[1]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[2]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[3]
Barry, N.P.E.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun. (Camb.), 2013, 49(45), 5106-5131.
[4]
Gaynor, D.; Griffith, D.M. The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Dalton Trans., 2012, 41(43), 13239-13257.
[5]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[6]
Komeda, S.; Casini, A. Next-generation anticancer metallodrugs. Curr. Top. Med. Chem., 2012, 12(3), 219-235.
[7]
Barnard, P.J.; Berners-Price, S.J. Targeting the mitochondrial cell death pathway with gold compounds. Coord. Chem. Rev., 2007, 251, 1889-1902.
[8]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[9]
Bergamo, A.; Sava, G. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans., 2011, 40(31), 7817-7823.
[10]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[11]
Bellance, N.; Lestienne, P.; Rossignol, R. Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front. Biosci., 2009, 14, 4015-4034.
[12]
McFarland, R.; Taylor, R.W.; Turnbull, D.M. Mitochondrial disease--its impact, etiology, and pathology. Curr. Top. Dev. Biol., 2007, 77, 113-155.
[13]
Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet., 2005, 6(5), 389-402.
[14]
Indran, I.R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta, 2011, 1807(6), 735-745.
[15]
Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell, 2008, 13(6), 472-482.
[16]
Galluzzi, L.; Morselli, E.; Kepp, O.; Vitale, I.; Rigoni, A.; Vacchelli, E.; Michaud, M.; Zischka, H.; Castedo, M.; Kroemer, G. Mitochondrial gateways to cancer. Mol. Aspects Med., 2010, 31(1), 1-20.
[17]
Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol., 2008, 18(4), 165-173.
[18]
Mashima, T.; Tsuruo, T. Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist. Updat., 2005, 8(6), 339-343.
[19]
Galluzzi, L.; Larochette, N.; Zamzami, N.; Kroemer, G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene, 2006, 25(34), 4812-4830.
[20]
Machida, K.; Ohta, Y.; Osada, H. Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J. Biol. Chem., 2006, 281(20), 14314-14320.
[21]
Andrews, P.A.; Albright, K.D. Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res., 1992, 52(7), 1895-1901.
[22]
Isonishi, S.; Saitou, M.; Yasuda, M.; Tanaka, T. Mitochondria in platinum resistant cells. Hum. Cell, 2001, 14(3), 203-210.
[23]
Hirama, M.; Isonishi, S.; Yasuda, M.; Ishikawa, H. Characterization of mitochondria in cisplatin-resistant human ovarian carcinoma cells. Oncol. Rep., 2006, 16(5), 997-1002.
[24]
Groessl, M.; Zava, O.; Dyson, P.J. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Metallomics, 2011, 3(6), 591-599.
[25]
Chazotte, B. Labeling mitochondria with MitoTracker dyes. Cold Spring Harb. Protoc., 2011, 2011(8), 990-992.
[26]
Pröfrock, D.; Prange, A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl. Spectrosc., 2012, 66(8), 843-868.
[27]
Cullen, K.J.; Yang, Z.; Schumaker, L.; Guo, Z. Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J. Bioenerg. Biomembr., 2007, 39(1), 43-50.
[28]
Murata, T.; Hibasami, H.; Maekawa, S.; Tagawa, T.; Nakashima, K. Preferential binding of cisplatin to mitochondrial DNA and suppression of ATP generation in human malignant melanoma cells. Biochem. Int., 1990, 20(5), 949-955.
[29]
Olivero, O.A.; Semino, C.; Kassim, A.; Lopez-Larraza, D.M.; Poirier, M.C. Preferential binding of cisplatin to mitochondrial DNA of Chinese hamster ovary cells. Mutat. Res., 1995, 346(4), 221-230.
[30]
Marrache, S.; Pathak, R.K.; Dhar, S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc. Natl. Acad. Sci. USA, 2014, 111(29), 10444-10449.
[31]
Wisnovsky, S.P.; Wilson, J.J.; Radford, R.J.; Pereira, M.P.; Chan, M.R.; Laposa, R.R.; Lippard, S.J.; Kelley, S.O. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol., 2013, 20(11), 1323-1328.
[32]
Köster, S.D.; Alborzinia, H.; Can, S.; Kitanovic, I.; Wölfl, S.; Rubbiani, R.; Ott, I.; Riesterer, P.; Prokop, A.; Merz, K.; Metzler-Nolte, N. A spontaneous gold(I)-azide alkyne cycloaddition reaction yields gold-peptide bioconjugates which overcome cisplatin resistance in a p53-mutant cancer cell line. Chem. Sci. (Camb.), 2012, 3, 2062-2072.
[33]
Feldhaeusser, B.; Platt, S.R.; Marrache, S.; Kolishetti, N.; Pathak, R.K.; Montgomery, D.J.; Reno, L.R.; Howerth, E.; Dhar, S. Evaluation of nanoparticle delivered cisplatin in beagles. Nanoscale, 2015, 7(33), 13822-13830.
[34]
Zhou, W.; Wang, X.; Hu, M.; Zhu, C.; Guo, Z. A mitochondria-targeting copper complex exhibits potent cytotoxicity against cisplatin-resistant tumor cells through multiple mechanisms of action. Chem. Sci. (Camb.), 2014, 5, 2761-2770.
[35]
Banik, B.; Somyajit, K.; Nagaraju, G.; Chakravarty, A.R. Oxovanadium(IV) complexes of curcumin for cellular imaging and mitochondria targeted photocytotoxicity. Dalton Trans., 2014, 43(35), 13358-13369.
[36]
He, X.; Gong, L.; Kräling, K.; Gründler, K.; Frias, C.; Webster, R.D.; Meggers, E.; Prokop, A.; Xia, H. Unusual η2-allene osmacycle with apoptotic properties. ChemBioChem, 2010, 11(11), 1607-1613.
[37]
Koo, C-K.; So, L.K-Y.; Wong, K-L.; Ho, Y-M.; Lam, Y-W.; Lam, M.H-W.; Cheah, K-W.; Cheng, C.C-W.; Kwok, W-M. A triphenylphosphonium-functionalised cyclometalated platinum(II) complex as a nucleolus-specific two-photon molecular dye. Chemistry, 2010, 16(13), 3942-3950.
[38]
Hoye, A.T.; Davoren, J.E.; Wipf, P.; Fink, M.P.; Kagan, V.E. Targeting mitochondria. Acc. Chem. Res., 2008, 41(1), 87-97.
[39]
Eloy, L.; Jarrousse, A-S.; Teyssot, M-L.; Gautier, A.; Morel, L.; Jolivalt, C.; Cresteil, T.; Roland, S. Anticancer activity of silver-N-heterocyclic carbene complexes: caspase-independent induction of apoptosis via mitochondrial apoptosis-inducing factor (AIF). ChemMedChem, 2012, 7(5), 805-814.
[40]
Liu, J.J.; Galettis, P.; Farr, A.; Maharaj, L.; Samarasinha, H.; McGechan, A.C.; Baguley, B.C.; Bowen, R.J.; Berners-Price, S.J.; McKeage, M.J. In vitro antitumour and hepatotoxicity profiles of Au(I) and Ag(I) bidentate pyridyl phosphine complexes and relationships to cellular uptake. J. Inorg. Biochem., 2008, 102(2), 303-310.
[41]
Sun, R.W-Y.; Chow, A.L-F.; Li, X-H.; Yan, J.J.; Chui, S.S-Y.; Che, C-M. Luminescent cyclometalated platinum(II) complexes containing N-heterocyclic carbene ligands with potent in vitro and in vivo anti-cancer properties accumulate in cytoplasmic structures of cancer cells. Chem. Sci. (Camb.), 2011, 2, 728-736.
[42]
Erkkila, K.E.; Odom, D.T.; Barton, J.K. Recognition and reaction of metallointercalators with DNA. Chem. Rev., 1999, 99(9), 2777-2796.
[43]
Erxleben, A. . Advances in the development of DNAcleaving metal complexes as anticancer agents.Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering., 30-Nov-2015
[44]
Gill, M.R.; Thomas, J.A. Ruthenium(II) polypyridyl complexes and DNA--from structural probes to cellular imaging and therapeutics. Chem. Soc. Rev., 2012, 41(8), 3179-3192.
[45]
Pisani, M.J.; Weber, D.K.; Heimann, K.; Collins, J.G.; Keene, F.R. Selective mitochondrial accumulation of cytotoxic dinuclear polypyridyl ruthenium(II) complexes. Metallomics, 2010, 2(6), 393-396.
[46]
Pisani, M.J.; Fromm, P.D.; Mulyana, Y.; Clarke, R.J.; Körner, H.; Heimann, K.; Collins, J.G.; Keene, F.R. Mechanism of cytotoxicity and cellular uptake of lipophilic inert dinuclear polypyridylruthenium(II) complexes. ChemMedChem, 2011, 6(5), 848-858.
[47]
Pierroz, V.; Joshi, T.; Leonidova, A.; Mari, C.; Schur, J.; Ott, I.; Spiccia, L.; Ferrari, S.; Gasser, G. Molecular and cellular characterization of the biological effects of ruthenium(II) complexes incorporating 2-pyridyl-2-pyrimidine-4-carboxylic acid. J. Am. Chem. Soc., 2012, 134(50), 20376-20387.
[48]
Joshi, T.; Pierroz, V.; Ferrari, S.; Gasser, G. Bis(dipyridophenazine)(2-(2′-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) hexafluorophosphate: a lesson in stubbornness. ChemMedChem, 2014, 9(7), 1419-1427.
[49]
Wang, J-Q.; Zhang, P-Y.; Qian, C.; Hou, X-J.; Ji, L-N.; Chao, H. Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells. J. Biol. Inorg. Chem., 2014, 19(3), 335-348.
[50]
Zeng, L.; Chen, Y.; Liu, J.; Huang, H.; Guan, R.; Ji, L.; Chao, H. Ruthenium(II) complexes with 2-phenylimidazo[4,5-f][1,10] phenanthroline derivatives that strongly combat cisplatin-resistant tumor cells. Sci. Rep., 2016, 6, 19449.
[51]
Du, Y.; Fu, X.; Li, H.; Chen, B.; Guo, Y.; Su, G.; Zhang, H.; Ning, F.; Lin, Y.; Mei, W.; Chen, T. Mitochondrial fragmentation is an important cellular event induced by ruthenium(II) polypyridyl complexes in osteosarcoma cells. ChemMedChem, 2014, 9(4), 714-718.
[52]
Liu, J.; Chen, Y.; Li, G.; Zhang, P.; Jin, C.; Zeng, L.; Ji, L.; Chao, H. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials, 2015, 56, 140-153.
[53]
Wilson, B.C.; Olivo, M.; Singh, G. Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy. Photochem. Photobiol., 1997, 65(1), 166-176.
[54]
Ke, H.; Wang, H.; Wong, W-K.; Mak, N-K.; Kwong, D.W.J.; Wong, K-L.; Tam, H-L. Responsive and mitochondria-specific ruthenium(II) complex for dual in vitro applications: two-photon (near-infrared) induced imaging and regioselective cell killing. Chem. Commun. (Camb.), 2010, 46(36), 6678-6680.
[55]
Zeng, L.; Chen, Y.; Huang, H.; Wang, J.; Zhao, D.; Ji, L.; Chao, H. Cyclometalated ruthenium(II) anthraquinone complexes exhibit strong anticancer activity in hypoxic tumor cells. Chemistry, 2015, 21(43), 15308-15319.
[56]
Sarkar, T.; Banerjee, S.; Hussain, A. Remarkable visible light-triggered cytotoxicity of mitochondria targeting mixed-ligand cobalt(III) complexes of curcumin and phenanthroline bases binding to human serum albumin. RSC Advances, 2015, 5, 16641-16653.
[57]
Fernandez-Moreira, V.; Marzo, I.; Gimeno, M.C. Luminescent Re(I) and Re(I)/Au(I) complexes as cooperative partners in cell imaging and cancer therapy. Chem. Sci. (Camb.), 2014, 5, 4434-4446.
[58]
Zhang, K.Y.; Tso, K.K-S.; Louie, M-W.; Liu, H-W.; Lo, K.K-W. A phosphorescent rhenium(I) tricarbonyl polypyridine complex appended with a fructose pendant that exhibits photocytotoxicity and enhanced uptake by breast cancer cells. Organometallics, 2013, 32, 5098-5102.
[59]
Ye, R-R.; Tan, C-P.; Lin, Y-N.; Ji, L-N.; Mao, Z-W. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction. Chem. Commun. (Camb.), 2015, 51(39), 8353-8356.
[60]
Imstepf, S.; Pierroz, V.; Rubbiani, R.; Felber, M.; Fox, T.; Gasser, G.; Alberto, R. Organometallic rhenium complexes divert doxorubicin to the mitochondria. Angew. Chem. Int. Ed. Engl., 2016, 55(8), 2792-2795.
[61]
Guo, Z.; Tong, W-L.; Chan, M.C.W. Luminescent oligo(ethylene glycol)-functionalized cyclometalated platinum(II) complexes: cellular characterization and mitochondria-specific localization. Chem. Commun. (Camb.), 2014, 50(14), 1711-1714.
[62]
Tso, K.K-S.; Leung, K-K.; Liu, H-W.; Lo, K.K-W. Photoactivatable cytotoxic agents derived from mitochondria-targeting luminescent iridium(III) poly(ethylene glycol) complexes modified with a nitrobenzyl linkage. Chem. Commun. (Camb.), 2016, 52(24), 4557-4560.
[63]
Cao, J-J.; Tan, C-P.; Chen, M-H.; Wu, N.; Yao, D-Y.; Liu, X-G.; Ji, L-N.; Mao, Z-W. Targeting cancer cell metabolism with mitochondria-immobilized phosphorescent cyclometalated iridium(iii) complexes. Chem. Sci. (Camb.), 2017, 8(1), 631-640.
[64]
Gupta, G.; Kumar, J.M.; Garci, A.; Nagesh, N.; Therrien, B. Exploiting natural products to build metalla-assemblies: the anticancer activity of embelin-derived Rh(III) and Ir(III) metalla-rectangles. Molecules, 2014, 19(5), 6031-6046.
[65]
Gupta, G.; Kumar, J.M.; Garci, A.; Rangaraj, N.; Nagesh, N.; Therrien, B. Anticancer activity of half-sandwich RhIII and IrIII metalla-prisms containing lipophilic side chains. ChemPlusChem, 2014, 79, 610-618.
[66]
Lemasters, J.J.; Ramshesh, V.K. Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol., 2007, 80, 283-295.
[67]
Hynes, J.; Marroquin, L.D.; Ogurtsov, V.I.; Christiansen, K.N.; Stevens, G.J.; Papkovsky, D.B.; Will, Y. Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol. Sci., 2006, 92(1), 186-200.
[68]
Qiu-Yun, C.; Dong-Fang, Z.; Juan, H.; Wen-Jie, G.; Jing, G. Synthesis, anticancer activities, interaction with DNA and mitochondria of manganese complexes. J. Inorg. Biochem., 2010, 104(11), 1141-1147.
[69]
Xie, Q.; Liu, S.; Li, X.; Wu, Q.; Luo, Z.; Fu, X.; Cao, W.; Lan, G.; Li, D.; Zheng, W.; Chen, T. Dinuclear zinc(II) complexes containing (benzimidazol-2-yl)benzene that overcome drug resistance in hepatocellular carcinoma cells through induction of mitochondria fragmentation. Dalton Trans., 2014, 43(19), 6973-6976.
[70]
Li, S.; Zhang, S.; Jin, X.; Tan, X.; Lou, J.; Zhang, X.; Zhao, Y. Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mitochondrial pathway. Eur. J. Med. Chem., 2014, 86, 1-11.
[71]
Hearn, J.M.; Romero-Canelón, I.; Qamar, B.; Liu, Z.; Hands-Portman, I.; Sadler, P.J. Organometallic Iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis. ACS Chem. Biol., 2013, 8(6), 1335-1343.
[72]
Liu, Z.; Romero-Canelón, I.; Habtemariam, A.; Clarkson, G.J.; Sadler, P.J. Potent half-sandwich iridium(III) anticancer complexes containing C^N-chelated and pyridine ligands. Organometallics, 2014, 33(19), 5324-5333.
[73]
Li, K.; Zou, T.; Chen, Y.; Guan, X.; Che, C-M. Pincer-type platinum(II) complexes containing N-heterocyclic carbene (NHC) ligand: Structures, photophysical and anion-binding properties, and anticancer activities. Chemistry, 2015, 21(20), 7441-7453.
[74]
Chen, T.; Mei, W-J.; Wong, Y-S.; Liu, J.; Liu, Y.; Xie, H-S.; Zheng, W-J. Chiral ruthenium polypyridyl complexes as mitochondria-targeted apoptosis inducers. MedChemComm, 2010, 1, 73-75.
[75]
Chen, T.; Liu, Y.; Zheng, W-J.; Liu, J.; Wong, Y-S. Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells. Inorg. Chem., 2010, 49(14), 6366-6368.
[76]
Yang, X.; Chen, L.; Liu, Y.; Yang, Y.; Chen, T.; Zheng, W.; Liu, J.; He, Q.Y. Ruthenium methylimidazole complexes induced apoptosis in lung cancer A549 cells through intrinsic mitochondrial pathway. Biochimie, 2012, 94(2), 345-353.
[77]
Mulcahy, S.P.; Gründler, K.; Frias, C.; Wagner, L.; Prokop, A.; Meggers, E. Discovery of a strongly apoptotic ruthenium complex through combinatorial coordination chemistry. Dalton Trans., 2010, 39(35), 8177-8182.
[78]
Chen, Y.; Qin, M-Y.; Wang, L.; Chao, H.; Ji, L-N.; Xu, A-L. A ruthenium(II) β-carboline complex induced p53-mediated apoptosis in cancer cells. Biochimie, 2013, 95(11), 2050-2059.
[79]
Zhao, Z.; Luo, Z.; Wu, Q.; Zheng, W.; Feng, Y.; Chen, T. Mixed-ligand ruthenium polypyridyl complexes as apoptosis inducers in cancer cells, the cellular translocation and the important role of ROS-mediated signaling. Dalton Trans., 2014, 43(45), 17017-17028.
[80]
Li, W.; Jiang, G-B.; Yao, J-H.; Wang, X-Z.; Wang, J.; Han, B-J.; Xie, Y-Y.; Lin, G-J.; Huang, H-L.; Liu, Y-J. Ruthenium(II) complexes: DNA-binding, cytotoxicity, apoptosis, cellular localization, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential and western blot analysis. J. Photochem. Photobiol. B, 2014, 140, 94-104.
[81]
Lai, S-H.; Li, W.; Yao, J-H.; Han, B-J.; Jiang, G-B.; Zhang, C.; Zeng, C-C.; Liu, Y-J. Protein binding and anticancer activity studies of ruthenium(II) polypyridyl complexes toward BEL-7402 cells. J. Photochem. Photobiol. B, 2016, 158, 39-48.
[82]
Zhang, C.; Han, B-J.; Zeng, C-C.; Lai, S-H.; Li, W.; Tang, B.; Wan, D.; Jiang, G.B.; Liu, Y.J. Synthesis, characterization, in vitro cytotoxicity and anticancer effects of ruthenium(II) complexes on BEL-7402 cells. J. Inorg. Biochem., 2016, 157, 62-72.
[83]
Li, W.; Han, B-J.; Yao, J-H.; Jiang, G-B.; Liu, Y-J. Cytotoxicity in vitro, cell migration and apoptotic mechanism studies induced by ruthenium(II) complexes. RSC Advances, 2015, 5, 24534-24543.
[84]
Jiang, G-B.; Zheng, X.; Yao, J-H.; Han, B-J.; Li, W.; Wang, J.; Huang, H-L.; Liu, Y-J. Ruthenium(II) polypyridyl complexes induce BEL-7402 cell apoptosis by ROS-mediated mitochondrial pathway. J. Inorg. Biochem., 2014, 141, 170-179.
[85]
Chen, L.M.; Peng, F.; Li, G.D.; Jie, X.M.; Cai, K.R.; Cai, C.; Zhong, Y.; Zeng, H.; Li, W.; Zhang, Z.; Chen, J.C. The studies on the cytotoxicity in vitro, cellular uptake, cell cycle arrest and apoptosis-inducing properties of ruthenium methylimidazole complex [Ru(MeIm)4(p-cpip)](2.). J. Inorg. Biochem., 2016, 156, 64-74.
[86]
Kalaivani, P.; Prabhakaran, R.; Poornima, P.; Huang, R.; Hornebecq, V.; Dallemer, F.; Padma, V.V.; Natarajan, K. Synthesis and structural characterization of new ruthenium(II) complexes and investigation of their antiproliferative and metastatic effect against human lung cancer (A549) cells. RSC Advances, 2013, 3, 20363-20378.
[87]
Qian, C.; Wang, J-Q.; Song, C-L.; Wang, L-L.; Ji, L-N.; Chao, H. The induction of mitochondria-mediated apoptosis in cancer cells by ruthenium(II) asymmetric complexes. Metallomics, 2013, 5(7), 844-854.
[88]
Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 2010, 48(6), 749-762.
[89]
Li, L.; Wong, Y-S.; Chen, T.; Fan, C.; Zheng, W. Ruthenium complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers. Dalton Trans., 2012, 41(4), 1138-1141.
[90]
Tan, C.; Lai, S.; Wu, S.; Hu, S.; Zhou, L.; Chen, Y.; Wang, M.; Zhu, Y.; Lian, W.; Peng, W.; Ji, L.; Xu, A. Nuclear permeable ruthenium(II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J. Med. Chem., 2010, 53(21), 7613-7624.
[91]
Tan, C.; Wu, S.; Lai, S.; Wang, M.; Chen, Y.; Zhou, L.; Zhu, Y.; Lian, W.; Peng, W.; Ji, L.; Xu, A. Synthesis, structures, cellular uptake and apoptosis-inducing properties of highly cytotoxic ruthenium-Norharman complexes. Dalton Trans., 2011, 40(34), 8611-8621.
[92]
Sarkar, T.; Banerjee, S.; Mukherjee, S.; Hussain, A. Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl neodymium(III) complex of terpyridine and curcumin in cancer cells. Dalton Trans., 2016, 45(15), 6424-6438.
[93]
Huang, H.; Zhang, P.; Yu, B.; Jin, C.; Ji, L.; Chao, H. Synthesis, characterization and biological evaluation of mixed-ligand ruthenium(II) complexes for photodynamic therapy. Dalton Trans., 2015, 44(39), 17335-17345.
[94]
Li, Y.; Tan, C-P.; Zhang, W.; He, L.; Ji, L-N.; Mao, Z-W. Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials, 2015, 39, 95-104.
[95]
Ye, R-R.; Tan, C-P.; He, L.; Chen, M-H.; Ji, L-N.; Mao, Z-W. Cyclometalated Ir(III) complexes as targeted theranostic anticancer therapeutics: combining HDAC inhibition with photodynamic therapy. Chem. Commun. (Camb.), 2014, 50(75), 10945-10948.
[96]
Ye, R-R.; Tan, C-P.; Ji, L-N.; Mao, Z-W. Coumarin-appended phosphorescent cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents. Dalton Trans., 2016, 45(33), 13042-13051.
[97]
Bhattacharyya, A.; Dixit, A.; Mitra, K.; Banerjee, S.; Karande, A.A.; Chakravarty, A.R. BODIPY appended copper(II) complexes of curcumin showing mitochondria targeted remarkable photocytotoxicity in visible light. MedChemComm, 2015, 6, 846-851.
[98]
Sun, T.; Guan, X.; Zheng, M.; Jing, X.; Xie, Z. Mitochondria-localized fluorescent BODIPY-platinum conjugate. ACS Med. Chem. Lett., 2015, 6(4), 430-433.
[99]
Banerjee, S.; Prasad, P.; Khan, I.; Hussain, A.; Kondaiah, P.; Chakravarty, A.R. Mitochondria targeting photocytotoxic oxidovanadium(IV) complexes of curcumin and (acridinyl)dipyridophenazine in visible light. Z. Anorg. Allg. Chem., 2014, 640, 1195-1204.
[100]
Prasad, P.; Khan, I.; Kondaiah, P.; Chakravarty, A.R. Mitochondria-targeting oxidovanadium(IV) complex as a near-IR light photocytotoxic agent. Chemistry, 2013, 19(51), 17445-17455.
[101]
Kitanovic, I.; Can, S.; Alborzinia, H.; Kitanovic, A.; Pierroz, V.; Leonidova, A.; Pinto, A.; Spingler, B.; Ferrari, S.; Molteni, R.; Steffen, A.; Metzler-Nolte, N.; Wölfl, S.; Gasser, G. A deadly organometallic luminescent probe: anticancer activity of a ReI bisquinoline complex. Chemistry, 2014, 20(9), 2496-2507.
[102]
Tomsik, P.; Muthna, D.; Rezacova, M.; Micuda, S.; Cmielova, J.; Hroch, M.; Endlicher, R.; Cervinkova, Z.; Rudolf, E.; Hann, S.; Stibal, D.; Therrien, B.; Süss-Fink, G. [(p-MeC6H4Pri)2Ru2(SC6H4-p-But)3]Cl (diruthenium-1), a dinuclear arene ruthenium compound with very high anticancer activity: An in vitro and in vivo study. J. Organomet. Chem., 2015, 782, 42-51.
[103]
Schimler, S.D.; Hall, D.J.; Debbert, S.L. Anticancer (hexacarbonyldicobalt)propargyl aryl ethers: synthesis, antiproliferative activity, apoptosis induction, and effect on cellular oxidative stress. J. Inorg. Biochem., 2013, 119, 28-37.
[104]
Slator, C.; Barron, N.; Howe, O.; Kellett, A. [Cu(o-phthalate)(phenanthroline)] exhibits unique superoxide-mediated NCI-60 chemotherapeutic action through genomic DNA damage and mitochondrial dysfunction. ACS Chem. Biol., 2016, 11(1), 159-171.
[105]
Marín-Hernández, A.; Gracia-Mora, I.; Ruiz-Ramírez, L.; Moreno-Sánchez, R. Toxic effects of copper-based antineoplastic drugs (Casiopeinas) on mitochondrial functions. Biochem. Pharmacol., 2003, 65(12), 1979-1989.
[106]
Dhar, S.; Lippard, S.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22199-22204.
[107]
Suntharalingam, K.; Song, Y.; Lippard, S.J. Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy. Chem. Commun. (Camb.), 2014, 50(19), 2465-2468.
[108]
Stacpoole, P.W. The pharmacology of dichloroacetate. Metabolism, 1989, 38(11), 1124-1144.
[109]
Xue, X.; You, S.; Zhang, Q.; Wu, Y.; Zou, G.Z.; Wang, P.C.; Zhao, Y.L.; Xu, Y.; Jia, L.; Zhang, X.; Liang, X-J. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol. Pharm., 2012, 9(3), 634-644.
[110]
Zajac, J.; Kostrhunova, H.; Novohradsky, V.; Vrana, O.; Raveendran, R.; Gibson, D.; Kasparkova, J.; Brabec, V. Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin. J. Inorg. Biochem., 2016, 156, 89-97.
[111]
Wexselblatt, E.; Raveendran, R.; Salameh, S.; Friedman-Ezra, A.; Yavin, E.; Gibson, D. On the stability of Pt(IV) pro-drugs with haloacetato ligands in the axial positions. Chemistry, 2015, 21(7), 3108-3114.
[112]
Shiau, C-W.; Huang, J-W.; Wang, D-S.; Weng, J-R.; Yang, C-C.; Lin, C-H.; Li, C.; Chen, C-S. α-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J. Biol. Chem., 2006, 281(17), 11819-11825.
[113]
Mallick, A.; More, P.; Ghosh, S.; Chippalkatti, R.; Chopade, B.A.; Lahiri, M.; Basu, S. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS Appl. Mater. Interfaces, 2015, 7(14), 7584-7598.
[114]
Muscella, A.; Calabriso, N.; Fanizzi, F.P.; De Pascali, S.A.; Urso, L.; Ciccarese, A.; Migoni, D.; Marsigliante, S. [Pt(O,O′-acac)(γ-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway. Br. J. Pharmacol., 2008, 153(1), 34-49.
[115]
Dalla Via, L.; García-Argáez, A.N.; Adami, A.; Grancara, S.; Martinis, P.; Toninello, A.; Belli Dell’Amico, D.; Labella, L.; Samaritani, S. Synthesis, antiproliferative and mitochondrial impairment activities of bis-alkyl-amino transplatinum complexes. Bioorg. Med. Chem., 2013, 21(22), 6965-6972.
[116]
Dalla Via, L.; Santi, S.; Di Noto, V.; Venzo, A.; Agostinelli, E.; Calcabrini, A.; Condello, M.; Toninello, A. Platinum(II) chloride indenyl complexes: electrochemical and biological evaluation. J. Biol. Inorg. Chem., 2011, 16(5), 695-713.
[117]
Chen, J.; Stubbe, J. Bleomycins: towards better therapeutics. Nat. Rev. Cancer, 2005, 5, 102-112.
[118]
Yeung, M.; Hurren, R.; Nemr, C.; Wang, X.; Hershenfeld, S.; Gronda, M.; Liyanage, S.; Wu, Y.; Augustine, J.; Lee, E.A.; Spagnuolo, P.A.; Southall, N.; Chen, C.; Zheng, W.; Jeyaraju, D.V.; Minden, M.D.; Laposa, R.; Schimmer, A.D. Mitochondrial DNA damage by bleomycin induces AML cell death. Apoptosis, 2015, 20(6), 811-820.
[119]
Skrtić, M.; Sriskanthadevan, S.; Jhas, B.; Gebbia, M.; Wang, X.; Wang, Z.; Hurren, R.; Jitkova, Y.; Gronda, M.; Maclean, N.; Lai, C.K.; Eberhard, Y.; Bartoszko, J.; Spagnuolo, P.; Rutledge, A.C.; Datti, A.; Ketela, T.; Moffat, J.; Robinson, B.H.; Cameron, J.H.; Wrana, J.; Eaves, C.J.; Minden, M.D.; Wang, J.C.; Dick, J.E.; Humphries, K.; Nislow, C.; Giaever, G.; Schimmer, A.D. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell, 2011, 20(5), 674-688.
[120]
Lagadinou, E.D.; Sach, A.; Callahan, K.; Rossi, R.M.; Neering, S.J.; Minhajuddin, M.; Ashton, J.M.; Pei, S.; Grose, V.; O’Dwyer, K.M.; Liesveld, J.L.; Brookes, P.S.; Becker, M.W.; Jordan, C.T. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell, 2013, 12(3), 329-341.
[121]
Arner, E.S.J.; Holmgren, A. Thioredoxin–thioredoxin reductase – a system that has come of age. Eur. J. Biochem., 2000, 267, 6102-6109.
[122]
Burke-Gaffney, A.; Callister, M.E.J.; Nakamura, H. Thioredoxin: friend or foe in human disease? Trends Pharmacol. Sci., 2005, 26(8), 398-404.
[123]
Gromer, S.; Urig, S.; Becker, K. The thioredoxin system--from science to clinic. Med. Res. Rev., 2004, 24(1), 40-89.
[124]
Nguyen, P.; Awwad, R.T.; Smart, D.D.K.; Spitz, D.R.; Gius, D. Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Lett., 2006, 236(2), 164-174.
[125]
Becker, K.; Gromer, S.; Schirmer, R.H.; Müller, S. Thioredoxin reductase as a pathophysiological factor and drug target. Eur. J. Biochem., 2000, 267(20), 6118-6125.
[126]
Bindoli, A.; Rigobello, M.P.; Scutari, G.; Gabbiani, C.; Casini, A.; Messori, L. Thioredoxin reductase: A target for gold compounds acting as potential anticancer drugs. Coord. Chem. Rev., 2009, 253, 1692-1707.
[127]
McKeage, M.J.; Maharaj, L.; Berners-Price, S.J. Mechanisms of cytotoxicity and antitumor activity of gold(I). Coord. Chem. Rev., 2002, 232, 127-135.
[128]
Shaw, C.F. III Gold-based therapeutic agents. Chem. Rev., 1999, 99(9), 2589-2600.
[129]
Mirabelli, C.K.; Johnson, R.K.; Hill, D.T.; Faucette, L.F.; Girard, G.R.; Kuo, G.Y.; Sung, C.M.; Crooke, S.T. Correlation of the in vitro cytotoxic and in vivo antitumor activities of gold(I) coordination complexes. J. Med. Chem., 1986, 29(2), 218-223.
[130]
Marzano, C.; Gandin, V.; Folda, A.; Scutari, G.; Bindoli, A.; Rigobello, M.P. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic. Biol. Med., 2007, 42(6), 872-881.
[131]
Rigobello, M.P.; Scutari, G.; Boscolo, R.; Bindoli, A. Induction of mitochondrial permeability transition by auranofin, a gold(I)-phosphine derivative. Br. J. Pharmacol., 2002, 136(8), 1162-1168.
[132]
Cox, A.G.; Brown, K.K.; Arner, E.S.J.; Hampton, M.B. The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation. Biochem. Pharmacol., 2008, 76(9), 1097-1109.
[133]
Gamberi, T.; Fiaschi, T.; Modesti, A.; Massai, L.; Messori, L.; Balzi, M.; Magherini, F. Evidence that the antiproliferative effects of auranofin in Saccharomyces cerevisiae arise from inhibition of mitochondrial respiration. Int. J. Biochem. Cell Biol., 2015, 65, 61-71.
[134]
Bragadin, M.; Scutari, G.; Folda, A.; Bindoli, A.; Rigobello, M.P. Effect of metal complexes on thioredoxin reductase and the regulation of mitochondrial permeability conditions. Ann. N. Y. Acad. Sci., 2004, 1030, 348-354.
[135]
Rigobello, M.P.; Scutari, G.; Folda, A.; Bindoli, A. Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem. Pharmacol., 2004, 67(4), 689-696.
[136]
Rigobello, M.P.; Messori, L.; Marcon, G.; Agostina Cinellu, M.; Bragadin, M.; Folda, A.; Scutari, G.; Bindoli, A. Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J. Inorg. Biochem., 2004, 98(10), 1634-1641.
[137]
Vergara, E.; Casini, A.; Sorrentino, F.; Zava, O.; Cerrada, E.; Rigobello, M.P.; Bindoli, A.; Laguna, M.; Dyson, P.J. Anticancer therapeutics that target selenoenzymes: synthesis, characterization, in vitro cytotoxicity, and thioredoxin reductase inhibition of a series of gold(I) complexes containing hydrophilic phosphine ligands. ChemMedChem, 2010, 5(1), 96-102.
[138]
García-Moreno, E.; Tomás, A.; Atrián-Blasco, E.; Gascón, S.; Romanos, E.; Rodriguez-Yoldi, M.J.; Cerrada, E.; Laguna, M. In vitro and in vivo evaluation of organometallic gold(I) derivatives as anticancer agents. Dalton Trans., 2016, 45(6), 2462-2475.
[139]
Garcia-Moreno, E.; Gascon, E.; Rodriguez-Yoldi, M.J.; Cerrada, E.; Laguna, M. S-Propargylthiopyridine phosphane derivatives as anticancer agents: Characterization and antitumor activity. Organometallics, 2013, 32, 3710-3720.
[140]
García-Moreno, E.; Gascón, S.; García de Jalón, J.A.; Romanos, E.; Rodriguez-Yoldi, M.J.; Cerrada, E.; Laguna, M. In vivo anticancer activity, toxicology and histopathological studies of the thiolate gold(I) complex [Au(Spyrimidine)(PTA-CH2Ph)]Br. Anticancer. Agents Med. Chem., 2015, 15(6), 773-782.
[141]
Gutiérrez, A.; Gracia-Fleta, L.; Marzo, I.; Cativiela, C.; Laguna, A.; Gimeno, M.C. Gold(I) thiolates containing amino acid moieties. Cytotoxicity and structure-activity relationship studies. Dalton Trans., 2014, 43(45), 17054-17066.
[142]
Gandin, V.; Fernandes, A.P.; Rigobello, M.P.; Dani, B.; Sorrentino, F.; Tisato, F.; Björnstedt, M.; Bindoli, A.; Sturaro, A.; Rella, R.; Marzano, C. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem. Pharmacol., 2010, 79(2), 90-101.
[143]
Ott, I.; Qian, X.; Xu, Y.; Vlecken, D.H.W.; Marques, I.J.; Kubutat, D.; Will, J.; Sheldrick, W.S.; Jesse, P.; Prokop, A.; Bagowski, C.P. A gold(I) phosphine complex containing a naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J. Med. Chem., 2009, 52(3), 763-770.
[144]
Meyer, A.; Bagowski, C.P.; Kokoschka, M.; Stefanopoulou, M.; Alborzinia, H.; Can, S.; Vlecken, D.H.; Sheldrick, W.S.; Wölfl, S.; Ott, I. On the biological properties of alkynyl phosphine gold(I) complexes. Angew. Chem. Int. Ed. Engl., 2012, 51(35), 8895-8899.
[145]
Hikisz, P.; Szczupak, Ł.; Koceva-Chyła, A.; Gu Spiel, A.; Oehninger, L.; Ott, I.; Therrien, B.; Solecka, J.; Kowalski, K. Anticancer and antibacterial activity studies of gold(I)-alkynyl chromones. Molecules, 2015, 20(11), 19699-19718.
[146]
Hoke, G.D.; Rush, G.F.; Bossard, G.F.; McArdle, J.V.; Jensen, B.D.; Mirabelli, C.K. Mechanism of alterations in isolated rat liver mitochondrial function induced by gold complexes of bidentate phosphines. J. Biol. Chem., 1988, 263(23), 11203-11210.
[147]
Rush, G.F.; Alberts, D.W.; Meunier, P.; Leffler, K.; Smith, P.F. In vivo and in vitro hepatotoxicity of a novel antineoplastic agent SKF101772 in male beagle dogs. Toxicologist, 1987, 7, 59-59.
[148]
McKeage, M.J.; Berners-Price, S.J.; Galettis, P.; Bowen, R.J.; Brouwer, W.; Ding, L.; Zhuang, L.; Baguley, B.C. Role of lipophilicity in determining cellular uptake and antitumour activity of gold phosphine complexes. Cancer Chemother. Pharmacol., 2000, 46(5), 343-350.
[149]
Wetzel, C.; Kunz, P.C.; Kassack, M.U.; Hamacher, A.; Böhler, P.; Watjen, W.; Ott, I.; Rubbiani, R.; Spingler, B. Gold(I) complexes of water-soluble diphos-type ligands: synthesis, anticancer activity, apoptosis and thioredoxin reductase inhibition. Dalton Trans., 2011, 40(36), 9212-9220.
[150]
Rackham, O.; Nichols, S.J.; Leedman, P.J.; Berners-Price, S.J.; Filipovska, A. A gold(I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria. Biochem. Pharmacol., 2007, 74(7), 992-1002.
[151]
Caruso, F.; Pettinari, C.; Paduano, F.; Villa, R.; Marchetti, F.; Monti, E.; Rossi, M. Chemical behavior and in vitro activity of mixed phosphine gold(I) compounds on melanoma cell lines. J. Med. Chem., 2008, 51(6), 1584-1591.
[152]
Caruso, F.; Rossi, M.; Tanski, J.; Pettinari, C.; Marchetti, F. Antitumor activity of the mixed phosphine gold species chlorotriphenylphosphine-1,3-bis(diphenylphosphino)propanegold(I). J. Med. Chem., 2003, 46(9), 1737-1742.
[153]
Caruso, F.; Villa, R.; Rossi, M.; Pettinari, C.; Paduano, F.; Pennati, M.; Daidone, M.G.; Zaffaroni, N. Mitochondria are primary targets in apoptosis induced by the mixed phosphine gold species chlorotriphenylphosphine-1,3-bis(diphenylphosphino)propanegold(I) in melanoma cell lines. Biochem. Pharmacol., 2007, 73(6), 773-781.
[154]
Lupidi, G.; Avenali, L.; Bramucci, M.; Quassinti, L.; Pettinari, R.; Khalife, H.K.; Gali-Muhtasib, H.; Marchetti, F.; Pettinari, C. Synthesis, properties, and antitumor effects of a new mixed phosphine gold(I) compound in human colon cancer cells. J. Inorg. Biochem., 2013, 124, 78-87.
[155]
Rubbiani, R.; Kitanovic, I.; Alborzinia, H.; Can, S.; Kitanovic, A.; Onambele, L.A.; Stefanopoulou, M.; Geldmacher, Y.; Sheldrick, W.S.; Wolber, G.; Prokop, A.; Wölfl, S.; Ott, I. Benzimidazol-2-ylidene gold(I) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J. Med. Chem., 2010, 53(24), 8608-8618.
[156]
Rubbiani, R.; Can, S.; Kitanovic, I.; Alborzinia, H.; Stefanopoulou, M.; Kokoschka, M.; Mönchgesang, S.; Sheldrick, W.S.; Wölfl, S.; Ott, I. Comparative in vitro evaluation of N-heterocyclic carbene gold(I) complexes of the benzimidazolylidene type. J. Med. Chem., 2011, 54(24), 8646-8657.
[157]
Cheng, X.; Holenya, P.; Can, S.; Alborzinia, H.; Rubbiani, R.; Ott, I.; Wölfl, S. A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Mol. Cancer, 2014, 13, 221.
[158]
Rubbiani, R.; Salassa, L.; de Almeida, A.; Casini, A.; Ott, I. Cytotoxic gold(I) N-heterocyclic carbene complexes with phosphane ligands as potent enzyme inhibitors. ChemMedChem, 2014, 9(6), 1205-1210.
[159]
Schuh, E.; Pflüger, C.; Citta, A.; Folda, A.; Rigobello, M.P.; Bindoli, A.; Casini, A.; Mohr, F. Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents. J. Med. Chem., 2012, 55(11), 5518-5528.
[160]
Baker, M.V.; Barnard, P.J.; Berners-Price, S.J.; Brayshaw, S.K.; Hickey, J.L.; Skelton, B.W.; White, A.H. Cationic, linear Au(I) N-heterocyclic carbene complexes: synthesis, structure and anti-mitochondrial activity. Dalton Trans., 2006, (30), 3708-3715.
[161]
Hickey, J.L.; Ruhayel, R.A.; Barnard, P.J.; Baker, M.V.; Berners-Price, S.J.; Filipovska, A. Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc., 2008, 130(38), 12570-12571.
[162]
Yan, K.; Lok, C-N.; Bierla, K.; Che, C-M. Gold(I) complex of N,N′-disubstituted cyclic thiourea with in vitro and in vivo anticancer properties-potent tight-binding inhibition of thioredoxin reductase. Chem. Commun. (Camb.), 2010, 46(41), 7691-7693.
[163]
Nandy, A.; Dey, S.K.; Das, S.; Munda, R.N.; Dinda, J.; Saha, K.D. Gold (I) N-heterocyclic carbene complex inhibits mouse melanoma growth by p53 upregulation. Mol. Cancer, 2014, 13, 57.
[164]
Muenzner, J.K.; Biersack, B.; Albrecht, A.; Rehm, T.; Lacher, U.; Milius, W.; Casini, A.; Zhang, J-J.; Ott, I.; Brabec, V.; Stuchlikova, O.; Andronache, I.C.; Kaps, L.; Schuppan, D.; Schobert, R. Ferrocenyl-coupled N-heterocyclic carbene complexes of gold(I): A successful approach to multinuclear anticancer drugs. Chemistry, 2016, 22(52), 18953-18962.
[165]
Bertrand, B.; de Almeida, A.; van der Burgt, E.P.M.; Picquet, M.; Citta, A.; Folda, A.; Rigobello, M.P.; Le Gendre, P.; Bodio, E.; Casini, A. New gold(I) organometallic compounds with biological activity in cancer cells. Eur. J. Inorg. Chem., 2014, 4532-4536.
[166]
Citta, A.; Schuh, E.; Mohr, F.; Folda, A.; Massimino, M.L.; Bindoli, A.; Casini, A.; Rigobello, M.P. Fluorescent silver(I) and gold(I)-N-heterocyclic carbene complexes with cytotoxic properties: mechanistic insights. Metallomics, 2013, 5(8), 1006-1015.
[167]
Li, Y.; Liu, G-F.; Tan, C-P.; Ji, L-N.; Mao, Z-W. Antitumor properties and mechanisms of mitochondria-targeted Ag(I) and Au(I) complexes containing N-heterocyclic carbenes derived from cyclophanes. Metallomics, 2014, 6(8), 1460-1468.
[168]
Barnard, P.J.; Baker, M.V.; Berners-Price, S.J.; Day, D.A. Mitochondrial permeability transition induced by dinuclear gold(I)-carbene complexes: potential new antimitochondrial antitumour agents. J. Inorg. Biochem., 2004, 98(10), 1642-1647.
[169]
Zou, T.; Lum, C.T.; Lok, C-N.; To, W-P.; Low, K-H.; Che, C-M. A binuclear gold(I) complex with mixed bridging diphosphine and bis(N-heterocyclic carbene) ligands shows favorable thiol reactivity and inhibits tumor growth and angiogenesis in vivo. Angew. Chem. Int. Ed. Engl., 2014, 53(23), 5810-5814.
[170]
Bertrand, B.; Citta, A.; Franken, I.L.; Picquet, M.; Folda, A.; Scalcon, V.; Rigobello, M.P.; Le Gendre, P.; Casini, A.; Bodio, E. Gold(I) NHC-based homo- and heterobimetallic complexes: synthesis, characterization and evaluation as potential anticancer agents. J. Biol. Inorg. Chem., 2015, 20(6), 1005-1020.
[171]
Coronnello, M.; Mini, E.; Caciagli, B.; Cinellu, M.A.; Bindoli, A.; Gabbiani, C.; Messori, L. Mechanisms of cytotoxicity of selected organogold(III) compounds. J. Med. Chem., 2005, 48(21), 6761-6765.
[172]
Che, C-M.; Sun, R.W-Y.; Yu, W-Y.; Ko, C-B.; Zhu, N.; Sun, H. Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. (Camb.), 2003, (14), 1718-1719.
[173]
Ronconi, L.; Giovagnini, L.; Marzano, C.; Bettìo, F.; Graziani, R.; Pilloni, G.; Fregona, D. Gold dithiocarbamate derivatives as potential antineoplastic agents: design, spectroscopic properties, and in vitro antitumor activity. Inorg. Chem., 2005, 44(6), 1867-1881.
[174]
Messori, L.; Abbate, F.; Marcon, G.; Orioli, P.; Fontani, M.; Mini, E.; Mazzei, T.; Carotti, S.; O’Connell, T.; Zanello, P. Gold(III) complexes as potential antitumor agents: solution chemistry and cytotoxic properties of some selected gold(III) compounds. J. Med. Chem., 2000, 43(19), 3541-3548.
[175]
Zou, T.; Lum, C.T.; Chui, S.S-Y.; Che, C-M. Gold(III) complexes containing N-heterocyclic carbene ligands: thiol “switch-on” fluorescent probes and anti-cancer agents. Angew. Chem. Int. Ed. Engl., 2013, 52(10), 2930-2933.
[176]
Sun, R.W-S.; Lok, C-N.; Fong, T.T-H.; Li, C.K-L.; Yang, Z.; Zou, T.; Siu, A.F-M.; Che, C-M. A dinuclear cyclometalated gold(III)-phosphine complex targeting thioredoxin reductase inhibits hepatocellular carcinoma in vivo. Chem. Sci. (Camb.), 2013, 4, 1979-1988.
[177]
Shaik, N.; Martínez, A.; Augustin, I.; Giovinazzo, H.; Varela-Ramírez, A.; Sanaú, M.; Aguilera, R.J.; Contel, M. Synthesis of apoptosis-inducing iminophosphorane organogold(III) complexes and study of their interactions with biomolecular targets. Inorg. Chem., 2009, 48(4), 1577-1587.
[178]
Vela, L.; Contel, M.; Palomera, L.; Azaceta, G.; Marzo, I. Iminophosphorane-organogold(III) complexes induce cell death through mitochondrial ROS production. J. Inorg. Biochem., 2011, 105(10), 1306-1313.
[179]
Sun, R.W-Y.; Li, C.K-L.; Ma, D-L.; Yan, J.J.; Lok, C-N.; Leung, C-H.; Zhu, N.; Che, C-M. Stable anticancer gold(III)-porphyrin complexes: effects of porphyrin structure. Chemistry, 2010, 16(10), 3097-3113.
[180]
He, L.; Chen, T.; You, Y.; Hu, H.; Zheng, W.; Kwong, W-L.; Zou, T.; Che, C-M. A cancer-targeted nanosystem for delivery of gold(III) complexes: enhanced selectivity and apoptosis-inducing efficacy of a gold(III) porphyrin complex. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12532-12536.
[181]
Hu, D.; Liu, Y.; Lai, Y-T.; Tong, K-C.; Fung, Y-M.; Lok, C-N.; Che, C-M. Anticancer gold(III) porphyrins target mitochondrial chaperone Hsp60. Angew. Chem. Int. Ed. Engl., 2016, 55(4), 1387-1391.
[182]
Wang, Y.; He, Q.Y.; Che, C-M.; Chiu, J.F. Proteomic characterization of the cytotoxic mechanism of gold (III) porphyrin 1a, a potential anticancer drug. Proteomics, 2006, 6(1), 131-142.
[183]
Wang, Y.; He, Q.Y.; Sun, R.W.; Che, C-M.; Chiu, J.F. Cellular pharmacological properties of gold(III) porphyrin 1a, a potential anticancer drug lead. Eur. J. Pharmacol., 2007, 554(2-3), 113-122.
[184]
Wang, Y.; He, Q.Y.; Che, C-M.; Tsao, S.W.; Sun, R.W.; Chiu, J.F. Modulation of gold(III) porphyrin 1a-induced apoptosis by mitogen-activated protein kinase signaling pathways. Biochem. Pharmacol., 2008, 75(6), 1282-1291.
[185]
Li, W.; Xie, Y.; Sun, R.W.; Liu, Q.; Young, J.; Yu, W.Y.; Che, C-M.; Tam, P.K.; Ren, Y. Inhibition of Akt sensitises neuroblastoma cells to gold(III) porphyrin 1a, a novel antitumour drug induced apoptosis and growth inhibition. Br. J. Cancer, 2009, 101(2), 342-349.
[186]
Wang, Y.; He, Q-Y.; Sun, R.W-Y.; Che, C-M.; Chiu, J-F. GoldIII porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res., 2005, 65(24), 11553-11564.
[187]
Zeilstra-Ryalls, J.; Fayet, O.; Georgopoulos, C. The universally conserved GroE (Hsp60) chaperonins. Annu. Rev. Microbiol., 1991, 45, 301-325.
[188]
Nisemblat, S.; Yaniv, O.; Parnas, A.; Frolow, F.; Azem, A. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc. Natl. Acad. Sci. USA, 2015, 112(19), 6044-6049.
[189]
Cappello, F.; Gammazza, A.M.; Piccionello, A.P.; Campanella, C.; Pace, A.; de Marcario, E.C.; Marcario, A.J.L. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin. Ther. Targets, 2014, 18, 185-208.
[190]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[191]
Lum, C.T.; Wong, A.S-T.; Lin, M.C.M.; Che, C-M.; Sun, R.W-Y. A gold(III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells. Chem. Commun. (Camb.), 2013, 49(39), 4364-4366.
[192]
Lum, C.T.; Sun, R.W-Y.; Zou, T.; Che, C-M. Gold(III) complexes inhibit growth of cisplatin-resistant ovarian cancer in association with upregulation of proapoptotic PMS2 gene. Chem. Sci. (Camb.), 2014, 5, 1579-1584.
[193]
Magherini, F.; Modesti, A.; Bini, L.; Puglia, M.; Landini, I.; Nobili, S.; Mini, E.; Cinellu, M.A.; Gabbiani, C.; Messori, L. Exploring the biochemical mechanisms of cytotoxic gold compounds: a proteomic study. J. Biol. Inorg. Chem., 2010, 15(4), 573-582.
[194]
Gamberi, T.; Massai, L.; Magherini, F.; Landini, I.; Fiaschi, T.; Scaletti, F.; Gabbiani, C.; Bianchi, L.; Bini, L.; Nobili, S.; Perrone, G.; Mini, E.; Messori, L.; Modesti, A. Proteomic analysis of A2780/S ovarian cancer cell response to the cytotoxic organogold(III) compound Aubipy(c). J. Proteomics, 2014, 103, 103-120.
[195]
Rigobello, M.P.; Messori, L.; Marcon, G.; Agostina Cinellu, M.; Bragadin, M.; Folda, A.; Scutari, G.; Bindoli, A. Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J. Inorg. Biochem., 2004, 98(10), 1634-1641.
[196]
Casini, A.; Hartinger, C.; Gabbiani, C.; Mini, E.; Dyson, P.J.; Keppler, B.K.; Messori, L. Gold(III) compounds as anticancer agents: relevance of gold-protein interactions for their mechanism of action. J. Inorg. Biochem., 2008, 102(3), 564-575.
[197]
Saggioro, D.; Rigobello, M.P.; Paloschi, L.; Folda, A.; Moggach, S.A.; Parsons, S.; Ronconi, L.; Fregona, D.; Bindoli, A. Gold(III)-dithiocarbamato complexes induce cancer cell death triggered by thioredoxin redox system inhibition and activation of ERK pathway. Chem. Biol., 2007, 14(10), 1128-1139.
[198]
Chiara, F.; Gambalunga, A.; Sciacovelli, M.; Nicolli, A.; Ronconi, L.; Fregona, D.; Bernardi, P.; Rasola, A.; Trevisan, A. Chemotherapeutic induction of mitochondrial oxidative stress activates GSK-3α/β and Bax, leading to permeability transition pore opening and tumor cell death. Cell Death Dis., 2012, 3-444.
[199]
Nardon, C.; Chiara, F.; Brustolin, L.; Gambalunga, A.; Ciscato, F.; Rasola, A.; Trevisan, A.; Fregona, D. Gold(III)-pyrrolidinedithiocarbamato derivatives as antineoplastic agents. ChemistryOpen, 2015, 4(2), 183-191.
[200]
Cattaruzza, L.; Fregona, D.; Mongiat, M.; Ronconi, L.; Fassina, A.; Colombatti, A.; Aldinucci, D. Antitumor activity of gold(III)-dithiocarbamato derivatives on prostate cancer cells and xenografts. Int. J. Cancer, 2011, 128(1), 206-215.
[201]
Marzano, C.; Ronconi, L.; Chiara, F.; Giron, M.C.; Faustinelli, I.; Cristofori, P.; Trevisan, A.; Fregona, D. Gold(III)-dithiocarbamato anticancer agents: activity, toxicology and histopathological studies in rodents. Int. J. Cancer, 2011, 129(2), 487-496.
[202]
Nardon, C.; Schmitt, S.M.; Yang, H.; Zuo, J.; Fregona, D.; Dou, Q.P. Gold(III)-dithiocarbamato peptidomimetics in the forefront of the targeted anticancer therapy: preclinical studies against human breast neoplasia. PLoS One, 2014, 9(1), e84248.
[203]
Celegato, M.; Fregona, D.; Mongiat, M.; Ronconi, L.; Borghese, C.; Canzonieri, V.; Casagrande, N.; Nardon, C.; Colombatti, A.; Aldinucci, D. Preclinical activity of multiple-target gold(III)-dithiocarbamato peptidomimetics in prostate cancer cells and xenografts. Future Med. Chem., 2014, 6(11), 1249-1263.
[204]
Pratesi, A.; Gabbiani, C.; Ginanneschi, M.; Messori, L. Reactions of medicinally relevant gold compounds with the C-terminal motif of thioredoxin reductase elucidated by MS analysis. Chem. Commun. (Camb.), 2010, 46(37), 7001-7003.
[205]
Pratesi, A.; Gabbiani, C.; Michelucci, E.; Ginanneschi, M.; Papini, A.M.; Rubbiani, R.; Ott, I.; Messori, L. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488-499): an ESI-MS investigation. J. Inorg. Biochem., 2014, 136, 161-169.
[206]
Gabbiani, C.; Mastrobuoni, G.; Sorrentino, F.; Dani, B.; Rigobello, M.P.; Bindoli, A.; Cinellu, M.A.; Pieraccini, G.; Messori, L.; Casini, A. Thioredoxin reductase, an emerging target for anticancer metallodrugs. Enzyme inhibition by cytotoxic gold(III) compounds studied with combined mass spectrometry and biochemical assays. MedChemComm, 2011, 2, 50-54.
[207]
Fritz-Wolf, K.; Urig, S.; Becker, K. The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J. Mol. Biol., 2007, 370(1), 116-127.
[208]
Lum, C.T.; Yang, Z.F.; Li, H.Y.; Wai-Yin, Sun R.; Fan, S.T.; Poon, R.T.P.; Lin, M.C.M.; Che, C-M.; Kung, H.F. Gold(III) compound is a novel chemocytotoxic agent for hepatocellular carcinoma. Int. J. Cancer, 2006, 118(6), 1527-1538.
[209]
Karver, M.R.; Krishnamurthy, D.; Kulkarni, R.A.; Bottini, N.; Barrios, A.M. Identifying potent, selective protein tyrosine phosphatase inhibitors from a library of Au(I) complexes. J. Med. Chem., 2009, 52(21), 6912-6918.
[210]
Wang, Q.; Janzen, N.; Ramachandran, C.; Jirik, F. Mechanism of inhibition of protein-tyrosine phosphatases by disodium aurothiomalate. Biochem. Pharmacol., 1997, 54(6), 703-711.
[211]
Weidauer, E.; Yasuda, Y.; Biswal, B.K.; Cherny, M.; James, M.N.G.; Brömme, D. Effects of disease-modifying anti-rheumatic drugs (DMARDs) on the activities of rheumatoid arthritis-associated cathepsins K and S. Biol. Chem., 2007, 388(3), 331-336.
[212]
Chircorian, A.; Barrios, A.M. Inhibition of lysosomal cysteine proteases by chrysotherapeutic compounds: a possible mechanism for the antiarthritic activity of Au(I). Bioorg. Med. Chem. Lett., 2004, 14(20), 5113-5116.
[213]
Oehninger, L.; Stefanopoulou, M.; Alborzinia, H.; Schur, J.; Ludewig, S.; Namikawa, K.; Muñoz-Castro, A.; Köster, R.W.; Baumann, K.; Wölfl, S.; Sheldrick, W.S.; Ott, I. Evaluation of arene ruthenium(II) N-heterocyclic carbene complexes as organometallics interacting with thiol and selenol containing biomolecules. Dalton Trans., 2013, 42(5), 1657-1666.
[214]
Casini, A.; Gabbiani, C.; Sorrentino, F.; Rigobello, M.P.; Bindoli, A.; Geldbach, T.J.; Marrone, A.; Re, N.; Hartinger, C.G.; Dyson, P.J.; Messori, L. Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)-arene compounds. J. Med. Chem., 2008, 51(21), 6773-6781.
[215]
Mura, P.; Camalli, M.; Bindoli, A.; Sorrentino, F.; Casini, A.; Gabbiani, C.; Corsini, M.; Zanello, P.; Rigobello, M.P.; Messori, L. Activity of rat cytosolic thioredoxin reductase is strongly decreased by trans-[bis(2-amino-5- methylthiazole)tetrachlororuthenate(III)]: first report of relevant thioredoxin reductase inhibition for a ruthenium compound. J. Med. Chem., 2007, 50(24), 5871-5874.
[216]
Luo, Z.; Yu, L.; Yang, F.; Zhao, Z.; Yu, B.; Lai, H.; Wong, K-H.; Ngai, S-M.; Zheng, W.; Chen, T. Ruthenium polypyridyl complexes as inducer of ROS-mediated apoptosis in cancer cells by targeting thioredoxin reductase. Metallomics, 2014, 6(8), 1480-1490.
[217]
Lu, J.; Chew, E.H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 2007, 104(30), 12288-12293.
[218]
Gatliff, J.; East, D.; Crosby, J.; Abeti, R.; Harvey, R.; Craigen, W.; Parker, P.; Campanella, M. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy, 2014, 10(12), 2279-2296.
[219]
Scarf, A.M.; Ittner, L.M.; Kassiou, M. The translocator protein (18 kDa): central nervous system disease and drug design. J. Med. Chem., 2009, 52(3), 581-592.
[220]
Galiegue, S.; Tinel, N.; Casellas, P. The peripheral benzodiazepine receptor: a promising therapeutic drug target. Curr. Med. Chem., 2003, 10(16), 1563-1572.
[221]
Maaser, K.; Grabowski, P.; Sutter, A.P.; Höpfner, M.; Foss, H.D.; Stein, H.; Berger, G.; Gavish, M.; Zeitz, M.; Scherübl, H. Overexpression of the peripheral benzodiazepine receptor is a relevant prognostic factor in stage III colorectal cancer. Clin. Cancer Res., 2002, 8(10), 3205-3209.
[222]
Miettinen, H.; Kononen, J.; Haapasalo, H.; Helén, P.; Sallinen, P.; Harjuntausta, T.; Helin, H.; Alho, H. Expression of peripheral-type benzodiazepine receptor and diazepam binding inhibitor in human astrocytomas: relationship to cell proliferation. Cancer Res., 1995, 55(12), 2691-2695.
[223]
Veenman, L.; Levin, E.; Weisinger, G.; Leschiner, S.; Spanier, I.; Snyder, S.H.; Weizman, A.; Gavish, M. Peripheral-type benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem. Pharmacol., 2004, 68(4), 689-698.
[224]
Decaudin, D.; Castedo, M.; Nemati, F.; Beurdeley-Thomas, A.; De Pinieux, G.; Caron, A.; Pouillart, P.; Wijdenes, J.; Rouillard, D.; Kroemer, G.; Poupon, M.F. Peripheral benzodiazepine receptor ligands reverse apoptosis resistance of cancer cells in vitro and in vivo. Cancer Res., 2002, 62(5), 1388-1393.
[225]
Oudard, S.; Miccoli, L.; Dutrillaux, B.; Poupon, M.F. [Targeting the gene of glucose metabolism for the treatment of advanced gliomas]. Bull. Cancer, 1998, 85(7), 622-626.
[226]
Cappelli, A.; Pericot Mohr, Gl.; Gallelli, A.; Giuliani, G.; Anzini, M.; Vomero, S.; Fresta, M.; Porcu, P.; Maciocco, E.; Concas, A.; Biggio, G.; Donati, A. Structure-activity relationships in carboxamide derivatives based on the targeted delivery of radionuclides and boron atoms by means of peripheral benzodiazepine receptor ligands. J. Med. Chem., 2003, 46(17), 3568-3571.
[227]
Guo Zw, Z.; Gallo, J.M. Selective protection of 2′,2′-difluorodeoxycytidine (gemcitabine). J. Org. Chem., 1999, 64(22), 8319-8322.
[228]
Guo, P.; Ma, J.; Li, S.; Guo, Z.; Adams, A.L.; Gallo, J.M. Targeted delivery of a peripheral benzodiazepine receptor ligand-gemcitabine conjugate to brain tumors in a xenograft model. Cancer Chemother. Pharmacol., 2001, 48(2), 169-176.
[229]
George, P.G.; Rossey, G.; Sevrin, M.; Arbilla, S.; Depoortere, H.; Wick, A. Alpidem: Synthesis, physicochemical properties and structure-activity relationships. Monograph Ser., 1993, 8, 49-59.
[230]
Enguehard-Gueiffier, C.; Gueiffier, A. Recent progress in the pharmacology of imidazo[1,2-a]pyridines. Mini Rev. Med. Chem., 2007, 7(9), 888-899.
[231]
Margiotta, N.; Ostuni, R.; Ranaldo, R.; Denora, N.; Laquintana, V.; Trapani, G.; Liso, G.; Natile, G. Synthesis and characterization of a platinum(II) complex tethered to a ligand of the peripheral benzodiazepine receptor. J. Med. Chem., 2007, 50(5), 1019-1027.
[232]
Margiotta, N.; Denora, N.; Ostuni, R.; Laquintana, V.; Anderson, A.; Johnson, S.W.; Trapani, G.; Natile, G. Platinum(II) complexes with bioactive carrier ligands having high affinity for the translocator protein. J. Med. Chem., 2010, 53(14), 5144-5154.
[233]
Bentzion, D.; Lipatov, O.; Polyakov, I.; MacKintosh, R.; Eckardt, J.; Breitz, H. 2007.
[234]
Savino, S.; Denora, N.; Iacobazzi, R.M.; Porcelli, L.; Azzariti, A.; Natile, G.; Margiotta, N. Synthesis, characterization, and cytotoxicity of the first oxaliplatin Pt(IV) derivative having a TSPO ligand in the axial position. Int. J. Mol. Sci., 2016, 17(7), 1010.
[235]
Margiotta, N.; Denora, N.; Piccinonna, S.; Laquintana, V.; Lasorsa, F.M.; Franco, M.; Natile, G. Synthesis, characterization, and in vitro evaluation of new coordination complexes of platinum(II) and rhenium(I) with a ligand targeting the translocator protein (TSPO). Dalton Trans., 2014, 43(43), 16252-16264.
[236]
Denora, N.; Margiotta, N.; Laquintana, V.; Lopedota, A.; Cutrignelli, A.; Losacco, M.; Franco, M.; Natile, G. Synthesis, characterization, and in vitro evaluation of a new TSPO-selective bifunctional chelate ligand. ACS Med. Chem. Lett., 2014, 5(6), 685-689.
[237]
Piccinonna, S.; Margiotta, N.; Denora, N.; Iacobazzi, R.M.; Pacifico, C.; Trapani, G.; Natile, G. A model radiopharmaceutical agent targeted to translocator protein 18 kDa (TSPO). Dalton Trans., 2013, 42(28), 10112-10115.
[238]
Piccinonna, S.; Denora, N.; Margiotta, N.; Laquintana, V.; Trapani, G.; Natile, G. Synthesis, characterization, and binding to the translocator protein (18 kDa, TSPO) of a new rhenium complex as a model of radiopharmaceutical agents. Z. Anorg. Allg. Chem., 2013, 639, 1606-1612.
[239]
Neuzil, J.; Dong, L-F.; Rohlena, J.; Truksa, J.; Ralph, S.J. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion, 2013, 13(3), 199-208.
[240]
Ralph, S.J.; Low, P.; Dong, L.; Lawen, A.; Neuzil, J. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Patents Anticancer Drug Discov., 2006, 1(3), 327-346.
[241]
Panda, V.; Khambat, P.; Patil, S. Mitocans as novel agents for anticancer therapy: An overview. Int. J. Clin. Med., 2011, 2, 515-529.