Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination

Author(s): Javad Tavakoli, Jing Wang, Clarence Chuah and Youhong Tang*

Volume 27, Issue 16, 2020

Page: [2704 - 2733] Pages: 30

DOI: 10.2174/0929867326666190816125144

Price: $65

Abstract

Natural hydrogels, due to their unique biological properties, have been used extensively for various medical and clinical examinations that are performed to investigate the signs of disease. Recently, complex-crosslinking strategies improved the mechanical properties and advanced approaches have resulted in the introduction of naturally derived hydrogels that exhibit high biocompatibility, with shape memory and self-healing characteristics. Moreover, the creation of self-assembled natural hydrogels under physiological conditions has provided the opportunity to engineer fine-tuning properties. To highlight recent studies of natural-based hydrogels and their applications for medical investigation, a critical review was undertaken using published papers from the Science Direct database. This review presents different natural-based hydrogels (natural, natural-synthetic hybrid and complex-crosslinked hydrogels), their historical evolution, and recent studies of medical examination applications. The application of natural-based hydrogels in the design and fabrication of biosensors, catheters and medical electrodes, detection of cancer, targeted delivery of imaging compounds (bioimaging) and fabrication of fluorescent bioprobes is summarised here. Without doubt, in future, more useful and practical concepts will be derived to identify natural-based hydrogels for a wide range of clinical examination applications.

Keywords: Natural-based, medical examination, hydrogels, protein, peptide, polysaccharide, complex crosslinking, biosensing, cancer detection.

[1]
van Bemmelen, J.M. Das Hydrogel und das krystallinische Hydrat des Kupferoxyds. Zeitschrift für anorganische Chemie, 1894, 5(1), 466-483.
[http://dx.doi.org/10.1002/zaac.18940050156]
[2]
Chirani, N.; Gritsch, L.; Motta, F.L.; Fare, S. History and applications of hydrogels. J. Biomed. Sci., 2015, 4(2)
[http://dx.doi.org/10.4172/2254-609X.100013]
[3]
Wichterle, O. LÍM, D. Hydrophilic gels for biological use. Nature, 1960, 185, 117.
[http://dx.doi.org/10.1038/185117a0]
[4]
Lee, S.C.; Kwon, I.K.; Park, K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv. Drug Deliv. Rev., 2013, 65(1), 17-20.
[http://dx.doi.org/10.1016/j.addr.2012.07.015] [PMID: 22906864]
[5]
Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[6]
Qiu, Y.; Park, K. Environmentally-sensitive polymer hydrogels. Adv. Drug Deliv. Rev., 2001, 53, 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[7]
Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C, 2017, 79, 958-971.
[http://dx.doi.org/10.1016/j.msec.2017.05.096] [PMID: 28629101]
[8]
Annabi, N.; Tamayol, A.; Uquillas, J.A.; Akbari, M.; Bertassoni, L.E.; Cha, C.; Camci-Unal, G.; Dokmeci, M.R.; Peppas, N.A.; Khademhosseini, A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 2014, 26(1), 85-123.
[http://dx.doi.org/10.1002/adma.201303233] [PMID: 24741694]
[9]
Gaharwar, A.K.; Peppas, N.A.; Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng., 2014, 111(3), 441-453.
[http://dx.doi.org/10.1002/bit.25160] [PMID: 24264728]
[10]
Klouda, L. Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur. J. Pharm. Biopharm., 2015, 97(Pt B), 338-349.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.017] [PMID: 26614556]
[11]
Esmaiel, J.; Javad, T.; Alireza, S.S. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field. Smart Mater. Struct., 2007, 16(5), 1614.
[http://dx.doi.org/10.1088/0964-1726/16/5/015]
[12]
Balakrishnan, B.; Jayakrishnan, A. Injectable hydrogels for biomedical applications in: Injectable hydrogels for regenerative engineering; Nair, L.S., Ed.; World Scientific, 2016, pp. 33-96.
[http://dx.doi.org/10.1142/9781783267477_0002]
[13]
Nguyen, Q.V.; Huynh, D.P.; Park, J.H.; Lee, D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur. Polym. J., 2015, 72, 602-619.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.016]
[14]
Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017, 5, 17014.
[http://dx.doi.org/10.1038/boneres.2017.14] [PMID: 28584674]
[15]
Tavakoli, J.; Tang, Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers (Basel), 2017, 9(8), 364.
[http://dx.doi.org/10.3390/polym9080364] [PMID: 30971040]
[16]
Dehbari, N.; Tavakoli, J.; Khatrao, S.S.; Tang, Y. In situ polymerized hyperbranched polymer rein-forced poly (acrylic acid) hydrogels. Mater. Chem. Front., 2017, 1(10), 1995-2004.
[http://dx.doi.org/10.1039/C7QM00028F]
[17]
Xu, X.; Li, H.; Zhang, Q.; Hu, H.; Zhao, Z.; Li, J.; Li, J.; Qiao, Y.; Gogotsi, Y. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano, 2015, 9(4), 3969-3977.
[http://dx.doi.org/10.1021/nn507426u] [PMID: 25792130]
[18]
Taylor, D.L.; In Het Panhuis, M. Self-Healing Hydrogels. Adv. Mater., 2016, 28(41), 9060-9093.
[http://dx.doi.org/10.1002/adma.201601613] [PMID: 27488822]
[19]
Kovačič, S.; Silverstein, M.S. Superabsorbent, high porosity, PAMPS-based hydrogels through emulsion templating. Macromol. Rapid Commun., 2016, 37(22), 1814-1819.
[http://dx.doi.org/10.1002/marc.201600249] [PMID: 27717046]
[20]
Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Md Akil, H. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C, 2015, 57, 414-433.
[http://dx.doi.org/10.1016/j.msec.2015.07.053] [PMID: 26354282]
[21]
Thakur, V.K.; Thakur, M.K. Recent advances in green hydrogels from lignin: a review. Int. J. Biol. Macromol., 2015, 72, 834-847.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.044] [PMID: 25304747]
[22]
Worthington, P.; Pochan, D.J.; Langhans, S.A. Peptide hydrogels-versatile matrices for 3D cell culture in cancer medicine. Front. Oncol., 2015, 5, 92.
[http://dx.doi.org/10.3389/fonc.2015.00092] [PMID: 25941663]
[23]
Singh, N.; Kumar, M.; Miravet, J.F.; Ulijn, R.V.; Escuder, B. Peptide-based molecular hydrogels as supramolecular protein mimics. Chemistry, 2017, 23(5), 981-993.
[http://dx.doi.org/10.1002/chem.201602624] [PMID: 27530095]
[24]
Xing, R.; Liu, K.; Jiao, T.; Zhang, N.; Ma, K.; Zhang, R.; Zou, Q.; Ma, G.; Yan, X. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater., 2016, 28(19), 3669-3676.
[http://dx.doi.org/10.1002/adma.201600284] [PMID: 26991248]
[25]
Sivashanmugam, A.; Kumar, R.A.; Priya, M.V.; Nair, S.V.; Jayakumar, R. An overview of injectable polymeric hydrogels for tissue engineering. Eur. Polym. J., 2015, 72, 543-565.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.05.014]
[26]
Feng, W.; Zhou, W.; Dai, Z.; Yasin, A.; Yang, H. Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(11), 1924-1931.
[http://dx.doi.org/10.1039/C5TB02737C]
[27]
Roy, A.; Maity, P.P.; Dhara, S.; Pal, S. Biocompatible, stimuli-responsive hydrogel of chemically crosslinked β-cyclodextrin as amoxicillin carrier. J. Appl. Polym. Sci., 2018, 135(10)
[http://dx.doi.org/10.1002/app.45939]
[28]
Frederix, P.W.; Scott, G.G.; Abul-Haija, Y.M.; Kalafatovic, D.; Pappas, C.G.; Javid, N.; Hunt, N.T.; Ulijn, R.V.; Tuttle, T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem., 2015, 7(1), 30-37.
[http://dx.doi.org/10.1038/nchem.2122] [PMID: 25515887]
[29]
Shao, Y.; Jia, H.; Cao, T.; Liu, D. Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res., 2017, 50(4), 659-668.
[http://dx.doi.org/10.1021/acs.accounts.6b00524] [PMID: 28299927]
[30]
Thambi, T.; Phan, V.H.; Lee, D.S. Stimuli-sensitive injectable hydrogels based on polysaccharides and their biomedical applications. Macromol. Rapid Commun., 2016, 37(23), 1881-1896.
[http://dx.doi.org/10.1002/marc.201600371] [PMID: 27753168]
[31]
Sharma, S.; Parmar, A.; Mehta, S. Hydrogels: from simple networks to smart materials-advances and applications in: Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; Elsevier, 2018, pp. 627-672.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00016-1]
[32]
Nakama, T.; Ooya, T.; Yui, N. Temperature-and pH-controlled hydrogelation of poly (ethylene glycol)-grafted hyaluronic acid by inclusion complexation with α-cyclodextrin. Polym. J., 2004, 36(4), 338.
[http://dx.doi.org/10.1295/polymj.36.338]
[33]
Rodell, C.B.; Kaminski, A.L.; Burdick, J.A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules, 2013, 14(11), 4125-4134.
[http://dx.doi.org/10.1021/bm401280z] [PMID: 24070551]
[34]
Koopmans, C.; Ritter, H. Formation of physical hydrogels via host- guest interactions of α-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules, 2008, 41(20), 7418-7422.
[http://dx.doi.org/10.1021/ma801202f]
[35]
Chen, G.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev., 2011, 40(5), 2254-2266.
[http://dx.doi.org/10.1039/c0cs00153h] [PMID: 21344115]
[36]
Huh, K.M.; Cho, Y.W.; Chung, H.; Kwon, I.C.; Jeong, S.Y.; Ooya, T.; Lee, W.K.; Sasaki, S.; Yui, N. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Macromol. Biosci., 2004, 4(2), 92-99.
[http://dx.doi.org/10.1002/mabi.200300037] [PMID: 15468199]
[37]
Fichman, G.; Gazit, E. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater., 2014, 10(4), 1671-1682.
[http://dx.doi.org/10.1016/j.actbio.2013.08.013] [PMID: 23958781]
[38]
Sant, S.; Coutinho, D.F.; Gaharwar, A.K.; Neves, N.M.; Reis, R.L.; Gomes, M.E.; Khademhosseini, A. Self-assembled hydrogel fiber bundles from oppositely charged polyelectrolytes mimic micro-/nanoscale hierarchy of collagen. Adv. Funct. Mater., 2017, 27(36), 1606273
[http://dx.doi.org/10.1002/adfm.201606273] [PMID: 31885528]
[39]
Gyles, D.A.; Castro, L.D.; Silva, J.O.C. Jr.; Ribeiro-Costa, R.M. A review of the designs and promi-nent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J., 2017, 88, 373-392.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.027]
[40]
Kirschning, A.; Dibbert, N.; Dräger, G. Chemical functionalization of polysaccharides-towards bio-compatible hydrogels for biomedical applications. Chemistry, 2018, 24(6), 1231-1240.
[http://dx.doi.org/10.1002/chem.201701906] [PMID: 28804933]
[41]
Marin, L.; Ailincai, D.; Morariu, S.; Tartau-Mititelu, L. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry. Carbohydr. Polym., 2017, 170, 60-71.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.055] [PMID: 28522004]
[42]
Wu, S.; Dong, H.; Li, Q.; Wang, G.; Cao, X. High strength, biocompatible hydrogels with designable shapes and special hollow-formed character using chitosan and gelatin. Carbohydr. Polym., 2017, 168, 147-152.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.069] [PMID: 28457435]
[43]
Cicha, I.; Detsch, R.; Singh, R.; Reakasame, S.; Alexiou, C.; Boccaccini, A.R. Biofabrication of vessel grafts based on natural hydrogels. Current Opinion in Biomedical Engineering, 2017, 2, 83-89.
[http://dx.doi.org/10.1016/j.cobme.2017.05.003]
[44]
Liu, X.; Zhao, G.; Chen, Z.; Panhwar, F.; He, X. Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell-alginate hydrogel constructs. ACS Appl. Mater. Interfaces, 2018, 10(19), 16822-16835.
[http://dx.doi.org/10.1021/acsami.8b04496] [PMID: 29688697]
[45]
Carrejo, N.C.; Moore, A.N.; Lopez Silva, T.L.; Leach, D.G.; Li, I-C.; Walker, D.R.; Hartgerink, J.D. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice. ACS Biomater. Sci. Eng., 2018, 4(4), 1386-1396.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00031] [PMID: 29687080]
[46]
Chen, G.; Ali, F.; Dong, S.; Yin, Z.; Li, S.; Chen, Y. Preparation, characterization and functional evaluation of chitosan-based films with zein coatings produced by cold plasma. Carbohydr. Polym., 2018, 202, 39-46.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.122] [PMID: 30287014]
[47]
Zhang, K.; Shi, Z.; Zhou, J.; Xing, Q.; Ma, S.; Li, Q.; Zhang, Y.; Yao, M.; Wang, X.; Li, Q. Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J. Mater. Chem. B , 2018, 6, 2982-2992.
