Review Article

天然高分子水凝胶为基础细胞培养的应用程序

卷 27, 期 16, 2020

页: [2734 - 2776] 页: 43

弟呕挨: 10.2174/0929867326666190903113004

价格: $65

摘要

细胞外基质(extracellular matrix, ECM)在细胞的生长、存活和分化中起着至关重要的作用。尽管二维(2D)材料通常被用作标准体外实验的基质,但它们的机械、结构和成分特征可以彻底改变细胞功能。许多科学家报告说,细胞在三维(3D)环境中培养时比在二维基质上表现得更自然,因为三维细胞培养环境更像活体,可以更好地模拟ECM的生化和机械特性。在这方面,水膨胀网络聚合物材料称为水凝胶,由于其生物相容性和亲水性,在开发3D ECM类似物方面具有很大的吸引力。由于水凝胶可以被系统地调节和改变,这些材料可以在特定的培养基中活跃地发挥作用,以支持各种细胞的长期自我更新。开发水凝胶材料的物理化学和生物特性应根据培养需要进行调整。各种类型的水凝胶,无论是天然的或合成的来源,目前正在用于细胞培养应用。在这篇综述中,我们概述了各种基于天然聚合物的水凝胶,可用于细胞培养,无论应用类型。我们还解释了每一种水凝胶是如何制造的,它的来源,在生物应用中的利弊,特别关注再生工程。

关键词: 水凝胶

« Previous
[1]
Kopecek, J. Polymer chemistry: swell gels. Nature, 2002, 417(6887), 388-389, 391.
[http://dx.doi.org/10.1038/417388a] [PMID: 12024197]
[2]
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50(1), 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[3]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[4]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54(1), 3-12.
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[5]
Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 13-36.
[http://dx.doi.org/10.1016/S0169-409X(01)00240-X] [PMID: 11755704]
[6]
Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.020] [PMID: 27721086]
[7]
Chang, C.; Zhang, L. Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym., 2011, 84(1), 40-53.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.023]
[8]
Calvert, P. Hydrogels for soft machines. Adv. Mater., 2009, 21(7), 743-756.
[http://dx.doi.org/10.1002/adma.200800534]
[9]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[10]
Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature, 1960, 185, 117.
[http://dx.doi.org/10.1038/185117a0]
[11]
Lim, F.; Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980, 210(4472), 908-910.
[http://dx.doi.org/10.1126/science.6776628] [PMID: 6776628]
[12]
Yannas, I.V.; Lee, E.; Orgill, D.P.; Skrabut, E.M.; Murphy, G.F. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. USA, 1989, 86(3), 933-937.
[http://dx.doi.org/10.1073/pnas.86.3.933] [PMID: 2915988]
[13]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2008, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[14]
Wu, D-Q.; Wang, T.; Lu, B.; Xu, X-D.; Cheng, S-X.; Jiang, X-J.; Zhang, X-Z.; Zhuo, R-X. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir, 2008, 24(18), 10306-10312.
[http://dx.doi.org/10.1021/la8006876] [PMID: 18680318]
[15]
Nugent, M.J.D.; Higginbotham, C.L. Preparation of a novel freeze thawed poly(vinyl alcohol) composite hydrogel for drug delivery applications. Eur. J. Pharm. Biopharm., 2007, 67(2), 377-386.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.014] [PMID: 17398082]
[16]
Lee, Y-J.; Braun, P.V. Tunable inverse opal hydrogel pH sensors. Adv. Mater., 2003, 15(7‐8), 563-566.
[http://dx.doi.org/10.1002/adma.200304588]
[17]
Sorber, J.; Steiner, G.; Schulz, V.; Guenther, M.; Gerlach, G.; Salzer, R.; Arndt, K-F. Hydrogel-based piezoresistive pH sensors: investigations using FT-IR attenuated total reflection spectroscopic imaging. Anal. Chem., 2008, 80(8), 2957-2962.
[http://dx.doi.org/10.1021/ac702598n] [PMID: 18303919]
[18]
Katsoulos, C.; Karageorgiadis, L.; Vasileiou, N.; Mousafeiropoulos, T.; Asimellis, G. Customized hydrogel contact lenses for keratoconus incorporating correction for vertical coma aberration. Ophthalmic Physiol. Opt., 2009, 29(3), 321-329.
[http://dx.doi.org/10.1111/j.1475-1313.2009.00645.x] [PMID: 19422564]
[19]
Yasuda, H. Biocompatibility of nanofilm-encapsulated silicone and silicone-hydrogel contact lenses. Macromol. Biosci., 2006, 6(2), 121-138.
[http://dx.doi.org/10.1002/mabi.200500153] [PMID: 16416462]
[20]
Ha, E-J.; Kim, Y-J.; An, S.S.A.; Kim, Y-R.; Lee, J-O.; Lee, S-G.; Paik, H.J. Purification of His-tagged proteins using Ni2+-poly(2-acetamidoacrylic acid) hydrogel. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 876(1), 8-12.
[http://dx.doi.org/10.1016/j.jchromb.2008.10.020] [PMID: 18980866]
[21]
Singh, A.; Peppas, N.A. Hydrogels and scaffolds for immunomodulation. Adv. Mater., 2014, 26(38), 6530-6541.
[http://dx.doi.org/10.1002/adma.201402105] [PMID: 25155610]
[22]
Wang, C.; Varshney, R.R.; Wang, D.A. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv. Drug Deliv. Rev., 2010, 62(7-8), 699-710.
[http://dx.doi.org/10.1016/j.addr.2010.02.001] [PMID: 20138940]
[23]
Oh, E.J.; Park, K.; Kim, K.S.; Kim, J.; Yang, J.A.; Kong, J.H.; Lee, M.Y.; Hoffman, A.S.; Hahn, S.K. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Control. Release, 2010, 141(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.010] [PMID: 19758573]
[24]
Singh, M.R.; Patel, S.; Singh, D. Nanobiomaterials in Soft Tissue Engineering; Grumezescu, A.M., Ed.; William Andrew Publishing, 2016, pp. 231-260.
[http://dx.doi.org/10.1016/B978-0-323-42865-1.00009-X]
[25]
Jin, R.; Moreira Teixeira, L.S.; Dijkstra, P.J.; Karperien, M.; van Blitterswijk, C.A.; Zhong, Z.Y.; Feijen, J. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30(13), 2544-2551.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.020] [PMID: 19176242]
[26]
Moura, M.J.; Figueiredo, M.M.; Gil, M.H. Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules, 2007, 8(12), 3823-3829.
[http://dx.doi.org/10.1021/bm700762w] [PMID: 18004810]
[27]
Qu, X.; Wirsén, A.; Albertsson, A.C. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer (Guildf.), 2000, 41(12), 4589-4598.
[http://dx.doi.org/10.1016/S0032-3861(99)00685-0]
[28]
Vrana, N.E.; Liu, Y.; McGuinness, G.B.; Cahill, P.A. Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol. Symp., 2008, 269(1), 106-110.
[http://dx.doi.org/10.1002/masy.200850913]
[29]
Shen, Z-S.; Cui, X.; Hou, R-X.; Li, Q.; Deng, H-X.; Fu, J. Tough biodegradable chitosan–gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. RSC Advances, 2015, 5(69), 55640-55647.
[http://dx.doi.org/10.1039/C5RA06835E]
[30]
Bidarra, S.J.; Barrias, C.C.; Granja, P.L. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater., 2014, 10(4), 1646-1662.
[http://dx.doi.org/10.1016/j.actbio.2013.12.006] [PMID: 24334143]
[31]
Chan, A.W.; Whitney, R.A.; Neufeld, R.J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules, 2009, 10(3), 609-616.
