Abstract
Inherited arrhythmias and conduction system diseases are known causes of sudden cardiac death and are responsible for significant mortality and morbidity in patients with congenital heart disease and electrical disorders. Knowledge derived from human genetics and studies in animal models have led to the discovery of multiple molecular defects responsible for arrhythmogenesis. This review summarizes the molecular basis of inherited arrhythmias in structurally normal and altered hearts. On the cellular and molecular levels, minor disturbances can provoke severe arrhythmias. Ion channels are responsible for the initiation and propagation of the action potential within the cardiomyocyte. Structural heart diseases, such as hypertrophic or dilated cardiomyopathies, increase the likelihood of cardiac electrical abnormalities. Ion channels can also be upor down-regulated in congenital heart disease, altering action potential cellular properties and therefore triggering arrhythmias. Conduction velocities may be inhomogeneously altered if connexin function, density or distribution changes. Another important group of electrophysiologic diseases is the heterogeneous category of inherited arrhythmias in the structurally normal heart, with a propensity to sudden cardiac death. There have been many recent relevant discoveries that help explain the molecular and functional mechanisms of long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and other electrical myopathies. Identification of molecular pathways allows the identification of new therapeutic targets, for both disease palliation and cure. As more disease-causing mutations are identified and genotypic-phenotypic correlation is defined, families can be screened prior to symptom-onset and patients may potentially be treated in a genotype-specific manner, opening the doors of cardiac electrophysiology to the emerging field of pharmacogenomics.
Current Genomics
Title: Molecular Mechanisms of Inherited Arrhythmias
Volume: 9 Issue: 3
Author(s): Cordula M. Wolf and Charles I. Berul
Affiliation:
Abstract: Inherited arrhythmias and conduction system diseases are known causes of sudden cardiac death and are responsible for significant mortality and morbidity in patients with congenital heart disease and electrical disorders. Knowledge derived from human genetics and studies in animal models have led to the discovery of multiple molecular defects responsible for arrhythmogenesis. This review summarizes the molecular basis of inherited arrhythmias in structurally normal and altered hearts. On the cellular and molecular levels, minor disturbances can provoke severe arrhythmias. Ion channels are responsible for the initiation and propagation of the action potential within the cardiomyocyte. Structural heart diseases, such as hypertrophic or dilated cardiomyopathies, increase the likelihood of cardiac electrical abnormalities. Ion channels can also be upor down-regulated in congenital heart disease, altering action potential cellular properties and therefore triggering arrhythmias. Conduction velocities may be inhomogeneously altered if connexin function, density or distribution changes. Another important group of electrophysiologic diseases is the heterogeneous category of inherited arrhythmias in the structurally normal heart, with a propensity to sudden cardiac death. There have been many recent relevant discoveries that help explain the molecular and functional mechanisms of long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and other electrical myopathies. Identification of molecular pathways allows the identification of new therapeutic targets, for both disease palliation and cure. As more disease-causing mutations are identified and genotypic-phenotypic correlation is defined, families can be screened prior to symptom-onset and patients may potentially be treated in a genotype-specific manner, opening the doors of cardiac electrophysiology to the emerging field of pharmacogenomics.
Export Options
About this article
Cite this article as:
Wolf M. Cordula and Berul I. Charles, Molecular Mechanisms of Inherited Arrhythmias, Current Genomics 2008; 9 (3) . https://dx.doi.org/10.2174/138920208784340768
DOI https://dx.doi.org/10.2174/138920208784340768 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Biomarkers of Protein Oxidation in Human Disease
Current Molecular Medicine An In-Silico Investigation of Anti-Chagas Phytochemicals
Current Clinical Pharmacology Editorial: Modifying Cardiovascular Risk Factors: Acquired Topics and Emerging Concepts
Current Pharmaceutical Design Role of Carbon Monoxide in Vascular Diseases
Current Pharmaceutical Biotechnology P2X Receptors in the Cardiovascular System and their Potential as Therapeutic Targets in Disease
Current Medicinal Chemistry Anesthetic Pharmacology and Perioperative Considerations for Heart Transplantation
Current Clinical Pharmacology Cardiac Effects of HDL and Its Components on Diabetic Cardiomyopathy
Endocrine, Metabolic & Immune Disorders - Drug Targets Cancer Therapeutics-Related Cardiovascular Complications. Mechanisms, Diagnosis and Treatment
Current Pharmaceutical Design Beta-2 Agonists in Asthma: Medicine or Murderer?
Current Respiratory Medicine Reviews The Role of Matrix Metalloproteinases in Diabetes Mellitus
Current Topics in Medicinal Chemistry Do You See What I See: Recognition of Protozoan Parasites by Toll-Like Receptors
Current Immunology Reviews (Discontinued) Understanding Abnormal c-JNK/p38MAPK Signaling in Amyotrophic Lateral Sclerosis: Potential Drug Targets and Influences on Neurological Disorders
CNS & Neurological Disorders - Drug Targets Peripartum Cardiomyopathy: An Intriguing Challenge. Case Report with Literature Review
Current Cardiology Reviews Stem Cell Based Preclinical Drug Development and Toxicity Prediction
Current Pharmaceutical Design Genetic Privacy in Sports: Clearing the Hurdles
Recent Patents on DNA & Gene Sequences Potential of Resveratrol in Preventing the Development of Heart Failure
Current Chemical Biology Disease-Specific iPS Cell Models in Neuroscience
Current Molecular Medicine Incremental Value of Two Dimensional Speckle Tracking Echocardiography in the Functional Assessment and Characterization of Subclinical Left Ventricular Dysfunction
Current Cardiology Reviews Mining for Protein Kinase Substrates: Integration of Biochemistry, Genetics and Proteomics
Current Proteomics MicroRNAs in Organogenesis and Disease
Current Molecular Medicine