[http://dx.doi.org/10.1039/C7TB03213G]
[48]
Frasca, S.; Norol, F.; Le Visage, C.; Collombet, J-M.; Letourneur, D.; Holy, X.; Sari Ali, E. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. J. Mater. Sci. Mater. Med., 2017, 28(2), 35.
[http://dx.doi.org/10.1007/s10856-016-5839-6] [PMID: 28110459]
[49]
Grijalvo, S.; Alagia, A.; Puras, G.; Zárate, J.; Mayr, J.; Pedraz, J.L.; Eritja, R.; Díaz, D.D. Cationic nioplexes-in-polysaccharide-based hydrogels as versatile biodegradable hybrid materials to deliver nucleic acids. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(37), 7756-7767.
[http://dx.doi.org/10.1039/C7TB01691C]
[50]
Jiang, X.; Peng, Y.; Yang, C.; Liu, W.; Han, B. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute. J. Biomed. Mater. Res. A, 2018, 106(7), 1997-2006.
[http://dx.doi.org/10.1002/jbm.a.36403] [PMID: 29569838]
[51]
Wei, Z.; Yang, J.H.; Liu, Z.Q.; Xu, F.; Zhou, J.X.; Zrínyi, M.; Osada, Y.; Chen, Y.M. Novel biocompatible polysaccharide‐based self‐healing hydrogel. Adv. Funct. Mater., 2015, 25(9), 1352-1359.
[http://dx.doi.org/10.1002/adfm.201401502]
[52]
Ganguly, K.; Chaturvedi, K.; More, U.A.; Nadagouda, M.N.; Aminabhavi, T.M. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J. Control. Release, 2014, 193, 162-173.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.014] [PMID: 24845128]
[53]
Silva, R.; Fabry, B.; Boccaccini, A.R. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials, 2014, 35(25), 6727-6738.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.078] [PMID: 24836951]
[54]
Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci., 2015, 10(1), 1-16.
[PMID: 26430453]
[55]
Su, R.S-C.; Kim, Y.; Liu, J.C. Resilin: protein-based elastomeric biomaterials. Acta Biomater., 2014, 10(4), 1601-1611.
[http://dx.doi.org/10.1016/j.actbio.2013.06.038] [PMID: 23831198]
[56]
Kaemmerer, E.; Melchels, F.P.; Holzapfel, B.M.; Meckel, T.; Hutmacher, D.W.; Loessner, D. Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater., 2014, 10(6), 2551-2562.
[http://dx.doi.org/10.1016/j.actbio.2014.02.035] [PMID: 24590158]
[57]
Shi, W.; Dumont, M-J.; Ly, E.B. Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur. Polym. J., 2014, 54, 172-180.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.03.007]
[58]
Li, C.; Faulkner-Jones, A.; Dun, A.R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R.R. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 3957-3961.
[http://dx.doi.org/10.1002/anie.201411383] [PMID: 25656851]
[59]
Kahn, J.S.; Trifonov, A.; Cecconello, A.; Guo, W.; Fan, C.; Willner, I. Integration of switchable DNA-based hydrogels with surfaces by the hybridization chain reaction. Nano Lett., 2015, 15(11), 7773-7778.
[http://dx.doi.org/10.1021/acs.nanolett.5b04101] [PMID: 26488684]
[60]
Li, J.; Mo, L.; Lu, C-H.; Fu, T.; Yang, H-H.; Tan, W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev., 2016, 45(5), 1410-1431.
[http://dx.doi.org/10.1039/C5CS00586H] [PMID: 26758955]
[61]
Kahn, J.S.; Hu, Y.; Willner, I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc. Chem. Res., 2017, 50(4), 680-690.
[http://dx.doi.org/10.1021/acs.accounts.6b00542] [PMID: 28248486]
[62]
Wang, J-J.; Zhou, Z-M.; Zhang, Z-B.; Du, B.; Zhang, Z.; Wang, Q.; Yuan, P.; Liu, L-R.; Zhang, Q-Q. Biomimetic synthesis of platelet-shaped hydroxyapatite mesocrystals in a collagen mimetic peptide-PEG hybrid hydrogel. Mater. Lett., 2015, 159, 150-153.
[http://dx.doi.org/10.1016/j.matlet.2015.06.101]
[63]
Kato, A.; Miyaji, H.; Ishizuka, R.; Tokunaga, K.; Inoue, K.; Kosen, Y.; Yokoyama, H.; Sugaya, T.; Tanaka, S.; Sakagami, R.; Kawanami, M. Combination of root surface modification with BMP-2 and collagen hydrogel scaffold implantation for periodontal healing in beagle dogs. Open Dent. J., 2015, 9, 52-59.
[http://dx.doi.org/10.2174/1874210601509010052] [PMID: 25674172]
[64]
Sanz-Ramos, P.; Duart, J.; Rodríguez-Goñi, M.V.; Vicente-Pascual, M.; Dotor, J.; Mora, G.; Izal-Azcárate, I. Improved chondrogenic capacity of collagen hydrogel-expanded chondrocytes: in vitro and in vivo analyses. J. Bone Joint Surg. Am., 2014, 96(13), 1109-1117.
[http://dx.doi.org/10.2106/JBJS.M.00271] [PMID: 24990976]
[65]
Asti, A.; Gioglio, L. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs, 2014, 37(3), 187-205.
[PMID: 24744164]
[66]
Levett, P.A.; Melchels, F.P.; Schrobback, K.; Hutmacher, D.W.; Malda, J.; Klein, T.J. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater., 2014, 10(1), 214-223.
[http://dx.doi.org/10.1016/j.actbio.2013.10.005] [PMID: 24140603]
[67]
Owen, S.C.; Fisher, S.A.; Tam, R.Y.; Nimmo, C.M.; Shoichet, M.S. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir, 2013, 29(24), 7393-7400.
[http://dx.doi.org/10.1021/la305000w] [PMID: 23343008]
[68]
Lam, J.; Truong, N.F.; Segura, T. Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater., 2014, 10(4), 1571-1580.
[http://dx.doi.org/10.1016/j.actbio.2013.07.025] [PMID: 23899481]
[69]
Rhim, J.; Ha, C-W.; Park, Y-B.; Kim, J-A.; Han, W-J.; Choi, S.; Lee, K.; Park, H.; Park, H-J. Cartilage repair by various concentrations of placenta-derived mesenchymal stem cells and hyaluronic acid hydrogels in a rabbit model. Osteoarthritis Cartilage, 2017, 25, S160.
[http://dx.doi.org/10.1016/j.joca.2017.02.272]
[70]
Todeschi, M.R.; El Backly, R.M.; Varghese, O.P.; Hilborn, J.; Cancedda, R.; Mastrogiacomo, M. Host cell recruitment patterns by bone morphogenetic protein-2 releasing hyaluronic acid hydrogels in a mouse subcutaneous environment. Regen. Med., 2017, 12(5), 525-539.
[http://dx.doi.org/10.2217/rme-2017-0023] [PMID: 28770657]
[71]
Feng, Q.; Lin, S.; Zhang, K.; Dong, C.; Wu, T.; Huang, H.; Yan, X.; Zhang, L.; Li, G.; Bian, L. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater., 2017, 53, 329-342.
[http://dx.doi.org/10.1016/j.actbio.2017.02.015] [PMID: 28193542]
[72]
Kim, J-T.; Lee, D.Y.; Kim, T-H.; Song, Y-S.; Cho, N-I. Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads. Met. Mater. Int., 2014, 20(3), 555-563.
[http://dx.doi.org/10.1007/s12540-014-3022-5]
[73]
He, M.; Zhao, Y.; Duan, J.; Wang, Z.; Chen, Y.; Zhang, L. Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl. Mater. Interfaces, 2014, 6(3), 1872-1878.
[http://dx.doi.org/10.1021/am404855q] [PMID: 24405277]
[74]
He, M.; Chen, H.; Zhang, X.; Wang, C.; Xu, C.; Xue, Y.; Wang, J.; Zhou, P.; Zhao, Q. Construction of novel cellulose/chitosan composite hydrogels and films and their applications. Cellulose, 2018, 25(3), 1987-1996.
[http://dx.doi.org/10.1007/s10570-018-1683-9]
[75]
Fu, L-H.; Qi, C.; Ma, M-G.; Wan, P. Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(10), 1541-1562.
[http://dx.doi.org/10.1039/C8TB02331J]
[76]
Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydr. Polym., 2019, 219, 63-76.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.008] [PMID: 31151547]
[77]
Wu, Z-Y.; Liang, H-W.; Chen, L-F.; Hu, B-C.; Yu, S-H. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res., 2016, 49(1), 96-105.
[http://dx.doi.org/10.1021/acs.accounts.5b00380] [PMID: 26642085]
[78]
Choi, B.; Kim, S.; Lin, B.; Wu, B.M.; Lee, M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl. Mater. Interfaces, 2014, 6(22), 20110-20121.
[http://dx.doi.org/10.1021/am505723k] [PMID: 25361212]
[79]
Duan, J.; Liang, X.; Cao, Y.; Wang, S.; Zhang, L. High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules, 2015, 48(8), 2706-2714.
[http://dx.doi.org/10.1021/acs.macromol.5b00117]
[80]
Dessì, M.; Borzacchiello, A.; Mohamed, T.H.; Abdel-Fattah, W.I.; Ambrosio, L. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J. Biomed. Mater. Res. A, 2013, 101(10), 2984-2993.
[http://dx.doi.org/10.1002/jbm.a.34592] [PMID: 23873836]
[81]
Sapru, S.; Ghosh, A.K.; Kundu, S.C. Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute. Carbohydr. Polym., 2017, 167, 196-209.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.098] [PMID: 28433154]
[82]
Dang, N.T.T.; Chau, T.T.L.; Duong, H.V.; Le, H.T.; Tran, T.T.V.; Le, T.Q.; Vu, T.P.; Nguyen, C.D.; Nguyen, L.V.; Nguyen, T.D. Water-soluble chitosan-derived sustainable materials: towards filaments, aerogels, microspheres, and plastics. Soft Matter, 2017, 13(40), 7292-7299.
[http://dx.doi.org/10.1039/C7SM01292F] [PMID: 28951935]
[83]
Hattori, H.; Tsujimoto, H.; Hase, K.; Ishihara, M. Characterization of a water-soluble chitosan derivative and its potential for submucosal injection in endoscopic techniques. Carbohydr. Polym., 2017, 175, 592-600.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.028] [PMID: 28917905]
[84]
Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. In solubility of polysaccharides. In: In Tech; , 2017.
[http://dx.doi.org/10.5772/intechopen.71570]
[85]
Zhu, D.; Cheng, H.; Li, J.; Zhang, W.; Shen, Y.; Chen, S.; Ge, Z.; Chen, S. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater. Sci. Eng. C, 2016, 61, 79-84.
[http://dx.doi.org/10.1016/j.msec.2015.12.024] [PMID: 26838827]
[86]
Chen, Y.; Li, J.; Li, Q.; Shen, Y.; Ge, Z.; Zhang, W.; Chen, S. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr. Polym., 2016, 143, 246-253.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.073] [PMID: 27083366]
[87]
M, Ways, T.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers (Basel), 2018, 10(3), 267.
[http://dx.doi.org/10.3390/polym10030267] [PMID: 30966302]
[88]
Zhu, K.; Duan, J.; Guo, J.; Wu, S.; Lu, A.; Zhang, L. High-strength films consisted of oriented chitosan nanofibers for guiding cell growth. Biomacromolecules, 2017, 18(12), 3904-3912.
[http://dx.doi.org/10.1021/acs.biomac.7b00936] [PMID: 28992405]
[89]
Cao, J.; You, J.; Zhang, L.; Zhou, J. Homogeneous synthesis and characterization of chitosan ethers prepared in aqueous alkali/urea solutions. Carbohydr. Polym., 2018, 185, 138-144.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.010] [PMID: 29421050]
[90]
Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials (Basel), 2013, 6(4), 1285-1309.
[http://dx.doi.org/10.3390/ma6041285] [PMID: 28809210]
[91]
Bidarra, S.J.; Barrias, C.C.; Granja, P.L. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater., 2014, 10(4), 1646-1662.
[http://dx.doi.org/10.1016/j.actbio.2013.12.006] [PMID: 24334143]
[92]
Jia, J.; Richards, D.J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R.P.; Trusk, T.C.; Yost, M.J.; Yao, H.; Markwald, R.R.; Mei, Y. Engineering alginate as bioink for bioprinting. Acta Biomater., 2014, 10(10), 4323-4331.