[http://dx.doi.org/10.1021/bm801316z] [PMID: 19196004]
[32]
Dorsey, S.M.; McGarvey, J.R.; Wang, H.; Nikou, A.; Arama, L.; Koomalsingh, K.J.; Kondo, N.; Gorman, J.H., III; Pilla, J.J.; Gorman, R.C.; Wenk, J.F.; Burdick, J.A. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials, 2015, 69, 65-75.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.011] [PMID: 26280951]
[33]
Bhattacharyya, S.; Guillot, S.; Dabboue, H.; Tranchant, J-F.; Salvetat, J-P. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules, 2008, 9(2), 505-509.
[http://dx.doi.org/10.1021/bm7009976] [PMID: 18186607]
[34]
Sim, H.J.; Thambi, T.; Lee, D.S. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(45), 8892-8901.
[http://dx.doi.org/10.1039/C5TB01399B]
[35]
Wang, F.; Li, Z.; Khan, M.; Tamama, K.; Kuppusamy, P.; Wagner, W.R.; Sen, C.K.; Guan, J. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater., 2010, 6(6), 1978-1991.
[http://dx.doi.org/10.1016/j.actbio.2009.12.011] [PMID: 20004745]
[36]
Van Tomme, S.R.; Hennink, W.E. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev. Med. Devices, 2007, 4(2), 147-164.
[http://dx.doi.org/10.1586/17434440.4.2.147] [PMID: 17359222]
[37]
Li, X.; Xu, S.; Pen, Y.; Wang, J. The swelling behaviors and network parameters of cationic starch-g-acrylic acid/poly(dimethyldiallylammonium chloride) semi-interpenetrating polymer networks hydrogels. J. Appl. Polym. Sci., 2008, 110(3), 1828-1836.
[http://dx.doi.org/10.1002/app.28581]
[38]
Gattás-Asfura, K.M.; Weisman, E.; Andreopoulos, F.M.; Micic, M.; Muller, B.; Sirpal, S.; Pham, S.M.; Leblanc, R.M. Nitrocinnamate-functionalized gelatin: synthesis and “smart”hydrogel formation via photo-cross-linking. Biomacromolecules, 2005, 6(3), 1503-1509.
[http://dx.doi.org/10.1021/bm049238w] [PMID: 15877371]
[39]
Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J., 2010, 46(1), 92-100.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.04.033]
[40]
Ma, Y.; Mao, Y.; An, Y.; Tian, T.; Zhang, H.; Yan, J.; Zhu, Z.; Yang, C.J. Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst (Lond.), 2018, 143(7), 1679-1684.
[http://dx.doi.org/10.1039/C8AN00010G] [PMID: 29512663]
[41]
Boudriot, U.; Dersch, R.; Greiner, A.; Wendorff, J.H. Electrospinning approaches toward scaffold engineering--a brief overview. Artif. Organs, 2006, 30(10), 785-792.
[http://dx.doi.org/10.1111/j.1525-1594.2006.00301.x] [PMID: 17026578]
[42]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering application. A review. International Journal of Polymer. Science., 2011, 2011, 19.
[http://dx.doi.org/10.1155/2011/290602]
[43]
Frisch, H.L. Diffusion in polymers. In: Journal of Applied Polymer Science; Crank, J.; G. S., Park, Eds.. Academic Press, London and New York, 1970; 14, p. (6)1657.
[http://dx.doi.org/10.1002/pol.1969.160071204]
[44]
Ehrenhofer, A.; Elstner, M.; Wallmersperger, T. Normalization of hydrogel swelling behavior for sensoric and actuatoric applications. Sens. Actuators B Chem., 2018, 255, 1343-1353.
[http://dx.doi.org/10.1016/j.snb.2017.08.120]
[45]
Achilleos, E.C.; Prud’Homme, R.K.; Christodoulou, K.N.; Gee, K.R.; Kevrekidis, I.G. Dynamic deformation visualization in swelling of polymer gels. Chem. Eng. Sci., 2000, 55(17), 3335-3340.
[http://dx.doi.org/10.1016/S0009-2509(00)00002-6] [PMID: 1600031]
[46]
Anseth, K.S.; Bowman, C.N.; Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials, 1996, 17(17), 1647-1657.
[http://dx.doi.org/10.1016/0142-9612(96)87644-7] [PMID: 8866026]
[47]
Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater., 2009, 21(32-33), 3307-3329.
[http://dx.doi.org/10.1002/adma.200802106] [PMID: 20882499]
[48]
Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 37-51.
[http://dx.doi.org/10.1016/S0169-409X(01)00242-3] [PMID: 11755705]
[49]
Bekturov, E.A. Speciality Polymers; Springer Berlin Heidelberg: Berlin, Heidelberg, 1981, pp. 99-147.
[http://dx.doi.org/10.1007/3-540-10554-9_11]
[50]
Alimirzaei, F.; Farahani, E.V.; Ghiaseddin, A. M, S.; Pouri, Gharavi, N. Z. pH-sensitive chitosan hydrogel with instant gelation for myocardial regeneration. J. Tissue Sci. Eng., 2017, 8(3), 212.
[http://dx.doi.org/10.4172/2157-7552.1000212]
[51]
Yao, H.; Wang, J.; Mi, S. Photo processing for biomedical hydrogels design and functionality: a review. Polymers (Basel), 2017, 10(1), 11.
[http://dx.doi.org/10.3390/polym10010011] [PMID: 30966045]
[52]
Nichol, J.; Koshy, S.; Bae, H.; Hwang, C.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31(21), 5536-5544.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.064] [PMID: 20417964]
[53]
Fournier, E.; Passirani, C.; Montero-Menei, C.N.; Benoit, J.P. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials, 2003, 24(19), 3311-3331.
[http://dx.doi.org/10.1016/S0142-9612(03)00161-3] [PMID: 12763459]
[54]
He, X.; Wei, B.; Mi, Y. Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chem. Commun. (Camb.), 2010, 46(34), 6308-6310.
[http://dx.doi.org/10.1039/c0cc01392g] [PMID: 20672164]
[55]
Trappmann, B.; Baker, B.M.; Polacheck, W.J.; Choi, C.K.; Burdick, J.A.; Chen, C.S. Matrix degradability controls multicellularity of 3D cell migration. Nat. Commun., 2017, 8(1), 371.
[http://dx.doi.org/10.1038/s41467-017-00418-6] [PMID: 28851858]
[56]
Saez, A.; Ghibaudo, M.; Buguin, A.; Silberzan, P.; Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8281-8286.
[http://dx.doi.org/10.1073/pnas.0702259104] [PMID: 17488828]
[57]
Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4), 677-689.
[http://dx.doi.org/10.1016/j.cell.2006.06.044] [PMID: 16923388]
[58]
Eckert, R.L.; Rorke, E.A. Molecular biology of keratinocyte differentiation. Environ. Health Perspect., 1989, 80, 109-116.
[http://dx.doi.org/10.1289/ehp.8980109] [PMID: 2466639]
[59]
Fan, C.; Wang, D.A. macroporous hydrogel scaffolds for three-dimensional cell culture and tissue engineering. Tissue Eng. Part B Rev., 2017, 23(5), 451-461.
[http://dx.doi.org/10.1089/ten.teb.2016.0465] [PMID: 28067115]
[60]
Sokic, S.; Christenson, M.; Larson, J.; Papavasiliou, G. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Macromol. Biosci., 2014, 14(5), 731-739.
[http://dx.doi.org/10.1002/mabi.201300406] [PMID: 24443002]
[61]
Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev., 2010, 16(4), 371-383.
[http://dx.doi.org/10.1089/ten.teb.2009.0639] [PMID: 20121414]
[62]
Norris, S.C.P.; Delgado, S.M.; Kasko, A.M. Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and in situ mechanical modification. Polym. Chem., 2019, 10(23), 3180-3193.
[http://dx.doi.org/10.1039/C9PY00308H]
[63]
Lei, Y.; Gojgini, S.; Lam, J.; Segura, T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 2011, 32(1), 39-47.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.103] [PMID: 20933268]
[64]
Bryant, S.J.; Bender, R.J.; Durand, K.L.; Anseth, K.S. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng., 2004, 86(7), 747-755.
[http://dx.doi.org/10.1002/bit.20160] [PMID: 15162450]
[65]
Foley, J.D.; Grunwald, E.W.; Nealey, P.F.; Murphy, C.J. Cooperative modulation of neuritogenesis by PC12 cells by topography and nerve growth factor. Biomaterials, 2005, 26(17), 3639-3644.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.048] [PMID: 15621254]
[66]
Kim, Y.; Abuelfilat, A.Y.; Hoo, S.P.; Al-Abboodi, A.; Liu, B.; Ng, T.; Chan, P.; Fu, J. Tuning the surface properties of hydrogel at the nanoscale with focused ion irradiation. Soft Matter, 2014, 10(42), 8448-8456.
[http://dx.doi.org/10.1039/C4SM01061B] [PMID: 25225831]
[67]
Larsson, C.; Thomsen, P.; Lausmaa, J.; Rodahl, M.; Kasemo, B.; Ericson, L.E. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials, 1994, 15(13), 1062-1074.
[http://dx.doi.org/10.1016/0142-9612(94)90092-2] [PMID: 7888577]
[68]
Camci-Unal, G.; Nichol, J.W.; Bae, H.; Tekin, H.; Bischoff, J.; Khademhosseini, A. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med., 2013, 7(5), 337-347.
[http://dx.doi.org/10.1002/term.517] [PMID: 22223475]
[69]
Baier, R.E.; Meyer, A.E.; Natiella, J.R.; Natiella, R.R.; Carter, J.M. Surface properties determine bioadhesive outcomes: methods and results. J. Biomed. Mater. Res., 1984, 18(4), 337-355.
[http://dx.doi.org/10.1002/jbm.820180404] [PMID: 6736072]
[70]
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science, 2012, 336(6085), 1124-1128.
[http://dx.doi.org/10.1126/science.1214804] [PMID: 22654050]
[71]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[72]
Druecke, D.; Langer, S.; Lamme, E.; Pieper, J.; Ugarkovic, M.; Steinau, H.U.; Homann, H.H. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A, 2004, 68(1), 10-18.
[http://dx.doi.org/10.1002/jbm.a.20016] [PMID: 14661244]
[73]
Marshall, A.J.; Ratner, B.D. Quantitative characterization of sphere-templated porous biomaterials. AIChE J., 2005, 51(4), 1221-1232.
[http://dx.doi.org/10.1002/aic.10390]
[74]
Unger, R.E.; Sartoris, A.; Peters, K.; Motta, A.; Migliaresi, C.; Kunkel, M.; Bulnheim, U.; Rychly, J.; Kirkpatrick, C.J. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials, 2007, 28(27), 3965-3976.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.032] [PMID: 17582491]
[75]
Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today, 2009, 4(1), 66-80.
[http://dx.doi.org/10.1016/j.nantod.2008.10.014]
[76]
Liu, H.; Roy, K. Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Eng., 2005, 11(1-2), 319-330.
[http://dx.doi.org/10.1089/ten.2005.11.319] [PMID: 15738685]
[77]
Reis, L.A.; Chiu, L.L.Y.; Liang, Y.; Hyunh, K.; Momen, A.; Radisic, M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater., 2012, 8(3), 1022-1036.
[http://dx.doi.org/10.1016/j.actbio.2011.11.030] [PMID: 22155066]
[78]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316-342.
[http://dx.doi.org/10.5339/gcsp.2013.38] [PMID: 24689032]
[79]
Kuijpers, A.J.; van Wachem, P.B.; van Luyn, M.J.A.; Engbers, G.H.M.; Krijgsveld, J.; Zaat, S.A.J.; Dankert, J.; Feijen, J. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J. Control. Release, 2000, 67(2-3), 323-336.
[http://dx.doi.org/10.1016/S0168-3659(00)00221-2] [PMID: 10825564]
[80]
Kim, T.K.; Yoon, J.J.; Lee, D.S.; Park, T.G. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials, 2006, 27(2), 152-159.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.081] [PMID: 16023197]
[81]
Kumar, A.; Mishra, R.; Reinwald, Y.; Bhat, S. Cryogels: freezing unveiled by thawing. Mater. Today, 2010, 13(11), 42-44.
[http://dx.doi.org/10.1016/S1369-7021(10)70202-9]
[82]
Wade, R.J.; Bassin, E.J.; Rodell, C.B.; Burdick, J.A. Protease-degradable electrospun fibrous hydrogels. Nat. Commun., 2015, 6, 6639.
[http://dx.doi.org/10.1038/ncomms7639] [PMID: 25799370]
[83]
McDonnell, G.E.; Sheard, D. Sheard D.In A Practical Guide to Decontamination in Healthcare; Wiley-Blackwell, 2015, p. 460.
[84]
Singh, R.; Singh, D.; Singh, A. Radiation sterilization of tissue allografts: A review. World J. Radiol., 2016, 8(4), 355-369.
[http://dx.doi.org/10.4329/wjr.v8.i4.355] [PMID: 27158422]
[85]
Karajanagi, S.S.; Yoganathan, R.; Mammucari, R.; Park, H.; Cox, J.; Zeitels, S.M.; Langer, R.; Foster, N.R. Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol. Bioeng., 2011, 108(7), 1716-1725.
[http://dx.doi.org/10.1002/bit.23105] [PMID: 21337339]
[86]
Bačáková, L.; Novotná, K.; Pařízek, M. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol. Res., 2014, 63(Suppl. 1), S29-S47.
[PMID: 24564664]
[87]
Slock, J.A.; Stahly, D.P. Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus. J. Bacteriol., 1974, 120(1), 399-406.
[http://dx.doi.org/10.1128/JB.120.1.399-406.1974] [PMID: 4214355]
[88]
Ge, Z.; Baguenard, S.; Lim, L.Y.; Wee, A.; Khor, E. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004, 25(6), 1049-1058.
[http://dx.doi.org/10.1016/S0142-9612(03)00612-4] [PMID: 14615170]
[89]
Sudheesh Kumar, P.T.; Srinivasan, S.; Lakshmanan, V-K.; Tamura, H.; Nair, S.V.; Jayakumar, R. β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr. Polym., 2011, 85(3), 584-591.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.018]
[90]
Liu, H.; Liu, J.; Qi, C.; Fang, Y.; Zhang, L.; Zhuo, R.; Jiang, X. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater., 2016, 35, 228-237.
[http://dx.doi.org/10.1016/j.actbio.2016.02.028] [PMID: 26911882]
[91]
Chang, C.; Peng, N.; He, M.; Teramoto, Y.; Nishio, Y.; Zhang, L. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr. Polym., 2013, 91(1), 7-13.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.070] [PMID: 23044099]
[92]
Kumar, P.T.S.; Srinivasan, S.; Lakshmanan, V-K.; Tamura, H.; Nair, S.V.; Jayakumar, R. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int. J. Biol. Macromol., 2011, 49(1), 20-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.03.006] [PMID: 21435350]
[93]
Suzuki, D.; Takahashi, M.; Abe, M.; Sarukawa, J.; Tamura, H.; Tokura, S.; Kurahashi, Y.; Nagano, A. Comparison of various mixtures of β-chitin and chitosan as a scaffold for three-dimensional culture of rabbit chondrocytes. J. Mater. Sci. Mater. Med., 2008, 19(3), 1307-1315.
