Abstract
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydofolate (CH2-H4folate) to 5- methyltetrahydrofolate (CH3-H4folate). The enzyme employs a noncovalently-bound flavin adenine dinucleotide (FAD), which accepts reducing equivalents from NAD(P)H and transfers them to CH2-H4folate. The reaction provides the sole source of CH3-H4folate, which is utilized by methionine synthase in the synthesis of methionine from homocysteine. MTHFR plays a key role in folate metabolism and in the homeostasis of homocysteine; mutations in the enzyme lead to hyperhomocyst(e)inemia. A common C677T polymorphism in MTHFR has been associated with an increased risk for the development of cardiovascular disease, Alzheimer’s disease, and depression in adults, and of neural tube defects in the fetus. The mutation also confers protection for certain types of cancers. This review presents the current knowledge of the enzyme, its biochemical characterization, and medical significance.
Keywords: Flavin, FAD, folate, MTHFR, methylenetetrahydrofolate, methyltetrahydrofolate, homocysteine, C677T polymorphism
Current Pharmaceutical Design
Title:Methylenetetrahydrofolate Reductase: Biochemical Characterization and Medical Significance
Volume: 19 Issue: 14
Author(s): Elizabeth E. Trimmer
Affiliation:
Keywords: Flavin, FAD, folate, MTHFR, methylenetetrahydrofolate, methyltetrahydrofolate, homocysteine, C677T polymorphism
Abstract: Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydofolate (CH2-H4folate) to 5- methyltetrahydrofolate (CH3-H4folate). The enzyme employs a noncovalently-bound flavin adenine dinucleotide (FAD), which accepts reducing equivalents from NAD(P)H and transfers them to CH2-H4folate. The reaction provides the sole source of CH3-H4folate, which is utilized by methionine synthase in the synthesis of methionine from homocysteine. MTHFR plays a key role in folate metabolism and in the homeostasis of homocysteine; mutations in the enzyme lead to hyperhomocyst(e)inemia. A common C677T polymorphism in MTHFR has been associated with an increased risk for the development of cardiovascular disease, Alzheimer’s disease, and depression in adults, and of neural tube defects in the fetus. The mutation also confers protection for certain types of cancers. This review presents the current knowledge of the enzyme, its biochemical characterization, and medical significance.
Export Options
About this article
Cite this article as:
E. Trimmer Elizabeth, Methylenetetrahydrofolate Reductase: Biochemical Characterization and Medical Significance, Current Pharmaceutical Design 2013; 19 (14) . https://dx.doi.org/10.2174/1381612811319140008
DOI https://dx.doi.org/10.2174/1381612811319140008 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Normal Ventricular Functional Reference Parameters on Magnetic Resonance Imaging in Healthy Children
Current Medical Imaging Obesity in the Childhood: A Link to Adult Hypertension
Current Pharmaceutical Design Plant Polyphenols and Tumors: From Mechanisms to Therapies, Prevention, and Protection Against Toxicity of Anti-Cancer Treatments
Current Medicinal Chemistry Associations between Alzheimer’s Disease and Blood Homocysteine, Vitamin B<sub>12</sub>, and Folate: A Case-Control Study
Current Alzheimer Research Does Non-Alcoholic Fatty Liver Disease (NAFLD) Increase Cardiovascular Risk?
Endocrine, Metabolic & Immune Disorders - Drug Targets Polyphenols from Red Wine Modulate Immune Responsiveness: Biological and Clinical Significance
Current Pharmaceutical Design Local Renin-Angiotensin II Systems, Angiotensin-Converting Enzyme and its Homologue ACE2: Their Potential Role in the Pathogenesis of Chronic Obstructive Pulmonary Diseases, Pulmonary Hypertension and Acute Respiratory Distress Syndrome
Current Medicinal Chemistry Phase 4 Studies in Heart Failure - What is Done and What is Needed?
Current Cardiology Reviews Recent Progress in Pharmacological and Non-Pharmacological Treatment Options of Major Depression
Current Pharmaceutical Design Insulin Resistance-Induced Hypertension and a Role of Perivascular CGRPergic Nerves
Current Protein & Peptide Science Left Ventricular 2-[<sup>18</sup>F]-Fluoro-2-Deoxy-D-Glucose Uptake Using Modified Oral Glucose Loading Protocol With Pre-Medicated Niacin On Positron Emission Tomography/Computed Tomography - A Preliminary Study
Current Molecular Imaging (Discontinued) Therapeutic Potential of Endothelial Progenitor Cells for Cardiovascular Diseases
Current Vascular Pharmacology Perivascular Inflammation and Hypertensive Cardiovascular Remodeling
Current Hypertension Reviews Modulation of Cardiac Metabolism During Myocardial Ischemia
Current Pharmaceutical Design Testosterone Deficiency in Male: A Risk Factor for Heart Failure
Endocrine, Metabolic & Immune Disorders - Drug Targets The Effect of Sex and Gender on Diabetic Complications
Current Diabetes Reviews The Multiple Roles of Vitamin D in Human Health. A Mini-Review
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Melanocortins in the Treatment of Male and Female Sexual Dysfunction
Current Topics in Medicinal Chemistry Cruzipain, the Major Cysteine Protease of Trypanosoma cruzi: A Sulfated Glycoprotein Antigen as Relevant Candidate for Vaccine Development and Drug Target. A Review
Current Medicinal Chemistry Modulation of Ion Channels in Pulmonary Arterial Hypertension
Current Pharmaceutical Design