Abstract
The rapid increase of health-threatening infections by Gram-negative pathogens along with the emergence of multidrugresistant bacterial strains demands the development of novel antibiotics directed against the previously unexploited targets. One of the promising targets in Gram-negative bacteria is the zinc-dependent metalloamidase, UDP-3-O-(R-3-hydroxymyristoyl)-Nacetylglucosamine deacetylase (LpxC). LpxC catalyzes the first committed, second overall step in the biosynthetic pathway of lipid A. Thus, research on LpxC inhibitors as antibacterial agents has become an attractive field in the development of the novel antibiotic therapy of Gram-negative bacteria. In this review, we will summarize the recent progress in the studies on the structure, catalytic mechanism and regulation of LpxC and the current development of LpxC inhibitors.
Keywords: Gram-negative bacteria, MDR, lipid A, biosynthesis, LpxC, Structure, FtsH, LpxC Inhibitors