Abstract
The Translocator Protein (18 kDa) (TSPO), previously known as the peripheral benzodiazepine receptor, is widely expressed in glial cells and in peripheral tissues and is involved in a variety of biological processes: steroidogenesis, cell growth and differentiation, apoptosis induction, etc. TSPO basal expression is up-regulated in a number of human pathologies, including a variety of tumors and neuropathologies, such as gliomas and neurodegenerative disorders (Huntingtons and Alzheimers diseases), as well as in various forms of brain injury and inflammation. Furthermore, changes in TSPO receptor levels have been found in anxiety and mood disorders. Nowadays, considerable efforts have been focused on the identification of new TSPO ligands characterized by high-affinity and selectivity. In this review, we report and analyze the main experimental data and the computational procedures and validation methods used for the construction of the TSPO receptor and ligand-based models, describing in detail the most successful results and the new trends.
Keywords: 18 kDa translocator protein (TSPO), 3D-QSAR, computational chemistry, homology model, mutagenesis data, peripheral-type benzodiazepine receptor, pharmacophoric model, virtual screening, glial cells, gliomas, neurodegenerative disorders, high-affinity and selectivity, ligand-based models
Current Topics in Medicinal Chemistry
Title: Computational Studies on Translocator Protein (TSPO) and its Ligands
Volume: 12 Issue: 4
Author(s): Gabriella Ortore, Tiziano Tuccinardi and Adriano Martinelli
Affiliation:
Keywords: 18 kDa translocator protein (TSPO), 3D-QSAR, computational chemistry, homology model, mutagenesis data, peripheral-type benzodiazepine receptor, pharmacophoric model, virtual screening, glial cells, gliomas, neurodegenerative disorders, high-affinity and selectivity, ligand-based models
Abstract: The Translocator Protein (18 kDa) (TSPO), previously known as the peripheral benzodiazepine receptor, is widely expressed in glial cells and in peripheral tissues and is involved in a variety of biological processes: steroidogenesis, cell growth and differentiation, apoptosis induction, etc. TSPO basal expression is up-regulated in a number of human pathologies, including a variety of tumors and neuropathologies, such as gliomas and neurodegenerative disorders (Huntingtons and Alzheimers diseases), as well as in various forms of brain injury and inflammation. Furthermore, changes in TSPO receptor levels have been found in anxiety and mood disorders. Nowadays, considerable efforts have been focused on the identification of new TSPO ligands characterized by high-affinity and selectivity. In this review, we report and analyze the main experimental data and the computational procedures and validation methods used for the construction of the TSPO receptor and ligand-based models, describing in detail the most successful results and the new trends.
Export Options
About this article
Cite this article as:
Ortore Gabriella, Tuccinardi Tiziano and Martinelli Adriano, Computational Studies on Translocator Protein (TSPO) and its Ligands, Current Topics in Medicinal Chemistry 2012; 12 (4) . https://dx.doi.org/10.2174/156802612799078667
DOI https://dx.doi.org/10.2174/156802612799078667 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Inventions Designed to Enhance Drug Delivery Across Epithelial and Endothelial Cells Through the Paracellular Pathway
Recent Patents on Drug Delivery & Formulation Amyotrophic Lateral Sclerosis: From Research to Therapeutic Attempts and Therapeutic Perspectives
Current Medicinal Chemistry Lipid-based Nanocarriers As An Alternative for Oral Delivery of Poorly Water- Soluble Drugs: Peroral and Mucosal Routes
Current Medicinal Chemistry Intracellular Bioinorganic Chemistry and Cross Talk Among Different -Omics
Current Topics in Medicinal Chemistry Methionine-Derived Metabolites in Apoptosis: Therapeutic Opportunities for Inhibitors of their Metabolism in Chemoresistant Cancer Cells
Current Medicinal Chemistry Overview of the Formulations and Analogs in the Taxanes' Story
Current Medicinal Chemistry Decorin Biology, Expression, Function and Therapy in the Cornea
Current Molecular Medicine Therapeutic Targeting of G-Protein Coupled Receptor-Mediated Epidermal Growth Factor Receptor Transactivation in Human Glioma Brain Tumors
Mini-Reviews in Medicinal Chemistry Use of Bimetallic Nanoparticles in the Synthesis of Heterocyclic Molecules
Current Organic Chemistry Does Ligand Symmetry Play a Role in the Stabilization of DNA G-Quadruplex Host-Guest Complexes?
Current Medicinal Chemistry The Blood-Brain Barrier in Multiple Sclerosis: microRNAs as Key Regulators
CNS & Neurological Disorders - Drug Targets Spectrum of Radiopharmaceuticals in Nuclear Oncology
Current Cancer Drug Targets Immune System Modulates the Function of Adult Neural Stem Cells
Current Immunology Reviews (Discontinued) Targeting ADAM17 Sheddase Activity in Cancer
Current Drug Targets Potential Advantages of Using Synchrotron X-ray Based Techniques in Pediatric Research
Current Medicinal Chemistry Molecular Probing and Imaging of Histone Deacetylase Inhibitors in Cancer Treatment
Anti-Cancer Agents in Medicinal Chemistry The Role of 18 kDa Mitochondrial Translocator Protein (TSPO) in Programmed Cell Death, and Effects of Steroids on TSPO Expression
Current Molecular Medicine The Potential of T Cell Immunoglobulin and Mucin-Domain Containing-3 (Tim-3) in Designing Novel Immunotherapy for Bladder Cancer
Endocrine, Metabolic & Immune Disorders - Drug Targets Reduction of Oxidative/Nitrosative Stress in Brain and its Involvement in the Neuroprotective Effect of n-3 PUFA in Alzheimer’s Disease
Current Alzheimer Research Targeting p53 in Cancer
Current Medicinal Chemistry - Anti-Cancer Agents