Abstract
Inherited arrhythmias and conduction system diseases are known causes of sudden cardiac death and are responsible for significant mortality and morbidity in patients with congenital heart disease and electrical disorders. Knowledge derived from human genetics and studies in animal models have led to the discovery of multiple molecular defects responsible for arrhythmogenesis. This review summarizes the molecular basis of inherited arrhythmias in structurally normal and altered hearts. On the cellular and molecular levels, minor disturbances can provoke severe arrhythmias. Ion channels are responsible for the initiation and propagation of the action potential within the cardiomyocyte. Structural heart diseases, such as hypertrophic or dilated cardiomyopathies, increase the likelihood of cardiac electrical abnormalities. Ion channels can also be upor down-regulated in congenital heart disease, altering action potential cellular properties and therefore triggering arrhythmias. Conduction velocities may be inhomogeneously altered if connexin function, density or distribution changes. Another important group of electrophysiologic diseases is the heterogeneous category of inherited arrhythmias in the structurally normal heart, with a propensity to sudden cardiac death. There have been many recent relevant discoveries that help explain the molecular and functional mechanisms of long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and other electrical myopathies. Identification of molecular pathways allows the identification of new therapeutic targets, for both disease palliation and cure. As more disease-causing mutations are identified and genotypic-phenotypic correlation is defined, families can be screened prior to symptom-onset and patients may potentially be treated in a genotype-specific manner, opening the doors of cardiac electrophysiology to the emerging field of pharmacogenomics.
Current Genomics
Title: Molecular Mechanisms of Inherited Arrhythmias
Volume: 9 Issue: 3
Author(s): Cordula M. Wolf and Charles I. Berul
Affiliation:
Abstract: Inherited arrhythmias and conduction system diseases are known causes of sudden cardiac death and are responsible for significant mortality and morbidity in patients with congenital heart disease and electrical disorders. Knowledge derived from human genetics and studies in animal models have led to the discovery of multiple molecular defects responsible for arrhythmogenesis. This review summarizes the molecular basis of inherited arrhythmias in structurally normal and altered hearts. On the cellular and molecular levels, minor disturbances can provoke severe arrhythmias. Ion channels are responsible for the initiation and propagation of the action potential within the cardiomyocyte. Structural heart diseases, such as hypertrophic or dilated cardiomyopathies, increase the likelihood of cardiac electrical abnormalities. Ion channels can also be upor down-regulated in congenital heart disease, altering action potential cellular properties and therefore triggering arrhythmias. Conduction velocities may be inhomogeneously altered if connexin function, density or distribution changes. Another important group of electrophysiologic diseases is the heterogeneous category of inherited arrhythmias in the structurally normal heart, with a propensity to sudden cardiac death. There have been many recent relevant discoveries that help explain the molecular and functional mechanisms of long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and other electrical myopathies. Identification of molecular pathways allows the identification of new therapeutic targets, for both disease palliation and cure. As more disease-causing mutations are identified and genotypic-phenotypic correlation is defined, families can be screened prior to symptom-onset and patients may potentially be treated in a genotype-specific manner, opening the doors of cardiac electrophysiology to the emerging field of pharmacogenomics.
Export Options
About this article
Cite this article as:
Wolf M. Cordula and Berul I. Charles, Molecular Mechanisms of Inherited Arrhythmias, Current Genomics 2008; 9 (3) . https://dx.doi.org/10.2174/138920208784340768
DOI https://dx.doi.org/10.2174/138920208784340768 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Basic and Clinical Research Against Advanced Glycation End Products (AGEs): New Compounds to Tackle Cardiovascular Disease and Diabetic Complications
Recent Advances in Cardiovascular Drug Discovery (Discontinued) Risk Factors for Development of Heart Failure
Current Cardiology Reviews Stage A: Can Heart Failure Be Prevented?
Current Cardiology Reviews Toxicology of Trastuzumab: An Insight into Mechanisms of Cardiotoxicity
Current Cancer Drug Targets Stress Hormone-Mediated DNA Damage Response -- Implications for Cellular Senescence and Tumour Progression
Current Drug Targets Terminalia arjuna in Cardiovascular Diseases: Making the Transition from Traditional to Modern Medicine in India
Current Pharmaceutical Biotechnology The Role of Autophagy in the Gut Pathogens Clearance and Evasion
Current Protein & Peptide Science Current Concepts Underlying Benefits of Exercise Training in Congestive Heart Failure Patients
Current Cardiology Reviews Comparison of High-Sensitive CRP, RDW, PLR and NLR between Patients with Chronic Obstructive Pulmonary Disease and Chronic Heart Failure
Current Respiratory Medicine Reviews Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery
Current Cancer Drug Targets Natural Triterpenoids and their Derivatives with Pharmacological Activity Against Neurodegenerative Disorders
Mini-Reviews in Organic Chemistry Polyamines and Related Nitrogen Compounds in the Chemotherapy of Neglected Diseases Caused by Kinetoplastids
Current Topics in Medicinal Chemistry Assessment of Cardiac Performance with Magnetic Resonance Imaging
Current Cardiology Reviews Investigational Positive Inotropic Agents for Acute Heart Failure
Cardiovascular & Hematological Disorders-Drug Targets Targeting miRNAs for Drug Discovery: A New Paradigm
Current Molecular Medicine GRK2 and Beta-Arrestins in Cardiovascular Disease: Established and Emerging Possibilities for Therapeutic Targeting
Current Molecular Pharmacology Investigating Mitochondrial Dysfunction to Increase Drug Safety in the Pharmaceutical Industry
Current Drug Targets Melatonin Regulates Angiogenic and Inflammatory Proteins in MDA-MB-231 Cell Line and in Co-culture with Cancer-associated Fibroblasts
Anti-Cancer Agents in Medicinal Chemistry Angiotensin-Converting Enzyme Inhibitors in Veterinary Medicine
Current Pharmaceutical Design Role of Cardiac Magnetic Resonance Imaging in Patients with Idiopathic Ventricular Arrhythmias
Current Cardiology Reviews