Abstract
Dopamine (DA), the most abundant catecholamine in the basal ganglia, participates in the regulation of motor functions and of cognitive processes such as learning and memory. Abnormalities in dopaminergic systems are thought to be the bases for some neuropsychiatric disorders including addiction, Parkinson’s disease, and Schizophrenia. DA exerts its arrays of functions via stimulation of D1-like (D1 and D5) and D2-like (D2, D3, and D4) DA receptors which are located in various regions of the brain. The DA D1 and D2 receptors are very abundant in the basal ganglia where they exert their functions within separate neuronal cell types. The present paper focuses on a review of the effects of stimulation of DA D1 receptors on diverse signal transduction pathways and gene expression patterns in the brain. We also discuss the possible involvement of the DA D1 receptors in DA-mediated toxic effects observed both in vitro and in vivo. Future studies using more selective agonist and antagonist agents and the use of genetically modified animals should help to further clarify the role of these receptors in the normal physiology and in pathological events that involve DA.
Keywords: Amphetamines, AP-1, apoptosis, basal ganglia, cocaine, DA receptors, Egr, signal transduction.
CNS & Neurological Disorders - Drug Targets
Title: Dopamine D1 Receptors, Regulation of Gene Expression in the Brain, and Neurodegeneration
Volume: 9 Issue: 5
Author(s): Jean Lud Cadet, Subramaniam Jayanthi, Michael T. McCoy, Genevieve Beauvais and Ning Sheng Cai
Affiliation:
Keywords: Amphetamines, AP-1, apoptosis, basal ganglia, cocaine, DA receptors, Egr, signal transduction.
Abstract: Dopamine (DA), the most abundant catecholamine in the basal ganglia, participates in the regulation of motor functions and of cognitive processes such as learning and memory. Abnormalities in dopaminergic systems are thought to be the bases for some neuropsychiatric disorders including addiction, Parkinson’s disease, and Schizophrenia. DA exerts its arrays of functions via stimulation of D1-like (D1 and D5) and D2-like (D2, D3, and D4) DA receptors which are located in various regions of the brain. The DA D1 and D2 receptors are very abundant in the basal ganglia where they exert their functions within separate neuronal cell types. The present paper focuses on a review of the effects of stimulation of DA D1 receptors on diverse signal transduction pathways and gene expression patterns in the brain. We also discuss the possible involvement of the DA D1 receptors in DA-mediated toxic effects observed both in vitro and in vivo. Future studies using more selective agonist and antagonist agents and the use of genetically modified animals should help to further clarify the role of these receptors in the normal physiology and in pathological events that involve DA.
Export Options
About this article
Cite this article as:
Lud Cadet Jean, Jayanthi Subramaniam, T. McCoy Michael, Beauvais Genevieve and Sheng Cai Ning, Dopamine D1 Receptors, Regulation of Gene Expression in the Brain, and Neurodegeneration, CNS & Neurological Disorders - Drug Targets 2010; 9 (5) . https://dx.doi.org/10.2174/187152710793361496
DOI https://dx.doi.org/10.2174/187152710793361496 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Computational Elucidation of Phylogenetic, Functional and Structural Features of Methioninase from <i>Pseudomonas, Escherichia, Clostridium</i> and <i>Citrobacter Strains</i>
Recent Patents on Biotechnology Prolyl Oligopeptidase: A Rising Star on the Stage of Neuroinflammation Research
CNS & Neurological Disorders - Drug Targets Hedgehog Signaling and Urological Cancers
Current Drug Targets Dehydroleucodine Induces a TP73-dependent Transcriptional Regulation of Multiple Cell Death Target Genes in Human Glioblastoma Cells
Anti-Cancer Agents in Medicinal Chemistry Synthetic Routes and Biological Activities of Benzofuran and its Derivatives: A Review
Letters in Organic Chemistry HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity
Current HIV Research Aβ(1-42) Aggregates into Non-Toxic Amyloid Assemblies in the Presence of the Natural Polyphenol Oleuropein Aglycon
Current Alzheimer Research Anticancer Properties of Amino Acid and Peptide Derivatives of Mycophenolic Acid
Anti-Cancer Agents in Medicinal Chemistry A Review on Extraction, Synthesis and Anticancer Activity of Betulinic Acid
Current Bioactive Compounds Complement and Microglia in the Neuropathogenesis of HIV Infection: Pro- and Anti-Inflammatory Aspects
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Nitrone Derivatives as Therapeutics: From Chemical Modification to Specific-targeting
Current Topics in Medicinal Chemistry Emerging RNA-based Drugs: siRNAs, microRNAs and Derivates
Central Nervous System Agents in Medicinal Chemistry Nicotine, Body Weight and Potential Implications in the Treatment of Obesity
Current Topics in Medicinal Chemistry Base Excision Repair: Contribution to Tumorigenesis and Target in Anticancer Treatment Paradigms
Current Medicinal Chemistry Small Heat Shock Proteins (sHSPs) As Potential Drug Targets
Current Pharmaceutical Biotechnology Antiepileptics and the Treatment of Neuropathic Pain: Evidence from Animal Models
Current Pharmaceutical Design Oligonucleotides and G-quadruplex Stabilizers: Targeting Telomeres and Telomerase in Cancer Therapy
Current Pharmaceutical Design ABC Transporters in the Development of Multidrug Resistance in Cancer Therapy
Current Pharmaceutical Design Phenolic Compounds as Nutraceuticals or Functional Food Ingredients
Current Pharmaceutical Design High-Throughput Screening Technologies for Botulinum Neurotoxins
Current Topics in Medicinal Chemistry