[http://dx.doi.org/10.1016/j.actbio.2014.06.034] [PMID: 24998183]
[93]
Tan, S.P.; McLoughlin, P.; O’Sullivan, L.; Prieto, M.L.; Gardiner, G.E.; Lawlor, P.G.; Hughes, H. Development of a novel antimicrobial seaweed extract-based hydrogel wound dressing. Int. J. Pharm., 2013, 456(1), 10-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.018] [PMID: 23958753]
[94]
Popa, E.G.; Reis, R.L.; Gomes, M.E. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit. Rev. Biotechnol., 2015, 35(3), 410-424.
[http://dx.doi.org/10.3109/07388551.2014.889079] [PMID: 24646368]
[95]
Venkatesan, J.; Lowe, B.; Anil, S.; Manivasagan, P.; Al Kheraif, A.A.; Kang, K.H.; Kim, S.K. Seaweed polysaccharides and their potential biomedical applications. Starke, 2015, 67(5-6), 381-390.
[http://dx.doi.org/10.1002/star.201400127]
[96]
Wittmann, K.; Dietl, S.; Ludwig, N.; Berberich, O.; Hoefner, C.; Storck, K.; Blunk, T.; Bauer-Kreisel, P. Engineering vascularized adipose tissue using the stromal-vascular fraction and fibrin hydrogels. Tissue Eng. Part A, 2015, 21(7-8), 1343-1353.
[http://dx.doi.org/10.1089/ten.tea.2014.0299] [PMID: 25602488]
[97]
Camci-Unal, G.; Annabi, N.; Dokmeci, M.R.; Liao, R.; Khademhosseini, A. Hydrogels for cardiac tissue engineering. NPG Asia Mater., 2014, 6(5), e99
[http://dx.doi.org/10.1038/am.2014.19]
[98]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316-342.
[http://dx.doi.org/10.5339/gcsp.2013.38] [PMID: 24689032]
[99]
Nagamine, K.; Okamoto, K.; Kaji, H.; Nishizawa, M. Bonding of synthetic hydrogels with fibrin as the glue to engineer hydrogel-based biodevices. J. Biosci. Bioeng., 2014, 118(1), 94-97.
[http://dx.doi.org/10.1016/j.jbiosc.2013.12.024] [PMID: 24495925]
[100]
Guo, W.; Lu, C.H.; Orbach, R.; Wang, F.; Qi, X.J.; Cecconello, A.; Seliktar, D.; Willner, I. pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater., 2015, 27(1), 73-78.
[http://dx.doi.org/10.1002/adma.201403702] [PMID: 25377247]
[101]
Peng, L.; Wu, C.; You, M.; Han, D.; Chen, Y.; Fu, T.; Ye, M.; Tan, W. Engineering and applications of DNA-grafting polymer materials. Chem. Sci. (Camb.), 2013, 4(5), 1928-1938.
[http://dx.doi.org/10.1039/c2sc21198j] [PMID: 23682309]
[102]
Nishikawa, M.; Ogawa, K.; Umeki, Y.; Mohri, K.; Kawasaki, Y.; Watanabe, H.; Takahashi, N.; Kusuki, E.; Takahashi, R.; Takahashi, Y.; Takakura, Y. Injectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery. J. Control. Release, 2014, 180, 25-32.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.001] [PMID: 24530618]
[103]
Kim, M-G.; Shon, Y.; Miao, W.; Lee, J.; Oh, Y-K. Biodegradable graphene oxide and polyaptamer DNA hybrid hydrogels for implantable drug delivery. Carbon, 2016, 105, 14-22.
[http://dx.doi.org/10.1016/j.carbon.2016.04.014]
[104]
Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials, 2003, 24(3), 401-416.
[http://dx.doi.org/10.1016/S0142-9612(02)00353-8] [PMID: 12423595]
[105]
An, B.; DesRochers, T.M.; Qin, G.; Xia, X.; Thiagarajan, G.; Brodsky, B.; Kaplan, D.L. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior. Biomaterials, 2013, 34(2), 402-412.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.085] [PMID: 23088839]
[106]
Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev., 2013, 65(4), 457-470.
[http://dx.doi.org/10.1016/j.addr.2012.09.043] [PMID: 23137786]
[107]
Carriel, V.; Garrido-Gómez, J.; Hernández-Cortés, P.; Garzón, I.; García-García, S.; Sáez-Moreno, J.A.; Del Carmen Sánchez-Quevedo, M.; Campos, A.; Alaminos, M. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J. Neural Eng., 2013, 10(2), 026022
[http://dx.doi.org/10.1088/1741-2560/10/2/026022] [PMID: 23528562]
[108]
Zamora-Mora, V.; Velasco, D.; Hernández, R.; Mijangos, C.; Kumacheva, E. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation. Carbohydr. Polym., 2014, 111, 348-355.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.087] [PMID: 25037360]
[109]
Lynam, D.; Peterson, C.; Maloney, R.; Shahriari, D.; Garrison, A.; Saleh, S.; Mehrotra, S.; Chan, C.; Sakamoto, J. Augmenting protein release from layer-by-layer functionalized agarose hydrogels. Carbohydr. Polym., 2014, 103, 377-384.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.069] [PMID: 24528743]
[110]
Mocanu, G.; Nichifor, M. Cationic amphiphilic dextran hydrogels with potential biomedical applications. Carbohydr. Polym., 2014, 99, 235-241.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.087] [PMID: 24274501]
[111]
Alexandre, N.; Costa, E.; Coimbra, S.; Silva, A.; Lopes, A.; Rodrigues, M.; Santos, M.; Maurício, A.C.; Santos, J.D.; Luís, A.L. In vitro and in vivo evaluation of blood coagulation activation of polyvinyl alcohol hydrogel plus dextran-based vascular grafts. J. Biomed. Mater. Res. A, 2015, 103(4), 1366-1379.
[http://dx.doi.org/10.1002/jbm.a.35275] [PMID: 25044790]
[112]
Zhang, X.; Yang, Y.; Yao, J.; Shao, Z.; Chen, X. Strong collagen hydrogels by oxidized dextran modification. ACS Sustain. Chem.& Eng., 2014, 2(5), 1318-1324.
[http://dx.doi.org/10.1021/sc500154t]
[113]
Orza, A.I.; Mihu, C.; Soritau, O.; Diudea, M.; Florea, A.; Matei, H.; Balici, S.; Mudalige, T.; Kanarpardy, G.K.; Biris, A.S. Multistructural biomimetic substrates for controlled cellular differentiation. Nanotechnology, 2014, 25(6), 065102
[http://dx.doi.org/10.1088/0957-4484/25/6/065102] [PMID: 24434767]
[114]
Heo, J.; Koh, R.H.; Shim, W.; Kim, H.D.; Yim, H-G.; Hwang, N.S. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv. Transl. Res., 2016, 6(2), 148-158.
[http://dx.doi.org/10.1007/s13346-015-0224-4] [PMID: 25809935]
[115]
Delgado, L.M.; Bayon, Y.; Pandit, A.; Zeugolis, D.I. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng. Part B Rev., 2015, 21(3), 298-313.
[http://dx.doi.org/10.1089/ten.teb.2014.0290] [PMID: 25517923]
[116]
Chattopadhyay, S.; Raines, R.T. Review collagen-based biomaterials for wound healing. Biopolymers, 2014, 101(8), 821-833.
[http://dx.doi.org/10.1002/bip.22486] [PMID: 24633807]
[117]
Koshy, S.T.; Desai, R.M.; Joly, P.; Li, J.; Bagrodia, R.K.; Lewin, S.A.; Joshi, N.S.; Mooney, D.J. Click-crosslinked injectable gelatin hydrogels. Adv. Healthc. Mater., 2016, 5(5), 541-547.
[http://dx.doi.org/10.1002/adhm.201500757] [PMID: 26806652]
[118]
Cui, L.; Jia, J.; Guo, Y.; Liu, Y.; Zhu, P. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr. Polym., 2014, 99, 31-38.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.048] [PMID: 24274476]
[119]
Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M.C.; Zhao, F. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci. Rep., 2014, 4, 4706.
[http://dx.doi.org/10.1038/srep04706] [PMID: 24736500]
[120]
Collins, M.N.; Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering--a review. Carbohydr. Polym., 2013, 92(2), 1262-1279.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.028] [PMID: 23399155]
[121]
Raia, N.R.; Partlow, B.P.; McGill, M.; Kimmerling, E.P.; Ghezzi, C.E.; Kaplan, D.L. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials, 2017, 131, 58-67.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.046] [PMID: 28376366]
[122]
Fakhari, A.; Berkland, C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater., 2013, 9(7), 7081-7092.
[http://dx.doi.org/10.1016/j.actbio.2013.03.005] [PMID: 23507088]
[123]
Sakai, S.; Ueda, K.; Taya, M. Peritoneal adhesion prevention by a biodegradable hyaluronic acid-based hydrogel formed in situ through a cascade enzyme reaction initiated by contact with body fluid on tissue surfaces. Acta Biomater., 2015, 24, 152-158.
[http://dx.doi.org/10.1016/j.actbio.2015.06.023] [PMID: 26102338]
[124]
Wang, J.; Zhao, L.; Zhang, A.; Huang, Y.; Tavakoli, J.; Tang, Y. Novel bacterial cellulose/gelatin hydrogels as 3D scaffolds for tumor cell culture. Polymers (Basel), 2018, 10(6), 581.
[http://dx.doi.org/10.3390/polym10060581] [PMID: 30966615]
[125]
Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym., 2013, 92(2), 1432-1442.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.071] [PMID: 23399174]
[126]
Gao, L.; Gan, H.; Meng, Z.; Gu, R.; Wu, Z.; Zhang, L.; Zhu, X.; Sun, W.; Li, J.; Zheng, Y.; Dou, G. Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids Surf. B Biointerfaces, 2014, 117, 398-405.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.002] [PMID: 24675278]
[127]
Rahmati, M.; Milan, P.B.; Samadikuchaksaraei, A.; Goodarzi, V.; Saeb, M.R.; Kargozar, S.; Kaplan, D.L.; Mozafari, M. Ionically cross-linked thermoresponsive chitosan hydrogels formed in situ: a conceptual basis for deeper understanding. Macromol. Mater. Eng., 2017, 302(11)
[http://dx.doi.org/10.1002/mame.201700227]
[128]
Sereni, N.; Enache, A.; Sudre, G.; Montembault, A.; Rochas, C.; Durand, P.; Perrard, M-H.; Bozga, G.; Puaux, J-P.; Delair, T.; David, L. Dynamic structuration of physical chitosan hydrogels. Langmuir, 2017, 33(44), 12697-12707.
[http://dx.doi.org/10.1021/acs.langmuir.7b02997] [PMID: 29019693]
[129]
Iftime, M-M.; Morariu, S.; Marin, L. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydr. Polym., 2017, 165, 39-50.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.027] [PMID: 28363564]
[130]
Chabbi, J.; Jennah, O.; Katir, N.; Lahcini, M.; Bousmina, M.; El Kadib, A. Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydr. Polym., 2018, 183, 287-293.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.036] [PMID: 29352886]
[131]
Cao, L.; Cao, B.; Lu, C.; Wang, G.; Yu, L.; Ding, J. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(7), 1268-1280.
[http://dx.doi.org/10.1039/C4TB01705F]
[132]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[133]
Rose, J.B.; Pacelli, S.; Haj, A.J.E.; Dua, H.S.; Hopkinson, A.; White, L.J.; Rose, F.R.A.J. Gelatin-based materials in ocular tissue engineering. Materials (Basel), 2014, 7(4), 3106-3135.
[http://dx.doi.org/10.3390/ma7043106] [PMID: 28788609]
[134]
Yang, C.H.; Wang, M.X.; Haider, H.; Yang, J.H.; Sun, J-Y.; Chen, Y.M.; Zhou, J.; Suo, Z. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces, 2013, 5(21), 10418-10422.
[http://dx.doi.org/10.1021/am403966x] [PMID: 24128011]
[135]
Lee, C.; Shin, J.; Lee, J.S.; Byun, E.; Ryu, J.H.; Um, S.H.; Kim, D-I.; Lee, H.; Cho, S-W. Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules, 2013, 14(6), 2004-2013.
[http://dx.doi.org/10.1021/bm400352d] [PMID: 23639096]
[136]
Andersen, T.; Auk-Emblem, P.; Dornish, M. 3D cell culture in alginate hydrogels. Microarrays (Basel), 2015, 4(2), 133-161.
[http://dx.doi.org/10.3390/microarrays4020133] [PMID: 27600217]
[137]
Morelli, A.; Betti, M.; Puppi, D.; Bartoli, C.; Gazzarri, M.; Chiellini, F. Enzymatically crosslinked ulvan hydrogels as injectable systems for cell delivery. Macromol. Chem. Phys., 2016, 217(4), 581-590.
[http://dx.doi.org/10.1002/macp.201500353]
[138]
Reys, L.L.; Silva, S.S.; Soares da Costa, D.; Oliveira, N.M.; Mano, J.F.; Reis, R.L.; Silva, T.H. Fucoidan hydrogels photo-cross-linked with visible radiation as matrices for cell culture. ACS Biomater. Sci. Eng., 2016, 2(7), 1151-1161.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00180]
[139]
Likhitpanichkul, M.; Dreischarf, M.; Illien-Junger, S.; Walter, B.A.; Nukaga, T.; Long, R.G.; Sakai, D.; Hecht, A.C.; Iatridis, J.C. Fibrin-genipin adhesive hydrogel for annulus fibrosus repair: performance evaluation with large animal organ culture, in situ biomechanics, and in vivo degradation tests. Eur. Cell. Mater., 2014, 28, 25-37.
[http://dx.doi.org/10.22203/eCM.v028a03] [PMID: 25036053]
[140]
Tavakoli, J. Tissue engineering of the intervertebral disc’s annulus fibrosus: A scaffold-based review study. Tissue Eng. Regen. Med., 2017, 14(2), 81-91.
[http://dx.doi.org/10.1007/s13770-017-0024-7] [PMID: 30603465]
[141]
Lee, F.; Kurisawa, M. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater., 2013, 9(2), 5143-5152.
[http://dx.doi.org/10.1016/j.actbio.2012.08.036] [PMID: 22943886]
[142]
Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal. Chem., 2013, 85(22), 11077-11082.
[http://dx.doi.org/10.1021/ac4027725] [PMID: 24138007]
[143]
Guo, W.; Qi, X-J.; Orbach, R.; Lu, C-H.; Freage, L.; Mironi-Harpaz, I.; Seliktar, D.; Yang, H-H.; Willner, I. Reversible Ag(+)-crosslinked DNA hydrogels. Chem. Commun. (Camb.), 2014, 50(31), 4065-4068.
[http://dx.doi.org/10.1039/c3cc49140d] [PMID: 24616906]
[144]
Xiang, B.; He, K.; Zhu, R.; Liu, Z.; Zeng, S.; Huang, Y.; Nie, Z.; Yao, S. Self-assembled DNA hydrogel based on enzymatically polymerized DNA for protein encapsulation and enzyme/DNAzyme hybrid cascade reaction. ACS Appl. Mater. Interfaces, 2016, 8(35), 22801-22807.
[http://dx.doi.org/10.1021/acsami.6b03572] [PMID: 27526861]
[145]
Qi, H.; Ghodousi, M.; Du, Y.; Grun, C.; Bae, H.; Yin, P.; Khademhosseini, A. DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun., 2013, 4, 2275.
[http://dx.doi.org/10.1038/ncomms3275] [PMID: 24013352]
[146]
Li, J.; Zheng, C.; Cansiz, S.; Wu, C.; Xu, J.; Cui, C.; Liu, Y.; Hou, W.; Wang, Y.; Zhang, L.; Teng, I.T.; Yang, H.H.; Tan, W. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc., 2015, 137(4), 1412-1415.
[http://dx.doi.org/10.1021/ja512293f] [PMID: 25581100]
[147]
Li, J.; Fan, C.; Pei, H.; Shi, J.; Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater., 2013, 25(32), 4386-4396.
[http://dx.doi.org/10.1002/adma.201300875] [PMID: 23765613]
[148]
Wang, Z.G.; Ding, B. DNA-based self-assembly for functional nanomaterials. Adv. Mater., 2013, 25(28), 3905-3914.
[http://dx.doi.org/10.1002/adma.201301450] [PMID: 24048977]
[149]
Kim, M.H.; Park, W.H. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility. Int. J. Nanomedicine, 2016, 11, 2967-2978.
[http://dx.doi.org/doi.org/10.2147/IJN.S106467P] [PMID: 27382283]
[150]
L., N.H., Crosslinking of silk fibroin by aqueous peroxydisulfate. J. Appl. Polym. Sci., 1967, 11(5), 719-726.
[http://dx.doi.org/10.1002/app.1967.070110509] [PMID: 579068]
[151]
Awadhiya, A.; Kumar, D.; Verma, V. Crosslinking of agarose bioplastic using citric acid. Carbohydr. Polym., 2016, 151, 60-67.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.040] [PMID: 27474543]
[152]
O’Connor, N.A.; Jitianu, M.; Nunez, G.; Picard, Q.; Wong, M.; Akpatsu, D.; Negrin, A.; Gharbaran, R.; Lugo, D.; Shaker, S.; Jitianu, A.; Redenti, S. Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties. Int. J. Biol. Macromol., 2018, 111, 370-378.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.042] [PMID: 29325744]
[153]
Emami Meybodi, Z.; Imani, M.; Atai, M. Kinetics of dextran crosslinking by epichlorohydrin: a rheometry and equilibrium swelling study. Carbohydr. Polym., 2013, 92(2), 1792-1798.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.030] [PMID: 23399221]
[154]
Wolf, M.T.; Dearth, C.L.; Sonnenberg, S.B.; Loboa, E.G.; Badylak, S.F. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv. Drug Deliv. Rev., 2015, 84, 208-221.
[http://dx.doi.org/10.1016/j.addr.2014.08.011] [PMID: 25174309]
[155]
Wang, H.; Cai, L.; Paul, A.; Enejder, A.; Heilshorn, S.C. Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules, 2014, 15(9), 3421-3428.
[http://dx.doi.org/10.1021/bm500969d] [PMID: 25111283]
[156]
Grover, G.N.; Rao, N.; Christman, K.L. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology, 2014, 25(1)014011
[http://dx.doi.org/10.1088/0957-4484/25/1/014011] [PMID: 24334615]
[157]
Francisco, A.T.; Hwang, P.Y.; Jeong, C.G.; Jing, L.; Chen, J.; Setton, L.A. Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomater., 2014, 10(3), 1102-1111.
[http://dx.doi.org/10.1016/j.actbio.2013.11.013] [PMID: 24287160]
[158]
Spoljaric, S.; Salminen, A.; Luong, N.D.; Seppälä, J. Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking. Eur. Polym. J., 2014, 56, 105-117.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.03.009]
[159]
Gnanaprakasam Thankam, F.; Muthu, J.; Sankar, V.; Kozhiparambil Gopal, R. Growth and survival of cells in biosynthetic poly vinyl alcohol-alginate IPN hydrogels for cardiac applications. Colloids Surf. B Biointerfaces, 2013, 107, 137-145.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.069] [PMID: 23475061]
[160]
Kenawy, E-R.; Kamoun, E.A.; Eldin, M.S.M.; El-Meligy, M.A. Physically crosslinked poly (vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arab. J. Chem., 2014, 7(3), 372-380.
[http://dx.doi.org/10.1016/j.arabjc.2013.05.026]
[161]
Gonzalez, J.S.; Ludueña, L.N.; Ponce, A.; Alvarez, V.A. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater. Sci. Eng. C, 2014, 34, 54-61.
[http://dx.doi.org/10.1016/j.msec.2013.10.006] [PMID: 24268233]
[162]
Zhang, Q.; Dong, P.; Chen, L.; Wang, X.; Lu, S. Genipin-cross-linked thermosensitive silk sericin/poly(N-isopropylacrylamide) hydrogels for cell proliferation and rapid detachment. J. Biomed. Mater. Res. A, 2014, 102(1), 76-83.
[http://dx.doi.org/10.1002/jbm.a.34670] [PMID: 23606462]
[163]
Darnell, M.C.; Sun, J-Y.; Mehta, M.; Johnson, C.; Arany, P.R.; Suo, Z.; Mooney, D.J. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials, 2013, 34(33), 8042-8048.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.061] [PMID: 23896005]
[164]
Yang, J.; Han, C-R.; Duan, J-F.; Ma, M-G.; Zhang, X-M.; Xu, F.; Sun, R-C. Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose, 2013, 20(1), 227-237.
[http://dx.doi.org/10.1007/s10570-012-9841-y]
[165]
Jonker, A.M.; Lowik, D.W.P.M.; van Hest, J.C.M. Peptide- and protein-based hydrogels. Chem. Mater., 2012, 24(5), 759-773.
[http://dx.doi.org/10.1021/cm202640w]
[166]
Luo, T.; Kiick, K.L. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials. Eur. Polym. J., 2013, 49(10), 2998-3009.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.05.013] [PMID: 24039275]
[167]
Rahmany, M.B.; Van Dyke, M. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review. Acta Biomater., 2013, 9(3), 5431-5437.
[http://dx.doi.org/10.1016/j.actbio.2012.11.019] [PMID: 23178862]
[168]
Morell, M.; Puiggalí, J. Hybrid block copolymers constituted by peptides and synthetic polymers: An overview of synthetic approaches, supramolecular behavior and potential applications. Polymers (Basel), 2013, 5(1), 188-224.
[http://dx.doi.org/10.3390/polym5010188]
[169]
Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem. Commun. (Camb.), 2014, 50(2), 139-155.
[http://dx.doi.org/10.1039/C3CC46317F] [PMID: 24217557]
[170]
Benavides, O.M.; Quinn, J.P.; Pok, S.; Petsche Connell, J.; Ruano, R.; Jacot, J.G. Capillary-like network formation by human amniotic fluid-derived stem cells within fibrin/poly(ethylene glycol) hydrogels. Tissue Eng. Part A, 2015, 21(7-8), 1185-1194.
[http://dx.doi.org/10.1089/ten.tea.2014.0288] [PMID: 25517426]
[171]
Brown, A.C.; Barker, T.H. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater., 2014, 10(4), 1502-1514.
[http://dx.doi.org/10.1016/j.actbio.2013.09.008] [PMID: 24056097]
[172]
Chung, E.; Rytlewski, J.A.; Merchant, A.G.; Dhada, K.S.; Lewis, E.W.; Suggs, L.J. Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomater., 2015, 17, 78-88.
[http://dx.doi.org/10.1016/j.actbio.2015.01.012] [PMID: 25600400]
[173]
Lau, H.K.; Kiick, K.L. Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules, 2015, 16(1), 28-42.
[http://dx.doi.org/10.1021/bm501361c] [PMID: 25426888]
[174]
Perera, M.M.; Ayres, N. Gelatin based dynamic hydrogels via thiol–norbornene reactions. Polym. Chem-Uk, 2017, 8(44), 6741-6749.
[http://dx.doi.org/10.1039/C7PY01630A]
[175]
Yom-Tov, O.; Seliktar, D.; Bianco-Peled, H. PEG-Thiol based hydrogels with controllable properties. Eur. Polym. J., 2016, 74, 1-12.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.11.002]
[176]
Farahani, P.E.; Adelmund, S.M.; Shadish, J.A.; DeForest, C.A. Photomediated oxime ligation as a bioorthogonal tool for spatiotemporally-controlled hydrogel formation and modification. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(23), 4435-4442.
[http://dx.doi.org/10.1039/C6TB03400D]
[177]
Rosales, A.M.; Anseth, K.S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater., 2016, 1(2), 15012.
[http://dx.doi.org/10.1038/natrevmats.2015.12] [PMID: 29214058]
[178]
Jiang, H.; Qin, S.; Dong, H.; Lei, Q.; Su, X.; Zhuo, R.; Zhong, Z. An injectable and fast-degradable poly(ethylene glycol) hydrogel fabricated via bioorthogonal strain-promoted azide-alkyne cycloaddition click chemistry. Soft Matter, 2015, 11(30), 6029-6036.
[http://dx.doi.org/10.1039/C5SM00508F] [PMID: 26132425]
[179]
McKay, C.S.; Finn, M.G. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol., 2014, 21(9), 1075-1101.
[http://dx.doi.org/10.1016/j.chembiol.2014.09.002] [PMID: 25237856]
[180]
Truong, V.X.; Ablett, M.P.; Richardson, S.M.; Hoyland, J.A.; Dove, A.P. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation. J. Am. Chem. Soc., 2015, 137(4), 1618-1622.
[http://dx.doi.org/10.1021/ja511681s] [PMID: 25590670]
[181]
Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules, 2017, 18(2), 316-330.
[http://dx.doi.org/10.1021/acs.biomac.6b01604] [PMID: 28027640]
[182]
Zheng, W.J.; An, N.; Yang, J.H.; Zhou, J.; Chen, Y.M. Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl. Mater. Interfaces, 2015, 7(3), 1758-1764.
[http://dx.doi.org/10.1021/am507339r] [PMID: 25561431]
[183]
Tavakoli, J. Physico-mechanical, morphological and biomedical properties of a novel natural wound dressing material. J. Mech. Behav. Biomed. Mater., 2017, 65, 373-382.
[http://dx.doi.org/10.1016/j.jmbbm.2016.09.008] [PMID: 27639216]
[184]
Tavakoli, J.; Tang, Y. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Mater. Sci. Eng. C, 2017, 77, 318-325.
[http://dx.doi.org/10.1016/j.msec.2017.03.272] [PMID: 28532035]
[185]
Ahadian, S.; Sadeghian, R.B.; Salehi, S.; Ostrovidov, S.; Bae, H.; Ramalingam, M.; Khademhosseini, A. Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjug. Chem., 2015, 26(10), 1984-2001.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00360] [PMID: 26280942]
[186]
Sgambato, A.; Cipolla, L.; Russo, L. Bioresponsive hydrogels: chemical strategies and perspectives in tissue engineering. Gels, 2016, 2(4), 28.
[http://dx.doi.org/10.3390/gels2040028] [PMID: 30674158]
[187]
Ziemecka, I.; van Steijn, V.; Koper, G.J.; Rosso, M.; Brizard, A.M.; van Esch, J.H.; Kreutzer, M.T. Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems. Lab Chip, 2011, 11(4), 620-624.
[http://dx.doi.org/10.1039/C0LC00375A] [PMID: 21125099]
[188]
Yeredla, N.; Kojima, T.; Yang, Y.; Takayama, S.; Kanapathipillai, M. Aqueous two phase system assisted self-assembled PLGA micro-particles. Sci. Rep., 2016, 6, 27736.
[http://dx.doi.org/10.1038/srep27736] [PMID: 27279329]
[189]
Rajaram, A.; Schreyer, D.J.; Chen, D.X. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. J. Biomater. Sci. Polym. Ed., 2015, 26(7), 433-445.
[http://dx.doi.org/10.1080/09205063.2015.1016383] [PMID: 25661399]
[190]
Catanzano, O.; D’Esposito, V.; Acierno, S.; Ambrosio, M.R.; De Caro, C.; Avagliano, C.; Russo, P.; Russo, R.; Miro, A.; Ungaro, F.; Calignano, A.; Formisano, P.; Quaglia, F. Alginate-hyaluronan composite hydrogels accelerate wound healing process. Carbohydr. Polym., 2015, 131, 407-414.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.081] [PMID: 26256201]
[191]
Catanzano, O.; D’Esposito, V.; Formisano, P.; Boateng, J.S.; Quaglia, F. Composite alginate-hyaluronan sponges for the delivery of tranexamic acid in postextractive alveolar wounds. J. Pharm. Sci., 2018, 107(2), 654-661.
[http://dx.doi.org/10.1016/j.xphs.2017.09.026] [PMID: 28987501]
[192]
Cao, Z.; Mi, L.; Mendiola, J.; Ella-Menye, J.R.; Zhang, L.; Xue, H.; Jiang, S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew. Chem. Int. Ed. Engl., 2012, 51(11), 2602-2605.
[http://dx.doi.org/10.1002/anie.201106466] [PMID: 22213162]
[193]
Cao, B.; Li, L.; Wu, H.; Tang, Q.; Sun, B.; Dong, H.; Zhe, J.; Cheng, G. Zwitteration of dextran: a facile route to integrate antifouling, switchability and optical transparency into natural polymers. Chem. Commun. (Camb.), 2014, 50(24), 3234-3237.
[http://dx.doi.org/10.1039/C3CC48878K] [PMID: 24522254]
[194]
Qiu, J.D.; Liang, R.P.; Wang, R.; Fan, L.X.; Chen, Y.W.; Xia, X.H. A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens. Bioelectron., 2009, 25(4), 852-857.
[http://dx.doi.org/10.1016/j.bios.2009.08.048] [PMID: 19767192]
[195]
Zhao, G.; Zhan, X.; Dou, W. A disposable immunosensor for Shigella flexneri based on multiwalled carbon nanotube/sodium alginate composite electrode. Anal. Biochem., 2011, 408(1), 53-58.
[http://dx.doi.org/10.1016/j.ab.2010.08.039] [PMID: 20816661]
[196]
Lin, J.; He, C.; Zhang, L.; Zhang, S. Sensitive amperometric immunosensor for alpha-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal. Biochem., 2009, 384(1), 130-135.
[http://dx.doi.org/10.1016/j.ab.2008.09.033] [PMID: 18848914]
[197]
Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev., 2013, 113(7), 5458-5479.
[http://dx.doi.org/10.1021/cr300325r] [PMID: 23557137]
[198]
Wang, K.; Tian, L.; Wang, T.; Zhang, Z.; Gao, X.; Wu, L.; Fu, B.; Liu, X. Electrodeposition of alginate with PEDOT/PSS coated MWCNTs to make an interpenetrating conducting hydrogel for neural interface. Compos. Interfaces, 2018, 26(1), 1-14.
[http://dx.doi.org/10.1080/09276440.2018.1465766]
[199]
Ulutürk, C.; Alemdar, N. Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel. Carbohydr. Polym., 2018, 193, 307-315.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.099] [PMID: 29773386]
[200]
Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.020] [PMID: 27721086]
[201]
Stejskal, J. Conducting polymer hydrogels. Chem. Pap., 2017, 71(2), 269-291.
[http://dx.doi.org/10.1007/s11696-016-0072-9]
[202]
Sheikholeslam, M.; Pritzker, M.; Chen, P. Hybrid peptide-carbon nanotube dispersions and hydrogels. Carbon, 2014, 71, 284-293.
[http://dx.doi.org/10.1016/j.carbon.2014.01.055]
[203]
Shin, S.R.; Jung, S.M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S.B.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; Wan, K.T.; Palacios, T.; Dokmeci, M.R.; Bae, H.; Tang, X.S.; Khademhosseini, A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 2013, 7(3), 2369-2380.
[http://dx.doi.org/10.1021/nn305559j] [PMID: 23363247]
[204]
Márquez, A.; Jiménez-Jorquera, C.; Domínguez, C.; Muñoz-Berbel, X. Electrodepositable alginate membranes for enzymatic sensors: An amperometric glucose biosensor for whole blood analysis. Biosens. Bioelectron., 2017, 97, 136-142.
[http://dx.doi.org/10.1016/j.bios.2017.05.051] [PMID: 28582709]
[205]
Bornhoeft, L.R.; Biswas, A.; McShane, M.J. Composite hydrogels with engineered microdomains for optical glucose sensing at low oxygen conditions. Biosensors (Basel), 2017, 7(1), 8.
[http://dx.doi.org/10.3390/bios7010008] [PMID: 28117762]
[206]
Chen, X.; Yan, H.; Shi, Z.; Feng, Y.; Li, J.; Lin, Q.; Wang, X.; Sun, W. A novel biosensor based on electroco-deposition of sodium alginate-Fe3O4-graphene composite on the carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis of myoglobin. Polym. Bull., 2017, 74(1), 75-90.
[http://dx.doi.org/10.1007/s00289-016-1698-z]
[207]
Biswas, A.; Bornhoeft, L.R.; Banerjee, S.; You, Y-H.; McShane, M.J. Composite hydrogels containing bioactive microreactors for optical enzymatic lactate sensing. ACS Sens., 2017, 2(11), 1584-1588.
[http://dx.doi.org/10.1021/acssensors.7b00648] [PMID: 29043796]
[208]
Li, P.; Dou, X.; Müller, M.; Feng, C.; Chang, M.W.; Frettlöh, M.; Schönherr, H. Autoinducer sensing microarrays by reporter bacteria encapsulated in hybrid supramolecular-polysaccharide hydrogels. Macromol. Biosci., 2017, 17(11)1700176
[http://dx.doi.org/10.1002/mabi.201700176] [PMID: 28741860]
[209]
Wijayapala, R.; Hashemnejad, S.M.; Kundu, S. Carbon nanodots crosslinked photoluminescent alginate hydrogels. Rsc Adv, 2017, 7(79), 50389-50395.
[http://dx.doi.org/10.1039/C7RA09805G]
[210]
Xie, X.; Zhang, W.; Abbaspourrad, A.; Ahn, J.; Bader, A.; Bose, S.; Vegas, A.; Lin, J.; Tao, J.; Hang, T.; Lee, H.; Iverson, N.; Bisker, G.; Li, L.; Strano, M.S.; Weitz, D.A.; Anderson, D.G. Microfluidic fabrication of colloidal nanomaterials-encapsulated microcapsules for biomolecular sensing. Nano Lett., 2017, 17(3), 2015-2020.
[http://dx.doi.org/10.1021/acs.nanolett.7b00026] [PMID: 28152589]
[211]
Ge, Q.; Ge, P.; Jiang, D.; Du, N.; Chen, J.; Yuan, L.; Yu, H.; Xu, X.; Wu, M.; Zhang, W.; Zhou, G. A novel and simple cell-based electrochemical biosensor for evaluating the antioxidant capacity of Lactobacillus plantarum strains isolated from Chinese dry-cured ham. Biosens. Bioelectron., 2018, 99, 555-563.
[http://dx.doi.org/10.1016/j.bios.2017.08.037] [PMID: 28825999]
[212]
Jia, Z.; Sukker, I.; Müller, M.; Schönherr, H. selective discrimination of key enzymes of pathogenic and nonpathogenic bacteria on autonomously reporting shape-encoded hydrogel patterns. ACS Appl. Mater. Interfaces, 2018, 10(6), 5175-5184.
[http://dx.doi.org/10.1021/acsami.7b15147] [PMID: 29345895]
[213]
Smith, S.K.; Lugo-Morales, L.Z.; Tang, C.; Gosrani, S.P.; Lee, C.A.; Roberts, J.G.; Morton, S.W.; McCarty, G.S.; Khan, S.A.; Sombers, L.A. Quantitative comparison of enzyme immobilization strategies for glucose biosensing in real-time using fast-scan cyclic voltammetry coupled with carbon-fiber microelectrodes. ChemPhysChem, 2018, 19(10), 1197-1204.
[http://dx.doi.org/10.1002/cphc.201701235] [PMID: 29316144]
[214]
Li, Y.; Liu, Y.; Kim, E.; Song, Y.; Tsao, C-Y.; Teng, Z.; Gao, T.; Mei, L.; Bentley, W.E.; Payne, G.F.; Wang, Q. Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria. Carbohydr. Polym., 2018, 195, 505-514.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.096] [PMID: 29805005]
[215]
Hao, N.; Zhang, X.; Zhou, Z.; Qian, J.; Liu, Q.; Chen, S.; Zhang, Y.; Wang, K. Three-dimensional nitrogen-doped graphene porous hydrogel fabricated biosensing platform with enhanced photoelectrochemical performance. Sens. Actuators B Chem., 2017, 250, 476-483.
[http://dx.doi.org/10.1016/j.snb.2017.05.003]
[216]
Ma, X.M.; Li, R.; Ren, J.; Lv, X.C.; Zhao, X.H.; Ji, Q.; Xia, Y.Z. Restorable, high-strength poly(N-isopropylacrylamide) hydrogels con-structed through chitosan-based dual macro-cross-linkers with rapid response to temperature jumps. Rsc. Adv., 2017, 7(75), 47767-47774.
[http://dx.doi.org/10.1039/C7RA10148A]
[217]
Krishnan, S.K.; Prokhorov, E.; Bahena, D.; Esparza, R.; Meyyappan, M. Chitosan-covered PD@PT core-shell nanocubes for direct electron transfer in electrochemical enzymatic glucose biosensor. ACS Omega, 2017, 2(5), 1896-1904.
[http://dx.doi.org/10.1021/acsomega.7b00060] [PMID: 30023649]
[218]
Muthusankar, E.; Ragupathy, D. Chitosan based nanocomposite biosensors: a recent review. Sens. Lett., 2018, 16(2), 81-91.
[http://dx.doi.org/10.1166/sl.2018.3925]
[219]
Ravichandran, R.; Martinez, J.G.; Jager, E.W.; Phopase, J.; Turner, A.P.; Type, I. Collagen-derived injectable conductive hydrogel scaffolds as glucose sensors; Acs Appl. Mater Inter, 2018.
[http://dx.doi.org/10.1021/acsami.8b04091]
[220]
Ertürk, G.; Hedström, M.; Mattiasson, B.; Ruzgas, T.; Lood, R. Highly sensitive detection and quantification of the secreted bacterial benevolence factor RoxP using a capacitive biosensor: A possible early detection system for oxidative skin diseases. PLoS One, 2018, 13(3)e0193754
[http://dx.doi.org/10.1371/journal.pone.0193754] [PMID: 29494704]
[221]
Santos-Cancel, M.; White, R.J. Collagen membranes with ribonuclease inhibitors for long-term stability of electrochemical aptamer-based sensors employing RNA. Anal. Chem., 2017, 89(10), 5598-5604.
[http://dx.doi.org/10.1021/acs.analchem.7b00766] [PMID: 28440619]
[222]
Crulhas, B.P.; Recco, L.C.; Delella, F.K.; Pedrosa, V.A. A novel superoxide anion biosensor for monitoring reactive species of oxygen released by cancer cells. Electroanalysis, 2017, 29(5), 1252-1257.
[http://dx.doi.org/10.1002/elan.201600767]
[223]
Ge, M.; Bai, P.; Chen, M.; Tian, J.; Hu, J.; Zhi, X.; Yin, H.; Yin, J. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing. Anal. Bioanal. Chem., 2018, 410(9), 2413-2421.
[http://dx.doi.org/10.1007/s00216-018-0928-7] [PMID: 29455283]
[224]
Wang, W.; Jayachandran, S.; Li, M.; Xu, S.; Luo, X. Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling. Mikrochim. Acta, 2018, 185(3), 156.
[http://dx.doi.org/10.1007/s00604-018-2694-9] [PMID: 29594672]
[225]
Tücking, K.S.; Vasani, R.B.; Cavallaro, A.A.; Voelcker, N.H.; Schönherr, H.; Prieto-Simon, B. Hyaluronic acid-modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase. Macromol. Rapid Commun., 2018, 39(19)e1800178
[http://dx.doi.org/10.1002/marc.201800178] [PMID: 29748983]
[226]
Darvishi, S.; Souissi, M.; Kharaziha, M.; Karimzadeh, F.; Sahara, R.; Ahadian, S. Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: an experimental and modeling study. Electrochim. Acta, 2018, 261, 275-283.
[http://dx.doi.org/10.1016/j.electacta.2017.12.126]
[227]
Marcello, B.; Chiara, D.; Lorenz, T.; Michele Di, L.; Daniel, T.S.; Magnus, B.; Fabio, B.; Valerio, B.; Carlo, A.B. Label free urea biosensor based on organic electrochemical transistors. Flexible and Printed Electronics, 2018, 3(2)024001
[http://dx.doi.org/10.1088/2058-8585/aac8a8]
[228]
Xin, F.; Lu, Q.; Liu, B.; Yuan, S.; Zhang, R.; Wu, Y.; Yu, Y. Metal-ion-mediated hydrogels with thermo-responsi-veness for smart windows. Eur. Polym. J., 2018, 99, 65-71.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.008]
[229]
Lu, Q.; Zhang, S.; Xiong, M.; Lin, F.; Tang, L.; Huang, B.; Chen, Y. One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydr. Polym., 2018, 196, 225-232.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.020] [PMID: 29891291]
[230]
Banis, G.; Beardslee, L.A.; Ghodssi, R. Gelatin-enabled microsensor for pancreatic trypsin sensing. Appl. Sci. (Basel), 2018, 8(2), 208.
[http://dx.doi.org/10.3390/app8020208]
[231]
Nam, J.; Jung, I-B.; Kim, B.; Lee, S-M.; Kim, S-E.; Lee, K-N.; Shin, D-S. A colorimetric hydrogel biosensor for rapid detection of nitrite ions. Sens. Actuators B Chem., 2018, 270, 112-118.
[http://dx.doi.org/10.1016/j.snb.2018.04.171]
[232]
Peng, H.; Ning, X.; Wei, G.; Wang, S.; Dai, G.; Ju, A. The preparations of novel cellulose/phenylboronic acid composite intelligent bio-hydrogel and its glucose, pH-responsive behaviors. Carbohydr. Polym., 2018, 195, 349-355.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.119] [PMID: 29804986]
[233]
Sarkar, C.; Chowdhuri, A.R.; Kumar, A.; Laha, D.; Garai, S.; Chakraborty, J.; Sahu, S.K. One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydr. Polym., 2018, 181, 710-718.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.091] [PMID: 29254027]
[234]
Gautam, V.; Singh, K.P.; Yadav, V.L. Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: For electrochemical sensor applications. Carbohydr. Polym., 2018, 189, 218-228.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.029] [PMID: 29580402]
[235]
Yao, J.; Ji, P.; Wang, B.; Wang, H.; Chen, S. Color-tunable luminescent macrofibers based on CdTe QDs-loaded bacterial cellulose nano-fibers for pH and glucose sensing. Sens. Actuators B Chem., 2018, 254, 110-119.
[http://dx.doi.org/10.1016/j.snb.2017.07.071]
[236]
Feng, J.; Huang, P.; Wu, F-Y. Gold-platinum bimetallic nanoclusters with enhanced peroxidase-like activity and their integrated agarose hydrogel-based sensing platform for the colorimetric analysis of glucose levels in serum. Analyst (Lond.), 2017, 142(21), 4106-4115.
[http://dx.doi.org/10.1039/C7AN01343D] [PMID: 28980671]
[237]
Jung, I.Y.; Kim, J.S.; Choi, B.R.; Lee, K.; Lee, H. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv. Healthc. Mater., 2017, 6(12)1601475
[http://dx.doi.org/10.1002/adhm.201601475] [PMID: 28371450]
[238]
Kim, D.H.; Hur, J.; Park, H.G.; Il Kim, M. Reagentless colorimetric biosensing platform based on nanoceria within an agarose gel matrix. Biosens. Bioelectron., 2017, 93, 226-233.
[http://dx.doi.org/10.1016/j.bios.2016.08.113] [PMID: 27623282]
[239]
Xiong, H.; Wang, W.; Liang, J.; Wen, W.; Zhang, X.; Wang, S. A convenient purification method for metal nanoclusters based on pH-induced aggregation and cyclic regeneration and its applications in fluorescent pH sensors. Sens. Actuators B Chem., 2017, 239, 988-992.
[http://dx.doi.org/10.1016/j.snb.2016.08.114]
[240]
Song, S.; Lu, Y.; Li, X.; Cao, S.; Pei, Y.; Aastrup, T.; Pei, Z. Optimization of 3D surfaces of dextran with different molecule weights for real-time detection of biomolecular interactions by a QCM biosensor. Polymers (Basel), 2017, 9(9), 409.
[http://dx.doi.org/10.3390/polym9090409] [PMID: 30965713]
[241]
Li, Z.; Narouz, M.R.; Munro, K.; Hao, B.; Crudden, C.M.; Horton, J.H.; Hao, H. Carboxymethylated dextran-modified n-heterocyclic carbene self-assembled monolayers on gold for use in surface plasmon resonance biosensing. ACS Appl. Mater. Interfaces, 2017, 9(45), 39223-39234.
[http://dx.doi.org/10.1021/acsami.7b13114] [PMID: 29048150]
[242]
Li, Q.; Guan, Y.; Zhang, Y. Thin hydrogel films based on lectin-saccharide biospecific interaction for label-free optical glucose sensing. Sens. Actuators B Chem., 2018, 272, 243-251.
[http://dx.doi.org/10.1016/j.snb.2018.05.166]
[243]
Guo, B.; Wen, B.; Cheng, W.; Zhou, X.; Duan, X.; Zhao, M.; Xia, Q.; Ding, S. An enzyme-free and label-free surface plasmon resonance biosensor for ultrasensitive detection of fusion gene based on DNA self-assembly hydrogel with streptavidin encapsulation. Biosens. Bioelectron., 2018, 112, 120-126.
[http://dx.doi.org/10.1016/j.bios.2018.04.027] [PMID: 29702383]
[244]
Zhong, R.; Tang, Q.; Wang, S.; Zhang, H.; Zhang, F.; Xiao, M.; Man, T.; Qu, X.; Li, L.; Zhang, W.; Pei, H. Self-assembly of enzyme-like nanofibrous g-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater., 2018, 30(12)e1706887
[http://dx.doi.org/10.1002/adma.201706887] [PMID: 29388269]
[245]
Chang, Y.; Li, M.; Wu, Z.; Zhuo, Y.; Chai, Y.; Xiao, Q.; Yuan, R. Homogeneous entropy catalytic-driven DNA hydrogel as strong signal blocker for highly sensitive electrochemical detection of platelet-derived growth factor. Anal. Chem., 2018, 90(13), 8241-8247.
[http://dx.doi.org/10.1021/acs.analchem.8b01766] [PMID: 29874908]
[246]
Na, W.; Nam, D.; Lee, H.; Shin, S. Rapid molecular diagnosis of infectious viruses in microfluidics using DNA hydrogel formation. Biosens. Bioelectron., 2018, 108, 9-13.
[http://dx.doi.org/10.1016/j.bios.2018.02.040] [PMID: 29494886]
[247]
Sun, L.; Zhong, Y.; Gui, J.; Wang, X.; Zhuang, X.; Weng, J. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. Int. J. Nanomedicine, 2018, 13, 843-856.
[http://dx.doi.org/10.2147/IJN.S152163] [PMID: 29467574]
[248]
Zhao, M.; Wang, P.; Guo, Y.; Wang, L.; Luo, F.; Qiu, B.; Guo, L.; Su, X.; Lin, Z.; Chen, G. Detection of aflatoxin B1 in food samples based on target-responsive aptamer-cross-linked hydrogel using a handheld pH meter as readout. Talanta, 2018, 176, 34-39.
[http://dx.doi.org/10.1016/j.talanta.2017.08.006] [PMID: 28917759]
[249]
Yang, X.; Wang, S.; Wang, Y.; He, Y.; Chai, Y.; Yuan, R. Stimuli-responsive DNA microcapsules for SERS sensing of trace MicroRNA. ACS Appl. Mater. Interfaces, 2018, 10(15), 12491-12496.
[http://dx.doi.org/10.1021/acsami.8b01974] [PMID: 29595245]
[250]
Hu, Y.; Li, H.; Li, J. A novel electrochemical biosensor for HIV-related DNA detection based on toehold strand displacement reaction and cruciform DNA crystal. J. Electroanal. Chem. (Lausanne Switz.), 2018, 822, 66-72.
[http://dx.doi.org/10.1016/j.jelechem.2018.05.011]
[251]
Zhang, Y.; Zhang, Y.; Wang, Q.; Fan, X. Preparation and properties of a chitosan–hyaluronic acid-polypyrrole conductive hydrogel catalyzed by laccase. J. Polym. Environ., 2017, 25(3), 526-532.
[http://dx.doi.org/10.1007/s10924-016-0831-2]
[252]
Cui, X.; Wiler, J.; Dzaman, M.; Altschuler, R.A.; Martin, D.C. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials, 2003, 24(5), 777-787.
[http://dx.doi.org/10.1016/S0142-9612(02)00415-5] [PMID: 12485796]
[253]
Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. Rsc. Adv., 2015, 5(47), 37553-37567.
[http://dx.doi.org/10.1039/C5RA01851J]
[254]
Chen, X.; Yuan, F.; Zhang, H.; Huang, Y.; Yang, J.; Sun, D. Recent approaches and future prospects of bacterial cellulose-based electro-conductive materials. J. Mater. Sci., 2016, 51(12), 5573-5588.
[http://dx.doi.org/10.1007/s10853-016-9899-2]
[255]
Spencer, A.R.; Primbetova, A.; Koppes, A.N.; Koppes, R.A.; Fenniri, H.; Annabi, N. Electroconductive gelatin methacryloyl-PEDOT: PSS composite hydrogels: design, synthesis, and properties. ACS Biomater. Sci. Eng., 2018, 4(5), 1558-1567.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00135]
[256]
Dvir, T.; Timko, B.P.; Brigham, M.D.; Naik, S.R.; Karajanagi, S.S.; Levy, O.; Jin, H.; Parker, K.K.; Langer, R.; Kohane, D.S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol., 2011, 6(11), 720-725.
[http://dx.doi.org/10.1038/nnano.2011.160] [PMID: 21946708]
[257]
Wu, L.; Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[258]
Bertok, T.; Gemeiner, P.; Mikula, M.; Gemeiner, P.; Tkac, J. Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid. Mikrochim. Acta, 2013, 180(1), 151-159.
[http://dx.doi.org/10.1007/s00604-012-0902-6] [PMID: 27231402]
[259]
Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: a state-of-the-art review. Int. J. Biol. Macromol., 2013, 59, 46-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043] [PMID: 23608103]
[260]
Fu, L.; Wang, A.; Lyu, F.; Lai, G.; Yu, J.; Lin, C-T.; Liu, Z.; Yu, A.; Su, W. A solid-state electrochemical sensing platform based on a supramolecular hydrogel. Sens. Actuators B Chem., 2018, 262, 326-333.
[http://dx.doi.org/10.1016/j.snb.2018.02.029]
[261]
Lytton-Jean, A.K.R.; Mirkin, C.A. A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J. Am. Chem. Soc., 2005, 127(37), 12754-12755.
[http://dx.doi.org/10.1021/ja052255o] [PMID: 16159241]
[262]
Meng, H-M.; Liu, H.; Kuai, H.; Peng, R.; Mo, L.; Zhang, X-B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev., 2016, 45(9), 2583-2602.
[http://dx.doi.org/10.1039/C5CS00645G] [PMID: 26954935]
[263]
Huang, Y.; Ding, Y.; Li, T.; Yang, M. Redox hydrogel based immunosensing platform for the label-free detection of a cancer biomarker. Anal. Methods, 2015, 7(2), 411-415.
[http://dx.doi.org/10.1039/C4AY02640C]
[264]
Liping, S.; Nan, H.; Jian, P.; Liyu, C.; Jian, W. Ultrasensitive detection of mitochondrial DNA mutation by graphene oxide/DNA hydrogel electrode. Adv. Funct. Mater., 2014, 24(44), 6905-6913.
[http://dx.doi.org/10.1002/adfm.201402191]
[265]
Butvilovskaya, V.I.; Popletaeva, S.B.; Chechetkin, V.R.; Zubtsova, Z.I.; Tsybulskaya, M.V.; Samokhina, L.O.; Vinnitskii, L.I.; Ragimov, A.A.; Pozharitskaya, E.I.; Grigor Eva, G.A.; Meshalkina, N.Y.; Golysheva, S.V.; Shilova, N.V.; Bovin, N.V.; Zasedatelev, A.S.; Rubina, A.Y. Multiplex determination of serological signatures in the sera of colorectal cancer patients using hydrogel biochips. Cancer Med., 2016, 5(7), 1361-1372.
[http://dx.doi.org/10.1002/cam4.692] [PMID: 26992329]
[266]
He, Y.; Yang, X.; Yuan, R.; Chai, Y. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155. Anal. Chem., 2017, 89(16), 8538-8544.
[http://dx.doi.org/10.1021/acs.analchem.7b02321] [PMID: 28745490]
[267]
Song, P.; Ye, D.; Zuo, X.; Li, J.; Wang, J.; Liu, H.; Hwang, M.T.; Chao, J.; Su, S.; Wang, L.; Shi, J.; Wang, L.; Huang, W.; Lal, R.; Fan, C. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett., 2017, 17(9), 5193-5198.
[http://dx.doi.org/10.1021/acs.nanolett.7b01006] [PMID: 28771008]
[268]
Lv, S-W.; Liu, Y.; Xie, M.; Wang, J.; Yan, X-W.; Li, Z.; Dong, W-G.; Huang, W-H. Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells. ACS Nano, 2016, 10(6), 6201-6210.
[http://dx.doi.org/10.1021/acsnano.6b02208] [PMID: 27299807]
[269]
Cai, B.; Guo, F.; Zhao, L.; He, R.; Chen, B.; He, Z.; Yu, X.; Guo, S.; Xiong, B.; Liu, W.; Zhao, X. Disk-like hydrogel bead-based immu-nofluorescence staining toward identification and observation of circulating tumor cells. Microfluid. Nanofluidics, 2014, 16(1), 29-37.
[http://dx.doi.org/10.1007/s10404-013-1198-5]
[270]
Badr, H.A.; Alsadek, D.M.; Darwish, A.A.; Elsayed, A.I.; Bekmanov, B.O.; Khussainova, E.M.; Zhang, X.; Cho, W.C.; Djansugurova, L.B.; Li, C.Z. Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Rev. Proteomics, 2014, 11(2), 227-236.
[http://dx.doi.org/10.1586/14789450.2014.897611] [PMID: 24611567]
[271]
Ohyama, C.; Hosono, M.; Nitta, K.; Oh-eda, M.; Yoshikawa, K.; Habuchi, T.; Arai, Y.; Fukuda, M. Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology, 2004, 14(8), 671-679.
[http://dx.doi.org/10.1093/glycob/cwh071] [PMID: 15044396]
[272]
Chen, K.; Gentry-Maharaj, A.; Burnell, M.; Steentoft, C.; Marcos-Silva, L.; Mandel, U.; Jacobs, I.; Dawnay, A.; Menon, U.; Blixt, O. Microarray Glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J. Proteome Res., 2013, 12(3), 1408-1418.
[http://dx.doi.org/10.1021/pr3010474] [PMID: 23360124]
[273]
Saeland, E.; Belo, A.I.; Mongera, S.; van Die, I.; Meijer, G.A.; van Kooyk, Y. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int. J. Cancer, 2012, 131(1), 117-128.
[http://dx.doi.org/10.1002/ijc.26354] [PMID: 21823122]
[274]
Taketa, K.; Endo, Y.; Sekiya, C.; Tanikawa, K.; Koji, T.; Taga, H.; Satomura, S.; Matsuura, S.; Kawai, T.; Hirai, H. A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res., 1993, 53(22), 5419-5423.
[PMID: 7693340]
[275]
Takeya, A.; Hosomi, O.; Nishijima, H.; Ohe, Y.; Sugahara, K.; Sagi, M.; Yamazaki, K.; Hayakawa, H.; Takeshita, H.; Sasaki, C.; Kogure, T.; Mukai, T. Presence of beta-linked GalNAc residues on N-glycans of human thyroglobulin. Life Sci., 2007, 80(6), 538-545.
[http://dx.doi.org/10.1016/j.lfs.2006.10.004] [PMID: 17097689]
[276]
Pinho, S.S.; Reis, C.A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer, 2015, 15(9), 540-555.
[http://dx.doi.org/10.1038/nrc3982] [PMID: 26289314]
[277]
Syed, P.; Gidwani, K.; Kekki, H.; Leivo, J.; Pettersson, K.; Lamminmäki, U. Role of lectin microarrays in cancer diagnosis. Proteomics, 2016, 16(8), 1257-1265.
[http://dx.doi.org/10.1002/pmic.201500404] [PMID: 26841254]
[278]
Afrimzon, E.; Botchkina, G.; Zurgil, N.; Shafran, Y.; Sobolev, M.; Moshkov, S.; Ravid-Hermesh, O.; Ojima, I.; Deutsch, M. Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution. Lab Chip, 2016, 16(6), 1047-1062.
[http://dx.doi.org/10.1039/C6LC00014B] [PMID: 26907542]
[279]
Sun, X.; Li, Y.; Liu, T.; Li, Z.; Zhang, X.; Chen, X. Peptide-based imaging agents for cancer detection. Adv. Drug Deliv. Rev., 2017, 110-111, 38-51.
[http://dx.doi.org/10.1016/j.addr.2016.06.007] [PMID: 27327937]
[280]
Erathodiyil, N.; Ying, J.Y. Functionalization of inorganic nanoparticles for bioimaging applications. Acc. Chem. Res., 2011, 44(10), 925-935.
[http://dx.doi.org/10.1021/ar2000327] [PMID: 21648430]
[281]
Xie, M.; Lu, N-N.; Cheng, S-B.; Wang, X-Y.; Wang, M.; Guo, S.; Wen, C-Y.; Hu, J.; Pang, D-W.; Huang, W-H. Engineered decomposable multifunctional nanobioprobes for capture and release of rare cancer cells. Anal. Chem., 2014, 86(9), 4618-4626.
[http://dx.doi.org/10.1021/ac500820p] [PMID: 24716801]
[282]
Pei, M.; Jia, X.; Zhao, X.; Li, J.; Liu, P. Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohydr. Polym., 2018, 183, 131-139.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.013] [PMID: 29352868]
[283]
Zhao, J.; Li, J.; Zhu, C.; Hu, F.; Wu, H.; Man, X.; Li, Z.; Ye, C.; Zou, D.; Wang, S. Design of phase-changeable and injectable alginate hydrogel for imaging-guided tumor hyperthermia and chemotherapy. ACS Appl. Mater. Interfaces, 2018, 10(4), 3392-3404.
[http://dx.doi.org/10.1021/acsami.7b17608] [PMID: 29313334]
[284]
Huang, Y.; Hu, F.; Zhao, R.; Zhang, G.; Yang, H.; Zhang, D. Tetraphenylethylene conjugated with a specific peptide as a fluorescence turn-on bioprobe for the highly specific detection and tracing of tumor markers in live cancer cells. Chemistry, 2014, 20(1), 158-164.
[http://dx.doi.org/10.1002/chem.201303679] [PMID: 24516888]
[285]
Lee, J.; Samson, A.A.S.; Song, J.M. Peptide substrate-based inkjet printing high-throughput MMP-9 anticancer assay using fluorescence resonance energy transfer (FRET). Sens. Actuators B Chem., 2018, 256, 1093-1099.
[http://dx.doi.org/10.1016/j.snb.2017.10.051]
[286]
Gaertner, F.C.; Kessler, H.; Wester, H-J.; Schwaiger, M.; Beer, A.J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(1)(Suppl. 1), S126-S138.
[http://dx.doi.org/10.1007/s00259-011-2028-1] [PMID: 22388629]
[287]
Cai, H.; Conti, P.S. RGD-based PET tracers for imaging receptor integrin αv β3 expression. J. Labelled Comp. Radiopharm., 2013, 56(5), 264-279.
[http://dx.doi.org/10.1002/jlcr.2999] [PMID: 24285371]
[288]
Roosenburg, S.; Laverman, P.; van Delft, F.L.; Boerman, O.C. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids, 2011, 41(5), 1049-1058.
[http://dx.doi.org/10.1007/s00726-010-0501-y] [PMID: 20198494]
[289]
Mansur, A.A.P.; Mansur, H.S.; Soriano-Araújo, A.; Lobato, Z.I.P. Fluorescent nanohybrids based on quantum dot-chitosan-antibody as potential cancer biomarkers. ACS Appl. Mater. Interfaces, 2014, 6(14), 11403-11412.
[http://dx.doi.org/10.1021/am5019989] [PMID: 24956063]
[290]
Xia, L-Y.; Zhang, X.; Cao, M.; Chen, Z.; Wu, F-G. Enhanced fluorescence emission and singlet oxygen generation of photosensitizers embedded in injectable hydrogels for imaging-guided photodynamic cancer therapy. Biomacromolecules, 2017, 18(10), 3073-3081.
[http://dx.doi.org/10.1021/acs.biomac.7b00725] [PMID: 28820580]
[291]
Shin, D.S.; Tokuda, E.Y.; Leight, J.L.; Miksch, C.E.; Brown, T.E.; Anseth, K.S. Synthesis of microgel sensors for spatial and temporal monitoring of protease activity. ACS Biomater. Sci. Eng., 2018, 4(2), 378-387.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00017] [PMID: 29527570]
[292]
He, L.; Lu, D-Q.; Liang, H.; Xie, S.; Luo, C.; Hu, M.; Xu, L.; Zhang, X.; Tan, W. Fluorescence resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano, 2017, 11(4), 4060-4066.
[http://dx.doi.org/10.1021/acsnano.7b00725] [PMID: 28328200]
[293]
Geng, J.; Yao, C.; Kou, X.; Tang, J.; Luo, D.; Yang, D. A Fluorescent biofunctional DNA hydrogel prepared by enzymatic polymerization. Adv. Healthc. Mater., 2018, 7(5)1700998
[http://dx.doi.org/10.1002/adhm.201700998] [PMID: 29280301]
[294]
Xu, H.; Jiang, Y.; Liu, D.; Liu, K.; Zhang, Y.; Yu, S.; Shen, Z.; Wu, Z-S. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene. Anal. Chim. Acta, 2018, 1011, 86-93.
[http://dx.doi.org/10.1016/j.aca.2018.01.022] [PMID: 29475489]
[295]
Yang, D.; Tang, Y.; Miao, P. Hybridization chain reaction directed DNA superstructures assembly for biosensing applications. Trends Analyt. Chem., 2017, 94, 1-13.
[http://dx.doi.org/10.1016/j.trac.2017.06.011]
[296]
Yu, J.; Jeon, J.; Choi, N.; Lee, J.O.; Kim, Y-P.; Choo, J. SERS-based genetic assay for amplification-free detection of prostate cancer specific PCA3 mimic DNA. Sens. Actuators B Chem., 2017, 251, 302-309.
[http://dx.doi.org/10.1016/j.snb.2017.05.039]
[297]
Xue, Q.; Liu, C.; Li, X.; Dai, L.; Wang, H. Label-free fluorescent DNA dendrimers for microRNA detection based on nonlinear hybridization chain reaction-mediated multiple G-quadruplex with low background signal. Bioconjug. Chem., 2018, 29(4), 1399-1405.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00098] [PMID: 29546979]
[298]
Shin, S.W.; Lee, B.S.; Yang, K.; Amornkitbamrung, L.; Jang, M.S.; Ku, B.M.; Cho, S-W.; Lee, J.H.; Bae, H.; Oh, B-K.; Ahn, M-J.; Lim, Y.T.; Um, S.H. Fluorescence-coded DNA nanostructure probe system to enable discrimination of tumor heterogeneity via a screening of dual intracellular microRNA signatures in situ. Sci. Rep., 2017, 7(1), 13499.
[http://dx.doi.org/10.1038/s41598-017-13456-3] [PMID: 29044199]
[299]
Tang, J.; Yu, Y.; Shi, H.; He, X.; Lei, Y.; Shangguan, J.; Yang, X.; Qiao, Z.; Wang, K. Polyvalent and thermosensitive DNA nanoensembles for cancer cell detection and manipulation. Anal. Chem., 2017, 89(12), 6637-6644.
[http://dx.doi.org/10.1021/acs.analchem.7b00864] [PMID: 28492073]
[300]
Borghei, Y-S.; Hosseini, M.; Ganjali, M.R. Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Mikrochim. Acta, 2017, 184(8), 2671-2677.
[http://dx.doi.org/10.1007/s00604-017-2272-6]
[301]
Liow, S.S.; Zhou, H.; Sugiarto, S.; Guo, S.; Chalasani, M.L.S.; Verma, N.K.; Xu, J.; Loh, X.J. Highly efficient supramolecular aggregation-induced emission-active pseudorotaxane luminogen for functional bioimaging. Biomacromolecules, 2017, 18(3), 886-897.
[http://dx.doi.org/10.1021/acs.biomac.6b01777] [PMID: 28140561]
[302]
Wang, W-X.; Wu, Y.; Li, H-W. Regulation on the aggregation-induced emission (AIE) of DNA-templated silver nanoclusters by BSA and its hydrolysates. J. Colloid Interface Sci., 2017, 505, 577-584.
[http://dx.doi.org/10.1016/j.jcis.2017.06.033] [PMID: 28646761]
[303]
Horvath, J.; Dolník, V. Polymer wall coatings for capillary electrophoresis. Electrophoresis, 2001, 22(4), 644-655.
[http://dx.doi.org/10.1002/1522-2683(200102)22:4<644::AID-ELPS644>3.0.CO;2-3] [PMID: 11296918]
[304]
Chung, M.; Kim, D.; Herr, A.E. Polymer sieving matrices in microanalytical electrophoresis. Analyst (Lond.), 2014, 139(22), 5635-5654.
[http://dx.doi.org/10.1039/C4AN01179A] [PMID: 25195612]
[305]
Durney, B.C.; Crihfield, C.L.; Holland, L.A. Capillary electrophoresis applied to DNA: determining and harnessing sequence and structure to advance bioanalyses (2009-2014). Anal. Bioanal. Chem., 2015, 407(23), 6923-6938.
[http://dx.doi.org/10.1007/s00216-015-8703-5] [PMID: 25935677]
[306]
Li, Z.; Liu, C.; Yamaguchi, Y.; Ni, Y.; You, Q.; Dou, X. Capillary electrophoresis of a wide range of DNA fragments in a mixed solution of hydroxyethyl cellulose. Anal. Methods, 2014, 6(8), 2473-2477.
[http://dx.doi.org/10.1039/C3AY41965G]
[307]
Xiong, X.; Wu, C.; Zhou, C.; Zhu, G.; Chen, Z.; Tan, W. Responsive DNA-based hydrogels and their applications. Macromol. Rapid Commun., 2013, 34(16), 1271-1283.
[http://dx.doi.org/10.1002/marc.201300411] [PMID: 23857726]
[308]
He, X.; Wei, B.; Mi, Y. Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chem. Commun. (Camb.), 2010, 46(34), 6308-6310.
[http://dx.doi.org/10.1039/c0cc01392g] [PMID: 20672164]
[309]
Shastri, A.; McGregor, L.M.; Liu, Y.; Harris, V.; Nan, H.; Mujica, M.; Vasquez, Y.; Bhattacharya, A.; Ma, Y.; Aizenberg, M.; Kuksenok, O.; Balazs, A.C.; Aizenberg, J.; He, X. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nat. Chem., 2015, 7(5), 447-454.
[http://dx.doi.org/10.1038/nchem.2203] [PMID: 25901824]
[310]
Kim, M.; Chen, W.G.; Souza, B.S.; Olsen, B.D. Selective biomolecular separation system inspired by the nuclear pore complex and nucle-ar transport. Mol. Syst. Des. Eng., 2017, 2(2), 149-158.
[http://dx.doi.org/10.1039/C7ME00006E]
[311]
Wu, S.; Braschler, T.; Anker, R.; Wildhaber, F.; Bertsch, A.; Brugger, J.; Renaud, P. Composite hydrogel-loaded alumina membranes for nanofluidic molecular filtration. J. Membr. Sci., 2015, 477, 151-156.
[http://dx.doi.org/10.1016/j.memsci.2014.12.023]
[312]
Kanagaraj, P.; Nagendran, A.; Rana, D.; Matsuura, T.; Neelakandan, S.; Karthikkumar, T.; Muthumeenal, A. Influence of N-phthaloyl chitosan on poly (ether imide) ultrafiltration membranes and its application in biomolecules and toxic heavy metal ion separation and their antifouling properties. Appl. Surf. Sci., 2015, 329, 165-173.
[http://dx.doi.org/10.1016/j.apsusc.2014.12.082]
[313]
Zengin Kurt, B.; Uckaya, F.; Durmus, Z. Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int. J. Biol. Macromol., 2017, 96, 149-160.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.042] [PMID: 27988290]
[314]
Liu, E.Y.; Jung, S.; Weitz, D.A.; Yi, H.; Choi, C-H. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. Lab Chip, 2018, 18(2), 323-334.
[http://dx.doi.org/10.1039/C7LC01088E] [PMID: 29242870]
[315]
Saranya, R.; Murugan, R.; Hegde, M.; Doyle, J.; Babu, R. Affinity membranes for capture of cells and biological substances. In: Filtering media by electrospinning: next generation membranes for separation applications; Ramakrishna, S.; Focarete, M.L.; Gualandi, C., Eds.; Springer International Publishing: Cham, 2018, pp. 175-195.
[http://dx.doi.org/10.1007/978-3-319-78163-1_8]
[316]
Johns, M.; Bernardes, A.; De Azevêdo, E.; Guimarães, F.; Lowe, J.; Gale, E.; Polikarpov, I.; Scott, J.; Sharma, R. On the subtle tuneability of cellulose hydrogels: implications for binding of biomolecules demonstrated for CBM 1. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(21), 3879-3887.
[http://dx.doi.org/10.1039/C7TB00176B]
[317]
Anjum, S.; Singh, S.; Benedicte, L.; Roger, P.; Panigrahi, M.; Gupta, B. Biomodification strategies for the development of antimi-crobial urinary catheters: overview and advances. Glob Chall, 2017, 2(1)1700068
[http://dx.doi.org/10.1002/gch2.201700068] [PMID: 31565299]
[318]
Li, M.; Mitra, D.; Kang, E-T.; Lau, T.; Chiong, E.; Neoh, K.G. Thiolol chemistry for grafting of natural polymers to form highly stable and efficacious antibacterial coatings. ACS Appl. Mater. Interfaces, 2017, 9(2), 1847-1857.
[http://dx.doi.org/10.1021/acsami.6b10240] [PMID: 27991755]
[319]
Lim, K.; Saravanan, R.; Chong, K.K.L.; Goh, S.H.M.; Chua, R.R.Y.; Tambyah, P.A.; Chang, M.W.; Kline, K.A.; Leong, S.S.J. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides. Biotechnol. Bioeng., 2018, 115(8), 2000-2012.
[http://dx.doi.org/10.1002/bit.26713] [PMID: 29665026]
[320]
Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J. Antimicrobial hydrogels: promising materials for medical application. Int. J. Nanomedicine, 2018, 13, 2217-2263.
[http://dx.doi.org/10.2147/IJN.S154748] [PMID: 29695904]
[321]
Mandakhalikar, K.D.; Chua, R.R.; Tambyah, P.A. New technologies for prevention of catheter associated urinary tract infection. Curr. Treat. Options Infect. Dis., 2016, 8(1), 24-41.
[http://dx.doi.org/10.1007/s40506-016-0069-5]
[322]
Singha, P.; Locklin, J.; Handa, H. A review of the recent advances In: antimicrobial coatings for urinary catheters. Acta Biomater., 2017, 50, 20-40.
[http://dx.doi.org/10.1016/j.actbio.2016.11.070] [PMID: 27916738]
[323]
Wo, Y.; Brisbois, E.J.; Bartlett, R.H. Improving the hemocompatibility of catheters via NO release/generation in: Hemocompatibility of Biomaterials for Clinical Applications; Woodhead Publishing, 2018, pp. 431-455.
[http://dx.doi.org/10.1016/B978-0-08-100497-5.00013-6]
[324]
Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science, 2017, 356(6337)eaaf3627
[http://dx.doi.org/10.1126/science.aaf3627] [PMID: 28473537]
[325]
Nagahama, K.; Kimura, Y.; Takemoto, A. Living functional hydrogels generated by bioorthogonal cross-linking reactions of azide-modified cells with alkyne-modified polymers. Nat. Commun., 2018, 9(1), 2195.
[http://dx.doi.org/10.1038/s41467-018-04699-3] [PMID: 29875358]
[326]
Madl, C.M.; Heilshorn, S.C. Tyrosine-selective functionalization for bio-orthogonal cross-linking of engineered protein hydrogels. Bioconjug. Chem., 2017, 28(3), 724-730.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00720] [PMID: 28151642]
[327]
Hodgson, S.M.; McNelles, S.A.; Abdullahu, L.; Marozas, I.A.; Anseth, K.S.; Adronov, A. Reproducible dendronized PEG hydrogels via SPAAC cross-linking. Biomacromolecules, 2017, 18(12), 4054-4059.
[http://dx.doi.org/10.1021/acs.biomac.7b01115] [PMID: 28968079]
[328]
Tavakoli, J.; Costi, J.J. Development of a rapid matrix digestion technique for ultrastructural analysis of elastic fibers in the intervertebral disc. J. Mech. Behav. Biomed. Mater., 2017, 71, 175-183.
[http://dx.doi.org/10.1016/j.jmbbm.2017.03.014] [PMID: 28342325]
[329]
Tavakoli, J.; Costi, J.J. A method for visualization and isolation of elastic fibres in annulus fibrosus of the disc. Mater. Sci. Eng. C, 2018, 93, 299-304.
[http://dx.doi.org/10.1016/j.msec.2018.08.007] [PMID: 30274062]
[330]
Liu, S.; Moore, A.C.; Zerdoum, A.B.; Zhang, H.; Scinto, S.L.; Zhang, H.; Gong, L.; Burris, D.L.; Rajasekaran, A.K.; Fox, J.M.; Jia, X. Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials, 2018, 180, 24-35.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.042] [PMID: 30014964]
[331]
Sun, X.; Zebibula, A.; Dong, X.; Li, G.; Zhang, G.; Zhang, D.; Qian, J.; He, S. Targeted and imaging-guided in vivo photodynamic therapy for tumors using dual-function, aggregation-induced emission nanoparticles. Nano Res., 2018, 11(5), 2756-2770.
[http://dx.doi.org/10.1007/s12274-017-1906-7]
[332]
Mei, J.; Hong, Y.; Lam, J.W.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater., 2014, 26(31), 5429-5479.
[http://dx.doi.org/10.1002/adma.201401356] [PMID: 24975272]
[333]
Tavakoli, J.; Gascooke, J.; Xie, N.; Tang, B.Z.; Tang, Y. Enlightening freeze-thaw process of physically cross-linked poly(vinyl alcohol) hydrogels by aggregation-induced emission fluorogens. ACS Appl. Polym. Mater., 2019, 1(6), 1390-1398.
[http://dx.doi.org/10.1021/acsapm.9b00173]
[334]
Tavakoli, J.; Zhang, H-p.; Tang, B.Z.; Tang, Y. Aggregation-induced emission lights up the swelling process: a new technique for swelling characterization of hydrogels. Mater. Chem. Front., 2019, 3(4), 664-667.
[http://dx.doi.org/10.1039/C9QM00054B]
[335]
Tavakoli, J.; Laisak, E.; Gao, M.; Tang, Y. AIEgen quantitatively monitoring the release of Ca2+ during swelling and degradation process in alginate hydrogels. Mater. Sci. Eng. C, 2019, 104109951
[http://dx.doi.org/10.1016/j.msec.2019.109951] [PMID: 31500059]
[336]
Xu, W.; He, L.; Xia, Q.; Jia, C.; Geng, L.; Yang, M.; Xu, Z.; Chen, P.; Cheng, Y.; Zhao, J. A far-red-emissive AIE active fluorescent probe with large stokes shift for detection of inflammatory bowel disease in vivo. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(5), 809-815.
[http://dx.doi.org/10.1039/C7TB03168H]
[337]
Li, R.; Huang, X.; Lu, G.; Feng, C. A fluorescence and UV/vis absorption dual-signaling probe with aggregation-induced emission characteristics for specific detection of cysteine. Rsc Adv, 2018, 8(43), 24346-24354.
[http://dx.doi.org/10.1039/C8RA03756F]
[338]
Qi, J.; Sun, C.; Zebibula, A.; Zhang, H.; Kwok, R.T.K.; Zhao, X.; Xi, W.; Lam, J.W.Y.; Qian, J.; Tang, B.Z. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv. Mater., 2018, 30(12)e1706856
[http://dx.doi.org/10.1002/adma.201706856] [PMID: 29341330]
[339]
Wang, Z.Y.; Yongming, Z. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci. A Polym. Chem., 2017, 55(4), 560-574.
[http://dx.doi.org/10.1002/pola.28420]
[340]
Xia, Y.; Xue, B.; Qin, M.; Cao, Y.; Li, Y.; Wang, W. Printable fluorescent hydrogels based on self-assembling peptides. Sci. Rep., 2017, 7(1), 9691.
[http://dx.doi.org/10.1038/s41598-017-10162-y] [PMID: 28852128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy