Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

In Vitro Cytotoxicity Evaluation of Oxytetracycline Loaded Cockle Shell Derived Calcium Carbonate Aragonite Nanoparticles

Author(s): Sherifat B. Idris, Abdul K. Arifah*, Faez F.A. Jesse, Siti Z. Ramanoon, Muhammad A. Basit and Mohammad Z.A.B. Zakaria

Volume 11, Issue 2, 2021

Published on: 20 April, 2020

Page: [237 - 242] Pages: 6

DOI: 10.2174/2210681210999200420083144

Price: $65

Abstract

Background: Evaluation of the toxic effects of nanoparticle-drug in vitro is an important step in the design of new pharmaceutical formulations. Rapid results, reduced cost and easy handling make cell culture models first line in initial toxicological assessment of nano-drug preparations.

Objective: To evaluate the in vitro cytotoxicity of oxytetracycline loaded calcium carbonate aragonite nanoparticle in normal mouse fibroblast (NIH3T3) cell line.

Methods: NIH3T3 cells were exposed to varying concentrations (6.25-100 μg/mL) of calcium carbonate aragonite nanoparticle (CS-CaCO3NP), oxytetracycline loaded calcium carbonate aragonite nanoparticle (OTC-CS-CaCO3NP) and oxytetracycline (OTC) in 96 well plates for 24, 48 and 72 hours. Cell viability was determined by MTT and trypan blue assays.

Results: Both assays showed that CS-CaCO3NP and OTC-CS-CaCO3NP had higher cell viability values compared to OTC.

Conclusion: Encapsulating OTC into CS-CaCO3NP reduced its cytotoxicity to NIH3T3 cells using both MTT and trypan blue assay.

Keywords: Normal mouse fibroblast, cytotoxicity, MTT, trypan blue assay, oxytetracycline, nanomedicine.

Graphical Abstract

[1]
Rycroft, T.; Trump, B.; Poinsatte-Jones, K.; Linkov, I. Nanotoxicology and nanomedicine: Making development decisions in an evolving governance environment. J. Nanopart. Res., 2018, 20, 1-9.
[http://dx.doi.org/10.1007/s11051-018-4160-3]
[2]
Isa, T.; Zakaria, Z.A.B.; Rukayadi, Y.; Mohd Hezmee, M.N.; Jaji, A.Z.; Imam, M.U.; Hammadi, N.I.; Mahmood, S.K. Antibacterial activity of ciprofloxacin-encapsulated cockle shells calcium carbonate (aragonite) nanoparticles and its biocompatibility in macrophage J774A.1. Int. J. Mol. Sci., 2016, 17(5), 1-17.
[http://dx.doi.org/10.3390/ijms17050713] [PMID: 27213349]
[3]
Fu, W.; Hezmee, M.; Noor, M.; Yusof, L.M.; Ibrahim, A.T.; Keong, Y.S.; Jaji, A.Z.; Zakaria, M.Z.A.B. In vitro evaluation of a novel pH sensitive drug delivery system based cockle shell-derived aragonite nanoparticles against osteosarcoma. J. Exp. Nanosci., 2017, 12, 161-187.
[http://dx.doi.org/10.1080/17458080.2017.1287965]
[4]
Hammadi, N.I.; Abba, Y.; Hezmee, M.N.M.; Razak, I.S.A.; Jaji, A.Z.; Isa, T.; Mahmood, S.K.; Zakaria, M.Z.A.B. Formulation of a sustained release docetaxel loaded cockle shell-derived calcium carbonate nanoparticles against breast cancer. Pharm. Res., 2017, 34(6), 1193-1203.
[http://dx.doi.org/10.1007/s11095-017-2135-1] [PMID: 28382563]
[5]
Horie, M.; Nishio, K.; Kato, H.; Endoh, S.; Fujita, K.; Nakamura, A.; Kinugasa, S.; Hagihara, Y.; Yoshida, Y.; Iwahashi, H. Evaluation of cellular influences caused by calcium carbonate nanoparticles. Chem. Biol. Interact., 2014, 210, 64-76.
[http://dx.doi.org/10.1016/j.cbi.2013.12.013] [PMID: 24412303]
[6]
Love, S.A.; Maurer-Jones, M.A.; Thompson, J.W.; Lin, Y.S.; Haynes, C.L. Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2012, 5, 181-205.
[http://dx.doi.org/10.1146/annurev-anchem-062011-143134] [PMID: 22524221]
[7]
Posimo, J.M.; Unnithan, A.S.; Gleixner, A.M.; Choi, H.J.; Jiang, Y.; Pulugulla, S.H.; Leak, R.K. Viability assays for cells in culture. J. Vis. Exp., 2014, 2(83), e50645.
[PMID: 24472892]
[8]
Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem., 2012, 114(8), 785-796.
[http://dx.doi.org/10.1016/j.acthis.2012.01.006] [PMID: 22341561]
[9]
Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem., 2018, 120(3), 159-167.
[http://dx.doi.org/10.1016/j.acthis.2018.02.005] [PMID: 29496266]
[10]
Avelar-Freitas, B.A.; Almeida, V.G.; Pinto, M.C.X.; Mourão, F.A.G.; Massensini, A.R.; Martins-Filho, O.A.; Rocha-Vieira, E.; Brito-Melo, G.E. Trypan blue exclusion assay by flow cytometry. Braz. J. Med. Biol. Res., 2014, 47(4), 307-315.
[http://dx.doi.org/10.1590/1414-431X20143437] [PMID: 24652322]
[11]
Braun, K.; Stürzel, C.M.; Biskupek, J.; Kaiser, U.; Kirchhoff, F.; Lindén, M. Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicol. In Vitro, 2018, 52(52), 214-221.
[http://dx.doi.org/10.1016/j.tiv.2018.06.019] [PMID: 29940343]
[12]
Chi, Z.; Liu, R.; You, H.; Ma, S.; Cui, H.; Zhang, Q. Probing the in vitro cytotoxicity of the veterinary drug oxytetracycline. PLoS One, 2014, 9(7), e102334.
[http://dx.doi.org/10.1371/journal.pone.0102334] [PMID: 25019386]
[13]
Mukherjee, R.; Dutta, D.; Patra, M.; Chatterjee, B.; Basu, T. Nanonized tetracycline cures deadly diarrheal disease ‘ shigellosis ’ in mice, caused by multidrug-resistant Shigella flexneri 2a bacterial infection. Nanomedicine. NBM, 2019, 2019(18), 402-413.
[http://dx.doi.org/10.1016/j.nano.2018.11.004]
[14]
Min, H.K.; Jang, E.; Jae, H.; Hwang, Y.; Ryu, J.; Moon, J.; Cheon, S. pH-Responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics. J. Ind. Eng. Chem., 2019, 71, 210-219.
[http://dx.doi.org/10.1016/j.jiec.2018.11.027]
[15]
Idris, S.B.; Arifah, A.K.; Jesse, F.F.A.; Ramanoon, S.Z.; Basit, M.A.; Zakaria, Z.A.; Zakaria, Z.A.B. Synthesis, characterization, and in vitro release of oxytetracycline loaded in pH-responsive CaCO3 nanoparticles. J. Appl. Pharm. Sci., 2019, 9, 1-9.
[16]
Jaji, A.Z.; Zakaria, Z.A.B.; Mahmud, R.; Loqman, M.Y.; Hezmee, M.N.M.; Abba, Y.; Isa, T.; Mahmood, S.K. Safety assessments of subcutaneous doses of aragonite calcium carbonate nanocrystals in rats. J. Nanopart. Res., 2017, 19(5), 175.
[http://dx.doi.org/10.1007/s11051-017-3849-z] [PMID: 28553160]
[17]
Saidykhan, L.; Abu Bakar, M.Z.B.; Rukayadi, Y.; Kura, A.U.; Latifah, S.Y. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int. J. Nanomed., 2016, 11, 661-673.
[http://dx.doi.org/10.2147/IJN.S95885] [PMID: 26929622]
[18]
Guerra, W.; Silva-caldeira, P.P.; Terenzi, H.; Pereira-maia, E.C. Impact of metal coordination on the antibiotic and non-antibiotic activities of tetracycline-based drugs. Coord. Chem. Rev., 2016, 328, 188-199.
[http://dx.doi.org/10.1016/j.ccr.2016.04.009]
[19]
Kalghatgi, S.; Spina, C.S.; Costello, J.C.; Liesa, M.; Morones-Ramirez, J.R.; Slomovic, S.; Molina, A.; Shirihai, O.S.; Collins, J.J. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med., 2013, 5(192), 192ra85.
[http://dx.doi.org/10.1126/scitranslmed.3006055] [PMID: 23825301]
[20]
Song, M.; Yoon, T.S.; Kim, S.Y.; Kim, E. Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell. Restor. Dent. Endod, 2014, 39(1), 39-44.
[http://dx.doi.org/10.5395/rde.2014.39.1.39] [PMID: 24516828]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy