond) 2016; 130(7): 479-90.
[http://dx.doi.org/10.1042/CS20150660] [PMID: 26888560]
[76]
Geiszt M, Kopp JB, Várnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 2000; 97(14): 8010-4.
[http://dx.doi.org/10.1073/pnas.130135897] [PMID: 10869423]
[77]
Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci 2018; 12: 114.
[http://dx.doi.org/10.3389/fncel.2018.00114] [PMID: 29755324]
[78]
Park HS, Chun JN, Jung HY, Choi C, Bae YS. Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 2006; 72(3): 447-55.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.012] [PMID: 17064675]
[79]
Basuroy S, Bhattacharya S, Leffler CW, Parfenova H. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 2009; 296(3): C422-32.
[http://dx.doi.org/10.1152/ajpcell.00381.2008] [PMID: 19118162]
[80]
Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 2013; 13(5): 349-61.
[http://dx.doi.org/10.1038/nri3423] [PMID: 23618831]
[81]
Mc Guire C, Prinz M, Beyaert R, van Loo G. Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends Mol Med 2013; 19(10): 604-13.
[http://dx.doi.org/10.1016/j.molmed.2013.08.001] [PMID: 24007818]
[82]
Taetzsch T, Levesque S, McGraw C, et al. Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 2015; 63(3): 423-40.
[http://dx.doi.org/10.1002/glia.22762] [PMID: 25331559]
[83]
Lin Y, Jamison S, Lin W. Interferon-γ activates nuclear factor-κ B in oligodendrocytes through a process mediated by the unfolded protein response. PLoS One 2012; 7(5): e36408.
[http://dx.doi.org/10.1371/journal.pone.0036408] [PMID: 22574154]
[84]
Hamanoue M, Yoshioka A, Ohashi T, Eto Y, Takamatsu K. NF-kappaB prevents TNF-alpha-induced apoptosis in an oligodendrocyte cell line. Neurochem Res 2004; 29(8): 1571-6.
[http://dx.doi.org/10.1023/B:NERE.0000029571.39497.56] [PMID: 15260136]
[85]
Stone S, Jamison S, Yue Y, Durose W, Schmidt-Ullrich R, Lin W. NF-κB activation protects oligodendrocytes against inflammation. J Neurosci 2017; 37(38): 9332-44.
[http://dx.doi.org/10.1523/JNEUROSCI.1608-17.2017] [PMID: 28842413]
[86]
Nickols JC, Valentine W, Kanwal S, Carter BD. Activation of the transcription factor NF-kappaB in schwann cells is required for peripheral myelin formation. Nat Neurosci 2003; 6(2): 161-7.
[http://dx.doi.org/10.1038/nn995] [PMID: 12514737]
[87]
Morton PD, Dellarole A, Theus MH, Walters WM, Berge SS, Bethea JR. Activation of NF-κB in schwann cells is dispensable for myelination in vivo. J Neurosci 2013; 33(24): 9932-6.
[http://dx.doi.org/10.1523/JNEUROSCI.2483-12.2013] [PMID: 23761888]
[88]
Brambilla R, Bracchi-Ricard V, Hu WH, et al. Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 2005; 202(1): 145-56.
[http://dx.doi.org/10.1084/jem.20041918] [PMID: 15998793]
[89]
Raasch J, Zeller N, van Loo G, et al. IkappaB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-kappaB in the central nervous system. Brain 2011; 134(Pt. 4): 1184-98.
[http://dx.doi.org/10.1093/brain/awq359] [PMID: 21310728]
[90]
Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 2004; 173(6): 3589-93.
[http://dx.doi.org/10.4049/jimmunol.173.6.3589] [PMID: 15356101]
[91]
Montalban X, Belachew S, Wolinsky JS. Ocrelizumab in primary progressive and relapsing multiple sclerosis. N Engl J Med 2017; 376(17): 1694.
[PMID: 28445663]
[92]
OZlem T. Rececnt advances in the Treatment for multiple sclerosis; current new drug for multiple sclerosis. Noro Psikiyatri Arsivi 2018; 55(Suppl. 1): S15-20.
[93]
Deshmukh VA, Tardif V, Lyssiotis CA, et al. A regenerative approach to the treatment of multiple sclerosis. Nature 2013; 502(7471): 327-32.
[http://dx.doi.org/10.1038/nature12647] [PMID: 24107995]
[94]
Abiraman K, Pol SU, O’Bara MA, et al. Anti-muscarinic adjunct therapy accelerates functional human oligodendrocyte repair. J Neurosci 2015; 35(8): 3676-88.
[http://dx.doi.org/10.1523/JNEUROSCI.3510-14.2015] [PMID: 25716865]
[95]
Green AJ, Gelfand JM, Cree BA, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 2017; 390(10111): 2481-9.
[http://dx.doi.org/10.1016/S0140-6736(17)32346-2] [PMID: 29029896]
[96]
Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005; 8(6): 745-51.
[http://dx.doi.org/10.1038/nn1460] [PMID: 15895088]
[97]
Mi S, Miller RH, Tang W, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 2009; 65(3): 304-15.
[http://dx.doi.org/10.1002/ana.21581] [PMID: 19334062]
[98]
Kremer D, Göttle P, Flores-Rivera J, Hartung HP, Küry P. Remyelination in multiple sclerosis: from concept to clinical trials. Curr Opin Neurol 2019; 32(3): 378-84.
[http://dx.doi.org/10.1097/WCO.0000000000000692] [PMID: 30865009]
[99]
Smith ES, Jonason A, Reilly C, et al. SEMA4D compromises blood-brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease. Neurobiol Dis 2015; 73: 254-68.
[http://dx.doi.org/10.1016/j.nbd.2014.10.008] [PMID: 25461192]
[100]
Southwell AL, Franciosi S, Villanueva EB, et al. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol Dis 2015; 76: 46-56.
[http://dx.doi.org/10.1016/j.nbd.2015.01.002] [PMID: 25662335]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy