Abstract
Ca 2+ ions are involved in the regulation of many diverse functions in animal and plant cells, e.g. muscle contraction, secretion of neurotransmitters, hormones and enzymes, fertilization of oocytes, and lymphocyte activation and proliferation. The intracellular Ca 2+ concentration can be increased by different molecular mechanisms, such as Ca 2+ influx from the extracellular space or Ca 2+ release from intracellular Ca 2+ stores. Release from intracellular Ca 2+ stores is accomplished by the small molecular compounds D-myo-inositol 1,4,5-trisphosphate (InsP 3 ), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review concentrates on (i) receptor-mediated formation of cADPR by ADP-ribosyl cyclases, (ii) intracellular and extracellular effects of cADPR in a variety of cell types, and (iii) cADPR in the nucleus. Though our understanding of the role of NAADP is still unclear in many aspects, important recent findings are reviewed, e.g. Ca 2+ release activity and binding studies in mammalian cell types.
Keywords: Cyclic ADP-ribose, Nicotinic Acid, Adenine Dinucleotide Phosphate, Novel Regulators, Nuclear Localization, Guanosine triphosphate, Ryanodine receptor(s), Tumor necrosis factor, D-myo-inositol 1,4,5-trisphosphate
Current Molecular Medicine
Title: Cyclic ADP-ribose (cADPR) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP): Novel Regulators of Ca 2+-Signaling and Cell Function
Volume: 2 Issue: 3
Author(s): Andreas H. Guse
Affiliation:
Keywords: Cyclic ADP-ribose, Nicotinic Acid, Adenine Dinucleotide Phosphate, Novel Regulators, Nuclear Localization, Guanosine triphosphate, Ryanodine receptor(s), Tumor necrosis factor, D-myo-inositol 1,4,5-trisphosphate
Abstract: Ca 2+ ions are involved in the regulation of many diverse functions in animal and plant cells, e.g. muscle contraction, secretion of neurotransmitters, hormones and enzymes, fertilization of oocytes, and lymphocyte activation and proliferation. The intracellular Ca 2+ concentration can be increased by different molecular mechanisms, such as Ca 2+ influx from the extracellular space or Ca 2+ release from intracellular Ca 2+ stores. Release from intracellular Ca 2+ stores is accomplished by the small molecular compounds D-myo-inositol 1,4,5-trisphosphate (InsP 3 ), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review concentrates on (i) receptor-mediated formation of cADPR by ADP-ribosyl cyclases, (ii) intracellular and extracellular effects of cADPR in a variety of cell types, and (iii) cADPR in the nucleus. Though our understanding of the role of NAADP is still unclear in many aspects, important recent findings are reviewed, e.g. Ca 2+ release activity and binding studies in mammalian cell types.
Export Options
About this article
Cite this article as:
Guse H. Andreas, Cyclic ADP-ribose (cADPR) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP): Novel Regulators of Ca 2+-Signaling and Cell Function, Current Molecular Medicine 2002; 2 (3) . https://dx.doi.org/10.2174/1566524024605707
DOI https://dx.doi.org/10.2174/1566524024605707 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Has Bevacizumab (Avastin) Given Extra Therapeutic Gain in Metastatic Colorectal Cancer and Malignant Brain Gliomas? Systematic Review Answering this Question
Recent Patents on Inflammation & Allergy Drug Discovery Hyaluronic Acid/Parecoxib-Loaded PLGA Microspheres for Therapy of Temporomandibular Disorders
Current Drug Delivery Prodrugs in Genetic Chemoradiotherapy
Current Pharmaceutical Design Modulation of Immuno-biome during Radio-sensitization of Tumors by Glycolytic Inhibitors
Current Medicinal Chemistry Glycoconjugates: Roles in Neural Diseases Caused by Exogenous Pathogens
CNS & Neurological Disorders - Drug Targets Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Leptomeningeal Metastasis: Challenges in Diagnosis and Treatment
Current Cancer Therapy Reviews Quantitative Structure – Activity Relationship Study on Saponins as Cytotoxicity Enhancers
Letters in Drug Design & Discovery The Plasma microRNA miR-1914* and -1915 Suppresses Chemoresistant in Colorectal Cancer Patients by Down-regulating NFIX.
Current Molecular Medicine Recent Advances in the Development of 14-Alkoxy Substituted Morphinans as Potent and Safer Opioid Analgesics
Current Medicinal Chemistry Reactive Oxygen Species: Physiological Roles in the Regulation of Vascular Cells
Current Molecular Medicine Subdural Pharmacotherapy for the Treatment of Intractable Focal Neocortical Epilepsy
Drug Delivery Letters Alkaloids as Important Scaffolds in Therapeutic Drugs for the Treatments of Cancer, Tuberculosis, and Smoking Cessation
Current Topics in Medicinal Chemistry Overview on Anticancer Drug Design and Development
Current Medicinal Chemistry Nose to Brain Delivery: New Trends in Amphiphile-Based “Soft” Nanocarriers
Current Pharmaceutical Design Exploring a Novel Target Treatment on Breast Cancer: Aloe-emodin Mediated Photodynamic Therapy Induced Cell Apoptosis and Inhibited Cell Metastasis
Anti-Cancer Agents in Medicinal Chemistry Pharmacodynamics of Radiolabelled Anticancer Drugs for Positron Emission Tomography
Current Pharmaceutical Design New Trends of Deep Learning in Clinical Cardiology
Current Bioinformatics Review of Clinic Trials: Agents Targeting c-Met
Reviews on Recent Clinical Trials microRNA, Cancer and Cancer Chemoprevention
Current Molecular Pharmacology