[http://dx.doi.org/10.1007/s10856-007-3245-9] [PMID: 17851736]
[94]
Bi, B.; Ma, M.; Lv, S.; Zhuo, R.; Jiang, X. In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture. Carbohydr. Polym., 2019, 212, 368-377.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.058] [PMID: 30832869]
[95]
Ji, C.; Khademhosseini, A.; Dehghani, F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials, 2011, 32(36), 9719-9729.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.003] [PMID: 21925727]
[96]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[97]
Han, H.D.; Song, C.K.; Park, Y.S.; Noh, K.H.; Kim, J.H.; Hwang, T.; Kim, T.W.; Shin, B.C. A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int. J. Pharm., 2008, 350(1-2), 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.014] [PMID: 17897800]
[98]
Chiu, Y.L.; Chen, S.C.; Su, C.J.; Hsiao, C.W.; Chen, Y.M.; Chen, H.L.; Sung, H.W. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials, 2009, 30(28), 4877-4888.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.052] [PMID: 19527916]
[99]
Richardson, S.M.; Hughes, N.; Hunt, J.A.; Freemont, A.J.; Hoyland, J.A. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials, 2008, 29(1), 85-93.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.018] [PMID: 17920676]
[100]
Ngoenkam, J.; Faikrua, A.; Yasothornsrikul, S.; Viyoch, J. Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int. J. Pharm., 2010, 391(1-2), 115-124.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.028] [PMID: 20206248]
[101]
Ho, M.H.; Wang, D.M.; Hsieh, H.J.; Liu, H.C.; Hsien, T.Y.; Lai, J.Y.; Hou, L.T. Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials, 2005, 26(16), 3197-3206.
[http://dx.doi.org/10.1016/j.biomaterials.2004.08.032] [PMID: 15603814]
[102]
Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res., 2000, 49(2), 289-295.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<289:AID-JBM18>3.0.CO;2-M] [PMID: 10571917]
[103]
Cheng, Y.; Luo, X.; Payne, G.F.; Rubloff, G.W. Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. J. Mater. Chem., 2012, 22(16), 7659-7666.
[http://dx.doi.org/10.1039/c2jm16215f]
[104]
Contessi, N.; Altomare, L.; Filipponi, A.; Farè, S. Thermo-responsive properties of methylcellulose hydrogels for cell sheet engineering. Mater. Lett., 2017, 207, 157-160.
[http://dx.doi.org/10.1016/j.matlet.2017.07.023]
[105]
Bhattacharya, M.; Malinen, M.M.; Lauren, P.; Lou, Y.R.; Kuisma, S.W.; Kanninen, L.; Lille, M.; Corlu, A. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control. Release, 2012, 164(3), 291-298.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.039] [PMID: 22776290]
[106]
Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D.L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 2005, 26(4), 419-431.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.049] [PMID: 15275816]
[107]
Führmann, T.; Tam, R.Y.; Ballarin, B.; Coles, B.; Elliott Donaghue, I.; van der Kooy, D.; Nagy, A.; Tator, C.H.; Morshead, C.M.; Shoichet, M.S. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials, 2016, 83, 23-36.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.032] [PMID: 26773663]
[108]
Loh, E.Y.X.; Mohamad, N.; Fauzi, M.B.; Ng, M.H.; Ng, S.F.; Mohd Amin, M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep., 2018, 8(1), 2875.
[http://dx.doi.org/10.1038/s41598-018-21174-7] [PMID: 29440678]
[109]
Raucci, M.G.; Alvarez-Perez, M.A.; Demitri, C.; Sannino, A.; Ambrosio, L. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J. Appl. Biomater. Funct. Mater., 2012, 10(3), 302-307.
[http://dx.doi.org/10.5301/JABFM.2012.10366] [PMID: 23242882]
[110]
Zhuo, F.; Liu, X.; Gao, Q.; Wang, Y.; Hu, K.; Cai, Q. Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering. Mater. Sci. Eng. C, 2017, 81, 1-7.
[http://dx.doi.org/10.1016/j.msec.2017.07.029] [PMID: 28887951]
[111]
Lou, Y.R.; Kanninen, L.; Kuisma, T.; Niklander, J.; Noon, L.A.; Burks, D.; Urtti, A.; Yliperttula, M. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev., 2014, 23(4), 380-392.
[http://dx.doi.org/10.1089/scd.2013.0314] [PMID: 24188453]
[112]
Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20(1), 45-53.
[http://dx.doi.org/10.1016/S0142-9612(98)00107-0] [PMID: 9916770]
[113]
Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci., 2006, 6(8), 623-633.
[http://dx.doi.org/10.1002/mabi.200600069] [PMID: 16881042]
[114]
Hong, S.; Sycks, D.; Chan, H.F.; Lin, S.; Lopez, G.P.; Guilak, F.; Leong, K.W.; Zhao, X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater., 2015, 27(27), 4035-4040.
[http://dx.doi.org/10.1002/adma.201501099] [PMID: 26033288]
[115]
Hunt, N.C.; Hallam, D.; Karimi, A.; Mellough, C.B.; Chen, J.; Steel, D.H.W.; Lako, M. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater., 2017, 49, 329-343.
[http://dx.doi.org/10.1016/j.actbio.2016.11.016] [PMID: 27826002]
[116]
Hsiong, S.X.; Huebsch, N.; Fischbach, C.; Kong, H.J.; Mooney, D.J. Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules, 2008, 9(7), 1843-1851.
[http://dx.doi.org/10.1021/bm8000606] [PMID: 18540674]
[117]
Andersen, T.; Auk-Emblem, P.; Dornish, M. 3d cell culture in alginate hydrogels. Microarrays (Basel), 2015, 4(2), 133-161.
[http://dx.doi.org/10.3390/microarrays4020133] [PMID: 27600217]
[118]
Grimmer, J.F.; Gunnlaugsson, C.B.; Alsberg, E.; Murphy, H.S.; Kong, H.J.; Mooney, D.J.; Weatherly, R.A. Tracheal reconstruction using tissue-engineered cartilage. Arch. Otolaryngol. Head Neck Surg., 2004, 130(10), 1191-1196.
[http://dx.doi.org/10.1001/archotol.130.10.1191] [PMID: 15492167]
[119]
Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Franceschi, R.T.; Mooney, D.J. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res., 2001, 80(11), 2025-2029.
[http://dx.doi.org/10.1177/00220345010800111501] [PMID: 11759015]
[120]
Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Rowley, J.A.; Mooney, D.J. Engineering growing tissues. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12025-12030.
[http://dx.doi.org/10.1073/pnas.192291499] [PMID: 12218178]
[121]
Normand, V.; Lootens, D.L.; Amici, E.; Plucknett, K.P.; Aymard, P. New insight into agarose gel mechanical properties. Biomacromolecules, 2000, 1(4), 730-738.
[http://dx.doi.org/10.1021/bm005583j] [PMID: 11710204]
[122]
Sánchez-Salcedo, S.; Nieto, A.; Vallet-Regí, M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem. Eng. J., 2008, 137(1), 62-71.
[http://dx.doi.org/10.1016/j.cej.2007.09.011]
[123]
Yamada, Y.; Hozumi, K.; Aso, A.; Hotta, A.; Toma, K.; Katagiri, F.; Kikkawa, Y.; Nomizu, M. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering. Biomaterials, 2012, 33(16), 4118-4125.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.044] [PMID: 22410171]
[124]
Campos, F.; Bonhome-Espinosa, A.B.; García-Martínez, L.; Durán, J.D.; López-López, M.T.; Alaminos, M.; Sánchez-Quevedo, M.C.; Carriel, V. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications. Biomed. Mater., 2016, 11(5), 055004
[http://dx.doi.org/10.1088/1748-6041/11/5/055004] [PMID: 27680194]
[125]
Huang, C.Y.; Reuben, P.M.; D’Ippolito, G.; Schiller, P.C.; Cheung, H.S. Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2004, 278(1), 428-436.
[http://dx.doi.org/10.1002/ar.a.20010] [PMID: 15103737]
[126]
Li, T.; Song, X.; Weng, C.; Wang, X.; Sun, L.; Gong, X.; Yang, L.; Chen, C. Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering. Applied Materials Today, 2018, 10, 173-183.
[http://dx.doi.org/10.1016/j.apmt.2017.12.002]
[127]
Varghese, S.; Hwang, N.S.; Canver, A.C.; Theprungsirikul, P.; Lin, D.W.; Elisseeff, J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol., 2008, 27(1), 12-21.
[http://dx.doi.org/10.1016/j.matbio.2007.07.002] [PMID: 17689060]
[128]
Sechriest, V.F.; Miao, Y.J.; Niyibizi, C.; Westerhausen-Larson, A.; Matthew, H.W.; Evans, C.H.; Fu, F.H.; Suh, J.K. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J. Biomed. Mater. Res., 2000, 49(4), 534-541.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000315)49:4<534:AID-JBM12>3.0.CO;2-#] [PMID: 10602087]
[129]
Park, Y.J.; Lee, Y.M.; Lee, J.Y.; Seol, Y.J.; Chung, C.P.; Lee, S.J. Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. J. Control. Release, 2000, 67(2-3), 385-394.
[http://dx.doi.org/10.1016/S0168-3659(00)00232-7] [PMID: 10825569]
[130]
Li, Y.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 2012, 41(6), 2193-2221.
[http://dx.doi.org/10.1039/C1CS15203C] [PMID: 22116474]
[131]
Domingues, R.M.A.; Silva, M.; Gershovich, P.; Betta, S.; Babo, P.; Caridade, S.G.; Mano, J.F.; Motta, A.; Reis, R.L.; Gomes, M.E. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug. Chem., 2015, 26(8), 1571-1581.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00209] [PMID: 26106949]
[132]
Jin, R.; Moreira Teixeira, L.S.; Krouwels, A.; Dijkstra, P.J.; van Blitterswijk, C.A.; Karperien, M.; Feijen, J. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta Biomater., 2010, 6(6), 1968-1977.
[http://dx.doi.org/10.1016/j.actbio.2009.12.024] [PMID: 20025999]
[133]
Kim, J.; Kim, I.S.; Cho, T.H.; Lee, K.B.; Hwang, S.J.; Tae, G.; Noh, I.; Lee, S.H.; Park, Y.; Sun, K. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials, 2007, 28(10), 1830-1837.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.050] [PMID: 17208295]
[134]
Zacchi, V.; Soranzo, C.; Cortivo, R.; Radice, M.; Brun, P.; Abatangelo, G. In vitro engineering of human skin-like tissue. J. Biomed. Mater. Res., 1998, 40(2), 187-194.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199805)40:2<187:AID-JBM3>3.0.CO;2-H] [PMID: 9549613]
[135]
Noh, I.; Kim, N.; Tran, H.N.; Lee, J.; Lee, C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater. Res., 2019, 23(1), 3.
[http://dx.doi.org/10.1186/s40824-018-0152-8] [PMID: 30774971]
[136]
Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 2018, 107, 96-108.
[http://dx.doi.org/10.1016/j.biopha.2018.07.136] [PMID: 30086465]
[137]
Perrone, M.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Laquintana, V.; Douglas, J.; Franco, M.; Liberati, E.; Russo, V.; Tongiani, S.; Denora, N.; Bernkop-Schnürch, A. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. Eur. J. Pharm. Biopharm., 2017, 119, 161-169.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.011] [PMID: 28610879]
[138]
Engelberth, S.A.; Hempel, N.; Bergkvist, M. Cationic dendritic starch as a vehicle for photodynamic therapy and siRNA co-delivery. J. Photochem. Photobiol. B, 2017, 168, 185-192.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.013] [PMID: 28237436]
[139]
Patra, P.; Seesala, V.S.; Das, D.; Panda, A.B.; Dhara, S.; Pal, S. Biopolymeric nanogel derived from functionalized glycogen towards targeted delivery of 5-fluorouracil. Polymer (Guildf.), 2018, 140, 122-130.
[http://dx.doi.org/10.1016/j.polymer.2018.02.015]
[140]
Rousseau, C.F.; Gagnieu, C.H. In vitro cytocompatibility of porcine type I atelocollagen crosslinked by oxidized glycogen. Biomaterials, 2002, 23(6), 1503-1510.
[http://dx.doi.org/10.1016/S0142-9612(01)00276-9] [PMID: 11829447]
[141]
Rabyk, M.; Hruby, M.; Vetrik, M.; Kucka, J.; Proks, V.; Parizek, M.; Konefal, R.; Krist, P.; Chvatil, D.; Bacakova, L.; Slouf, M.; Stepanek, P. Modified glycogen as construction material for functional biomimetic microfibers. Carbohydr. Polym., 2016, 152, 271-279.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.107] [PMID: 27516273]
[142]
Oliveira, J.T.; Crawford, A.; Mundy, J.M.; Moreira, A.R.; Gomes, M.E.; Hatton, P.V.; Reis, R.L. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J. Mater. Sci. Mater. Med., 2007, 18(2), 295-302.
[http://dx.doi.org/10.1007/s10856-006-0692-7] [PMID: 17323161]
[143]
Elvira, C.; Mano, J.F.; San Román, J.; Reis, R.L. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 2002, 23(9), 1955-1966.
[http://dx.doi.org/10.1016/S0142-9612(01)00322-2] [PMID: 11996036]
[144]
Gomes, M.E.; Godinho, J.S.; Tchalamov, D.; Cunha, A.M.; Reis, R.L. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater. Sci. Eng. C, 2002, 20(1), 19-26.
[http://dx.doi.org/10.1016/S0928-4931(02)00008-5]
[145]
Salgado, A.J.; Gomes, M.E.; Chou, A.; Coutinho, O.P.; Reis, R.L.; Hutmacher, D.W. Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Mater. Sci. Eng. C, 2002, 20(1), 27-33.
[http://dx.doi.org/10.1016/S0928-4931(02)00009-7]
[146]
Van Nieuwenhove, I.; Salamon, A.; Adam, S.; Dubruel, P.; Van Vlierberghe, S.; Peters, K. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Carbohydr. Polym., 2017, 161, 295-305.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.010] [PMID: 28189242]
[147]
Dong, D.; Hao, T.; Wang, C.; Zhang, Y.; Qin, Z.; Yang, B.; Fang, W.; Ye, L.; Yao, F.; Li, J. Zwitterionic starch-based hydrogel for the expansion and “stemness” maintenance of brown adipose derived stem cells. Biomaterials, 2018, 157, 149-160.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.011] [PMID: 29272722]
[148]
Kamoun, E.A. N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications. J. Adv. Res., 2016, 7(1), 69-77.
[http://dx.doi.org/10.1016/j.jare.2015.02.002] [PMID: 26843972]
[149]
Gomes, M.E.; Ribeiro, A.S.; Malafaya, P.B.; Reis, R.L.; Cunha, A.M. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials, 2001, 22(9), 883-889.
[http://dx.doi.org/10.1016/S0142-9612(00)00211-8] [PMID: 11311006]
[150]
Amrita, ; Arora, A.; Sharma, P.; Katti, D.S. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization. Carbohydr. Polym., 2015, 123, 180-189.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.038] [PMID: 25843850]
[151]
Wong, V.W.; Rustad, K.C.; Galvez, M.G.; Neofytou, E.; Glotzbach, J.P.; Januszyk, M.; Major, M.R.; Sorkin, M.; Longaker, M.T.; Rajadas, J.; Gurtner, G.C. Engineered pullulan-collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng. Part A, 2011, 17(5-6), 631-644.
[http://dx.doi.org/10.1089/ten.tea.2010.0298] [PMID: 20919949]
[152]
S, I.; A. V, B.; Velswamy, P.; T. S, U.; Perumal, P.T., Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering. RSC Advances, 2016, 6(63), 57863-57871.
[http://dx.doi.org/10.1039/C6RA03578G]
[153]
Chen, F.; Yu, S.; Liu, B.; Ni, Y.; Yu, C.; Su, Y.; Zhu, X.; Yu, X.; Zhou, Y.; Yan, D. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci. Rep., 2016, 6, 20014.
[http://dx.doi.org/10.1038/srep20014] [PMID: 26817622]
[154]
Henry, N.; Clouet, J.; Fragale, A.; Griveau, L.; Chédeville, C.; Véziers, J.; Weiss, P.; Le Bideau, J.; Guicheux, J.; Le Visage, C. Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Deliv., 2017, 24(1), 999-1010.
[http://dx.doi.org/10.1080/10717544.2017.1340362] [PMID: 28645219]
[155]
Zhang, L.; Liu, J.; Zheng, X.; Zhang, A.; Zhang, X.; Tang, K. Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications. Carbohydr. Polym., 2019, 216, 45-53.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.004] [PMID: 31047081]
[156]
Feng, W.; Feng, S.; Tang, K.; He, X.; Jing, A.; Liang, G. A novel composite of collagen-hydroxyapatite/kappa-carrageenan. J. Alloys Compd., 2017, 693, 482-489.
[http://dx.doi.org/10.1016/j.jallcom.2016.09.234]
[157]
González, J.I.; Ossa, C.P.O. Injectability Evaluation of Bone-Graft Substitutes Based on Carrageenan and Hydroxyapatite Nanorods. In: The Minerals, Metals & Materials Series; Springer: Cham, 2017, pp. 33-46.
[http://dx.doi.org/10.1007/978-3-319-52132-9_4]
[158]
Li, J.; Yang, B.; Qian, Y.; Wang, Q.; Han, R.; Hao, T.; Shu, Y.; Zhang, Y.; Yao, F.; Wang, C. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(7), 1498-1510.
[http://dx.doi.org/10.1002/jbm.b.33339] [PMID: 25449538]
[159]
Popa, E.G.; Santo, V.E.; Rodrigues, M.T.; Gomes, M.E. Magnetically-responsive hydrogels for modulation of chondrogenic commitment of human adipose-derived stem cells. Polymers (Basel), 2016, 8(2), 28.
[http://dx.doi.org/10.3390/polym8020028] [PMID: 30979122]
[160]
DeLise, A.M.; Fischer, L.; Tuan, R.S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage, 2000, 8(5), 309-334.
[http://dx.doi.org/10.1053/joca.1999.0306] [PMID: 10966838]
[161]
Thébaud, N-B.; Pierron, D.; Bareille, R.; Le Visage, C.; Letourneur, D.; Bordenave, L. Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering. J. Mater. Sci. Mater. Med., 2007, 18(2), 339-345.
[http://dx.doi.org/10.1007/s10856-006-0698-1] [PMID: 17323167]
[162]
Dash, M.; Samal, S.K.; Bartoli, C.; Morelli, A.; Smet, P.F.; Dubruel, P.; Chiellini, F. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces, 2014, 6(5), 3211-3218.
[http://dx.doi.org/10.1021/am404912c] [PMID: 24494863]
[163]
Liang, Y.; Kiick, K.L. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater., 2014, 10(4), 1588-1600.
[http://dx.doi.org/10.1016/j.actbio.2013.07.031] [PMID: 23911941]
[164]
Linhardt, R.J. Heparin-induced cancer cell death. Chem. Biol., 2004, 11(4), 420-422.
[http://dx.doi.org/10.1016/j.chembiol.2004.04.001] [PMID: 15123235]
[165]
García-Fernández, L.; Halstenberg, S.; Unger, R.E.; Aguilar, M.R.; Kirkpatrick, C.J.; San Román, J. Anti-angiogenic activity of heparin-like polysulfonated polymeric drugs in 3D human cell culture. Biomaterials, 2010, 31(31), 7863-7872.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.022] [PMID: 20674006]
[166]
Rohman, G.; Baker, S.C.; Southgate, J.; Cameron, N.R. Heparin functionalisation of porous PLGA scaffolds for controlled, biologically relevant delivery of growth factors for soft tissue engineering. J. Mater. Chem., 2009, 19(48), 9265-9273.
[http://dx.doi.org/10.1039/b911625g]
[167]
Willerth, S.M.; Rader, A.; Sakiyama-Elbert, S.E. The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Res. (Amst.), 2008, 1(3), 205-218.
[http://dx.doi.org/10.1016/j.scr.2008.05.006] [PMID: 19383401]
[168]
Johnson, P.J.; Tatara, A.; Shiu, A.; Sakiyama-Elbert, S.E. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant., 2010, 19(1), 89-101.
[http://dx.doi.org/10.3727/096368909X477273] [PMID: 19818206]
[169]
Tae, G.; Kim, Y-J.; Choi, W-I.; Kim, M.; Stayton, P.S.; Hoffman, A.S. Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules, 2007, 8(6), 1979-1986.
[http://dx.doi.org/10.1021/bm0701189] [PMID: 17511500]
[170]
Kim, M.; Shin, Y.; Hong, B.H.; Kim, Y.J.; Chun, J.S.; Tae, G.; Kim, Y.H. In vitro chondrocyte culture in a heparin-based hydrogel for cartilage regeneration. Tissue Eng. Part C Methods, 2010, 16(1), 1-10.
[http://dx.doi.org/10.1089/ten.tec.2008.0548] [PMID: 19327003]
[171]
Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017, 5, 17014.
[http://dx.doi.org/10.1038/boneres.2017.14] [PMID: 28584674]
[172]
Lee, Y.B.; Polio, S.; Lee, W.; Dai, G.; Menon, L.; Carroll, R.S.; Yoo, S.S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 2010, 223(2), 645-652.
[http://dx.doi.org/10.1016/j.expneurol.2010.02.014] [PMID: 20211178]
[173]
Nguyen, B.B.; Moriarty, R.A.; Kamalitdinov, T.; Etheridge, J.M.; Fisher, J.P. Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J. Biomed. Mater. Res. A, 2017, 105(4), 1123-1131.
[http://dx.doi.org/10.1002/jbm.a.36008] [PMID: 28093887]
[174]
Buitrago, J.O.; Patel, K.D.; El-Fiqi, A.; Lee, J-H.; Kundu, B.; Lee, H-H.; Kim, H-W. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomater., 2018, 69, 218-233.
[http://dx.doi.org/10.1016/j.actbio.2017.12.026] [PMID: 29410166]
[175]
Moraes, P.R.F.S.; Saska, S.; Barud, H.; Lima, L.R.d.; Martins, V.C.A.; Plepis, A.M.G.; Ribeiro, S.J.L.; Gaspar, A.M.M. bacterial cellulose/collagen hydrogel for wound healing. Mater. Res., 2016, 19, 106-116.
[http://dx.doi.org/10.1590/1980-5373-MR-2015-0249]
[176]
Yang, Z.; Cao, H.; Gao, S.; Yang, M.; Lyu, J.; Tang, K. effect of tendon stem cells in chitosan/β-glycerophosphate/collagen hydrogel on achilles tendon healing in a rat model. Med. Sci. Monit., 2017, 23, 4633-4643.
[http://dx.doi.org/10.12659/MSM.906747] [PMID: 28951538]
[177]
Fu, Y.; Xu, K.; Zheng, X.; Giacomin, A.J.; Mix, A.W.; Kao, W.J. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 2012, 33(1), 48-58.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.031] [PMID: 21955690]
[178]
Nikkhah, M.; Eshak, N.; Zorlutuna, P.; Annabi, N.; Castello, M.; Kim, K.; Dolatshahi-Pirouz, A.; Edalat, F.; Bae, H.; Yang, Y.; Khademhosseini, A. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33(35), 9009-9018.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.068] [PMID: 23018132]
[179]
Das, S.; Pati, F.; Choi, Y.J.; Rijal, G.; Shim, J.H.; Kim, S.W.; Ray, A.R.; Cho, D.W.; Ghosh, S. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater., 2015, 11, 233-246.
[http://dx.doi.org/10.1016/j.actbio.2014.09.023] [PMID: 25242654]
[180]
Liu, Y.; Chan-Park, M.B. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010, 31(6), 1158-1170.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.040] [PMID: 19897239]
[181]
D’Urso, E.M.; Jean-François, J.; Doillon, C.J.; Fortier, G. Poly(ethylene glycol)-serum albumin hydrogel as matrix for enzyme immobilization: biomedical applications. Artif. Cells Blood Substit. Immobil. Biotechnol., 1995, 23(5), 587-595.
[http://dx.doi.org/10.3109/10731199509117973] [PMID: 8528452]
[182]
Reece, T.B.; Maxey, T.S.; Kron, I.L. A prospectus on tissue adhesives. Am. J. Surg., 2001, 182(2)(Suppl.), 40S-44S.
[http://dx.doi.org/10.1016/S0002-9610(01)00742-5] [PMID: 11566476]
[183]
Subia, B.; Kundu, S.C. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology, 2013, 24(3), 035103
[http://dx.doi.org/10.1088/0957-4484/24/3/035103] [PMID: 23262833]
[184]
Raja, S.T.K.; Thiruselvi, T.; Mandal, A.B.; Gnanamani, A. pH and redox sensitive albumin hydrogel: A self-derived biomaterial. Sci. Rep., 2015, 5, 15977.
[http://dx.doi.org/10.1038/srep15977] [PMID: 26527296]
[185]
Schmoekel, H.G.; Weber, F.E.; Schense, J.C.; Grätz, K.W.; Schawalder, P.; Hubbell, J.A. Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol. Bioeng., 2005, 89(3), 253-262.
[http://dx.doi.org/10.1002/bit.20168] [PMID: 15619323]
[186]
Liu, J.; Tan, Y.; Zhang, H.; Zhang, Y.; Xu, P.; Chen, J.; Poh, Y.C.; Tang, K.; Wang, N.; Huang, B. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat. Mater., 2012, 11(8), 734-741.
[http://dx.doi.org/10.1038/nmat3361] [PMID: 22751180]
[187]
Schmoekel, H.; Schense, J.C.; Weber, F.E.; Grätz, K.W.; Gnägi, D.; Müller, R.; Hubbell, J.A. Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J. Orthop. Res., 2004, 22(2), 376-381.
[http://dx.doi.org/10.1016/S0736-0266(03)00188-8] [PMID: 15013099]
[188]
Janmey, P.A.; Winer, J.P.; Weisel, J.W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface, 2009, 6(30), 1-10.
[http://dx.doi.org/10.1098/rsif.2008.0327] [PMID: 18801715]
[189]
Boublik, J.; Park, H.; Radisic, M.; Tognana, E.; Chen, F.; Pei, M.; Vunjak-Novakovic, G.; Freed, L.E. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng., 2005, 11(7-8), 1122-1132.
[http://dx.doi.org/10.1089/ten.2005.11.1122] [PMID: 16144448]
[190]
Passaretti, D.; Silverman, R.P.; Huang, W.; Kirchhoff, C.H.; Ashiku, S.; Randolph, M.A.; Yaremchuk, M.J. Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng., 2001, 7(6), 805-815.
[http://dx.doi.org/10.1089/107632701753337744] [PMID: 11749736]
[191]
Rowe, S.L.; Stegemann, J.P. Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios. Biomacromolecules, 2006, 7(11), 2942-2948.
[http://dx.doi.org/10.1021/bm0602233] [PMID: 17096517]
[192]
Fini, M.; Motta, A.; Torricelli, P.; Giavaresi, G.; Nicoli Aldini, N.; Tschon, M.; Giardino, R.; Migliaresi, C. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials, 2005, 26(17), 3527-3536.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.040] [PMID: 15621243]
[193]
Mitropoulos, A.N.; Marelli, B.; Ghezzi, C.E.; Applegate, M.B.; Partlow, B.P.; Kaplan, D.L.; Omenetto, F.G. transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties. ACS Biomater. Sci. Eng., 2015, 1(10), 964-970.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00215]
[194]
Motta, A.; Migliaresi, C.; Faccioni, F.; Torricelli, P.; Fini, M.; Giardino, R. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J. Biomater. Sci. Polym. Ed., 2004, 15(7), 851-864.
[http://dx.doi.org/10.1163/1568562041271075] [PMID: 15318796]
[195]
Aoki, H.; Tomita, N.; Morita, Y.; Hattori, K.; Harada, Y.; Sonobe, M.; Wakitani, S.; Tamada, Y. Culture of chondrocytes in fibroin-hydrogel sponge. Biomed. Mater. Eng., 2003, 13(4), 309-316.
[PMID: 14646046]
[196]
Cavo, M.; Caria, M.; Pulsoni, I.; Beltrame, F.; Fato, M.; Scaglione, S. A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo”. Sci. Rep., 2018, 8(1), 5333.
[http://dx.doi.org/10.1038/s41598-018-23250-4] [PMID: 29593247]
[197]
Miao, Z.; Lu, Z.; Wu, H.; Liu, H.; Li, M.; Lei, D.; Zheng, L.; Zhao, J. Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: A comparative study. J. Cell. Biochem., 2018, 119(10), 7924-7933.
[http://dx.doi.org/10.1002/jcb.26411] [PMID: 28941304]
[198]
Maxian, S.H.; Di Stefano, T.; Melican, M.C.; Tiku, M.L.; Zawadsky, J.P. Bone cell behavior on Matrigel-coated Ca/P coatings of varying crystallinities. J. Biomed. Mater. Res., 1998, 40(2), 171-179.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199805)40:2<171:AID-JBM1>3.0.CO;2-I] [PMID: 9549611]
[199]
Ramos-Hryb, A.B.; Da-Costa, M.C.; Trentin, A.G.; Calloni, G.W. Matrigel supports neural, melanocytic and chondrogenic differentiation of trunk neural crest cells. Int. J. Dev. Biol., 2013, 57(11-12), 885-890.
[http://dx.doi.org/10.1387/ijdb.130206gw] [PMID: 24623080]
[200]
Chien, K.B.; Chung, E.J.; Shah, R.N. Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility. J. Biomater. Appl., 2014, 28(7), 1085-1096.
[http://dx.doi.org/10.1177/0885328213497413] [PMID: 23900448]
[201]
Demir, M.; Ramos-Rivera, L.; Silva, R.; Nazhat, S.N.; Boccaccini, A.R. Zein-based composites in biomedical applications. J. Biomed. Mater. Res. A, 2017, 105(6), 1656-1665.
[http://dx.doi.org/10.1002/jbm.a.36040] [PMID: 28205372]
[202]
Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev., 2001, 53(1), 5-21.
[http://dx.doi.org/10.1016/S0169-409X(01)00218-6] [PMID: 11733115]
[203]
Chen, W.; Tong, Y.W. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater., 2012, 8(2), 540-548.
[http://dx.doi.org/10.1016/j.actbio.2011.09.026] [PMID: 22005329]
[204]
Sultana, N.; Khan, T.H. In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. J. Nanomater., 2012, 2012, 12.
[http://dx.doi.org/10.1155/2012/190950]
[205]
Nebe, B.; Forster, C.; Pommerenke, H.; Fulda, G.; Behrend, D.; Bernewski, U.; Schmitz, K-P.; Rychly, J. Structural alterations of adhesion mediating components in cells cultured on poly-β-hydroxy butyric acid. Biomaterials, 2001, 22(17), 2425-2434.
[http://dx.doi.org/10.1016/S0142-9612(00)00430-0] [PMID: 11511040]
[206]
Chang, H.M.; Wang, Z.H.; Luo, H.N.; Xu, M.; Ren, X.Y.; Zheng, G.X.; Wu, B.J.; Zhang, X.H.; Lu, X.Y.; Chen, F.; Jing, X.H.; Wang, L. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz. J. Med. Biol. Res., 2014, 47(7), 533-539.
[http://dx.doi.org/10.1590/1414-431X20143930] [PMID: 25003631]
[207]
Tamm, I.; Heinämäki, J.; Laidmäe, I.; Rammo, L.; Paaver, U.; Ingebrigtsen, S.G.; Škalko-Basnet, N.; Halenius, A.; Yliruusi, J.; Pitkänen, P.; Alakurtti, S.; Kogermann, K. Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy. J. Pharm. Sci., 2016, 105(3), 1239-1247.
[http://dx.doi.org/10.1016/j.xphs.2015.12.025] [PMID: 26886306]
[208]
Jansson, P-E.; Lindberg, B.; Sandford, P.A. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res., 1983, 124(1), 135-139.
[http://dx.doi.org/10.1016/0008-6215(83)88361-X]
[209]
Carlfors, J.; Edsman, K.; Petersson, R.; Jörnving, K. Rheological evaluation of Gelrite in situ gels for ophthalmic use. Eur. J. Pharm. Sci., 1998, 6(2), 113-119.
[http://dx.doi.org/10.1016/S0928-0987(97)00074-2] [PMID: 9795027]
[210]
Kani, K.; Horinaka, J-I.; Maeda, S. Effects of monovalent cation and anion species on the conformation of gellan chains in aqueous systems. Carbohydr. Polym., 2005, 61(2), 168-173.
[http://dx.doi.org/10.1016/j.carbpol.2005.04.011]
[211]
Matsukawa, S.; Huang, Z.; Watanabe, T. Structural change of polymer chains of gellan monitored by circular dichroism. In: Physical Chemistry and Industrial Application of Gellan Gum. Progress in Colloid and Polymer Science; Nishinari, K., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1999, Vol. 114, pp. 92-97.
[http://dx.doi.org/10.1007/3-540-48349-7_13]
[212]
Moxon, S.R.; Smith, A.M. Controlling the rheology of gellan gum hydrogels in cell culture conditions. Int. J. Biol. Macromol., 2016, 84, 79-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.007] [PMID: 26683878]
[213]
Koivisto, J.T.; Joki, T.; Parraga, J.E.; Pääkkönen, R.; Ylä-Outinen, L.; Salonen, L.; Jönkkäri, I.; Peltola, M.; Ihalainen, T.O.; Narkilahti, S.; Kellomäki, M. Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomed. Mater., 2017, 12(2), 025014
[http://dx.doi.org/10.1088/1748-605X/aa62b0] [PMID: 28233757]
[214]
Ahmed, R.Z.; Siddiqui, K.; Arman, M.; Ahmed, N. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr. Polym., 2012, 90(1), 441-446.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.063] [PMID: 24751063]
[215]
Stenekes, R.J.H.; Talsma, H.; Hennink, W.E. Formation of dextran hydrogels by crystallization. Biomaterials, 2001, 22(13), 1891-1898.
[http://dx.doi.org/10.1016/S0142-9612(00)00375-6] [PMID: 11396895]
[216]
Jin, R.; Moreira Teixeira, L.S.; Dijkstra, P.J.; van Blitterswijk, C.A.; Karperien, M.; Feijen, J. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J. Control. Release, 2011, 152(1), 186-195.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.031] [PMID: 21291927]
[217]
Hennink, W.E.; Talsma, H.; Borchert, J.C.H.; De Smedt, S.C.; Demeester, J. Controlled release of proteins from dextran hydrogels. J. Control. Release, 1996, 39(1), 47-55.
[http://dx.doi.org/10.1016/0168-3659(95)00132-8]
[218]
Bueno, V.B.; Bentini, R.; Catalani, L.H.; Petri, D.F.S. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym., 2013, 92(2), 1091-1099.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.062] [PMID: 23399133]
[219]
Kumar, A.; Rao, K.M.; Han, S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr. Polym., 2018, 180, 128-144.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.009] [PMID: 29103488]
[220]
Liu, Z.; Yao, P. Injectable shear-thinning xanthan gum hydrogel reinforced by mussel-inspired secondary crosslinking. RSC Advances, 2015, 5(125), 103292-103301.
[http://dx.doi.org/10.1039/C5RA17246B]
[221]
Sehgal, R.R.; Roohani-Esfahani, S.I.; Zreiqat, H.; Banerjee, R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J. Tissue Eng. Regen. Med., 2017, 11(4), 1195-1211.
[http://dx.doi.org/10.1002/term.2023] [PMID: 25846217]
[222]
Baker, E.A.; Martin, J.T. Cutin of plant cuticles. Nature, 1963, 199, 1268.
[http://dx.doi.org/10.1038/1991268a0]
[223]
Petit, J.; Bres, C.; Mauxion, J.P.; Bakan, B.; Rothan, C. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies. J. Exp. Bot., 2017, 68(19), 5369-5387.
[PMID: 29036305]
[224]
Tako, M.; Kiriaki, M. Rheological properties of welan gum in aqueous media. Agric. Biol. Chem., 1990, 54(12), 3079-3084.
[http://dx.doi.org/10.1080/00021369.1990.10870465]
[225]
Nagahara, S.; Matsuda, T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Netw., 1996, 4(2), 111-127.
[http://dx.doi.org/10.1016/0966-7822(96)00001-9]
[226]
Zhang, F.; Yan, H. DNA self-assembly scaled up. Nature, 2017, 552(7683), 34-35.
[http://dx.doi.org/10.1038/d41586-017-07690-y]
[227]
Um, S.H.; Lee, J.B.; Park, N.; Kwon, S.Y.; Umbach, C.C.; Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater., 2006, 5(10), 797-801.
[http://dx.doi.org/10.1038/nmat1741] [PMID: 16998469]
[228]
Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal. Chem., 2013, 85(22), 11077-11082.
[http://dx.doi.org/10.1021/ac4027725] [PMID: 24138007]
[229]
Li, C.; Faulkner-Jones, A.; Dun, A.R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R.R. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 3957-3961.
[http://dx.doi.org/10.1002/anie.201411383] [PMID: 25656851]
[230]
Wu, Y.; Li, C.; Boldt, F.; Wang, Y.; Kuan, S.L.; Tran, T.T.; Mikhalevich, V.; Förtsch, C.; Barth, H.; Yang, Z.; Liu, D.; Weil, T. Programmable protein-DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem. Commun. (Camb.), 2014, 50(93), 14620-14622.
[http://dx.doi.org/10.1039/C4CC07144A] [PMID: 25311614]
[231]
Wilkinson, K.A.; Vasa, S.M.; Deigan, K.E.; Mortimer, S.A.; Giddings, M.C.; Weeks, K.M. Influence of nucleotide identity on ribose 2′-hydroxyl reactivity in RNA. RNA, 2009, 15(7), 1314-1321.
[http://dx.doi.org/10.1261/rna.1536209] [PMID: 19458034]
[232]
Elangovan, S.; Khorsand, B.; Do, A.V.; Hong, L.; Dewerth, A.; Kormann, M.; Ross, R.D.; Sumner, D.R.; Allamargot, C.; Salem, A.K. Chemically modified RNA activated matrices enhance bone regeneration. J. Control. Release, 2015, 218, 22.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.050] [PMID: 26415855]
[233]
Hong, C.A.; Kim, J.S.; Lee, S.H.; Kong, W.H.; Park, T.G.; Mok, H.; Nam, Y.S. Reductively dissociable siRNA-polymer hybrid nanogels for efficient targeted gene silencing. Adv. Funct. Mater., 2013, 23(3), 316-322.
[http://dx.doi.org/10.1002/adfm.201200780]
[234]
Conde, J.; Oliva, N.; Atilano, M.; Song, H.S.; Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater., 2016, 15(3), 353-363.
[http://dx.doi.org/10.1038/nmat4497] [PMID: 26641016]
[235]
Huang, H.; Ding, Y.; Sun, X.S.; Nguyen, T.A. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells. PLoS One, 2013, 8(3), e59482
[http://dx.doi.org/10.1371/journal.pone.0059482] [PMID: 23527204]
[236]
Ruan, J.L.; Tulloch, N.L.; Muskheli, V.; Genova, E.E.; Mariner, P.D.; Anseth, K.S.; Murry, C.E. An improved cryosection method for polyethylene glycol hydrogels used in tissue engineering. Tissue Eng. Part C Methods, 2013, 19(10), 794-801.
[http://dx.doi.org/10.1089/ten.tec.2012.0460] [PMID: 23448137]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy