Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Modulation of Immuno-biome during Radio-sensitization of Tumors by Glycolytic Inhibitors

Author(s): Seema Gupta* and Bilikere S. Dwarakanath*

Volume 27, Issue 24, 2020

Page: [4002 - 4015] Pages: 14

DOI: 10.2174/0929867325666180601101145

Price: $65

Abstract

The Tumor Microenvironment (TME) comprising stromal cells, fibroblasts and various components of the immune system forms a pro-tumorigenic cocoon around the tumor cells with the reprogramming of the metabolism in the form of Warburg phenotype (enhanced aerobic glycolysis) in tumor as well as non-tumor cells. This reprogramming plays a significant role in suppressing the immune response leading to the survival and proliferation of tumor cells and resistance to therapies. Therefore, there is a considerable interest in developing strategies involving metabolic modifiers to improve the therapeutic efficacy that restores immune competence, besides enhancing the direct effects on tumor cells. Inhibitors of glycolysis like 2-deoxy-D-glucose (2-DG; a hexokinase inhibitor), dichloroacetate and small molecule inhibitors of lactate transport (MCT-1) are some of the metabolic modifiers investigated for their therapeutic as well as adjuvant potential. Among these, 2-DG has been widely investigated and established as an ideal adjuvant in the radio- and chemotherapy of tumors. Modulation of the immuno-biome in the form of cytokine shifts, differential transcriptional regulation, abrogation of immunosuppressive network and reduced accumulation of lactate are some of the contributing factors for immune stimulation linked to the radio- and chemosensitization by glycolytic inhibitors.

Keywords: Glycolysis, metabolic modifiers, 2-DG, immune modulation, radiosensitization, immunosuppression, immunostimulation.

[1]
Terme, M.; Ullrich, E.; Aymeric, L.; Meinhardt, K.; Coudert, J.D.; Desbois, M.; Ghiringhelli, F.; Viaud, S.; Ryffel, B.; Yagita, H.; Chen, L.; Mécheri, S.; Kaplanski, G.; PrévostBlondel, A.; Kato, M.; Schultze, J.L.; Tartour, E.; Kroemer, G.; Degli-Esposti, M.; Chaput, N.; Zitvogel, L. Cancer induced immunosuppression: IL-18-elicited immunoablative NK cells. Cancer Res., 2012, 72(11), 2757-2767.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3379] [PMID: 22427351]
[2]
Messerschmidt, J.L.; Bhattacharya, P.; Messerschmidt, G.L. Cancer clonal theory, immune escape, and their evolving roles in cancer multi-agent therapeutics. Curr. Oncol. Rep., 2017, 19(10), 66.
[http://dx.doi.org/10.1007/s11912-017-0625-2] [PMID: 28803390]
[3]
Galluzzi, L.; Zitvogel, L.; Kroemer, G. Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol. Res., 2016, 4(11), 895-902.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0197] [PMID: 27803050]
[4]
Ma, Y.; Kepp, O.; Ghiringhelli, F.; Apetoh, L.; Aymeric, L.; Locher, C.; Tesniere, A.; Martins, I.; Ly, A.; Haynes, N.M.; Smyth, M.J.; Kroemer, G.; Zitvogel, L. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin. Immunol., 2010, 22(3), 113-124.
[http://dx.doi.org/10.1016/j.smim.2010.03.001] [PMID: 20403709]
[5]
Shurin, M.R.; Naiditch, H.; Gutkin, D.W.; Umansky, V.; Shurin, G.V. ChemoImmunoModulation: immune regulation by the antineoplastic chemotherapeutic agents. Curr. Med. Chem., 2012, 19(12), 1792-1803.
[http://dx.doi.org/10.2174/092986712800099785] [PMID: 22414087]
[6]
Sukumar, M.; Roychoudhuri, R.; Restifo, N.P. Nutrient competition: a new axis of tumor immunosuppression. Cell, 2015, 162(6), 1206-1208.
[http://dx.doi.org/10.1016/j.cell.2015.08.064] [PMID: 26359979]
[7]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; André, F.; Tesniere, A.; Kroemer, G. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest., 2008, 118(6), 1991-2001.
[http://dx.doi.org/10.1172/JCI35180] [PMID: 18523649]
[8]
Farooque, A.; Singh, N.; Adhikari, J.S.; Afrin, F.; Dwarakanath, B.S. Enhanced antitumor immunity contributes to the radio-sensitization of ehrlich ascites tumor by the glycolytic inhibitor 2-deoxy-D-glucose in mice. PLoS One, 2014, 9(9),e108131.
[http://dx.doi.org/10.1371/journal.pone.0108131] [PMID: 25248151]
[9]
Farooque, A.; Afrin, F.; Adhikari, J.S.; Dwarakanath, B.S. Polarization of macrophages towards M1 phenotype by a combination of 2-deoxy-d-glucose and radiation: Implications for tumor therapy. Immunobiology, 2016, 221(2), 269-281.
[http://dx.doi.org/10.1016/j.imbio.2015.10.009] [PMID: 26597503]
[10]
Dwarakanath, B.S.; Singh, S.; Jain, V. Optimization of tumour radiotherapy: Part V--Radiosensitization by 2-deoxyD-glucose and DNA ligand Hoechst-33342 in a murine tumour. Indian J. Exp. Biol., 1999, 37(9), 865-870.
[PMID: 10687280]
[11]
Gupta, S.; Farooque, A.; Adhikari, J.S.; Singh, S.; Dwarakanath, B.S. Enhancement of radiation and chemotherapeutic drug responses by 2-deoxyD-glucose in animal tumors. J. Cancer Res. Ther., 2009, 5(Suppl. 1), S16-S20.
[http://dx.doi.org/10.4103/0973-1482.55135] [PMID: 20009287]
[12]
Farooque, A.; Afrin, F.; Adhikari, J.S.; Dwarakanath, B.S. Protection of normal cells and tissues during radio- and chemosensitization of tumors by 2-deoxy-D-glucose. J. Cancer Res. Ther., 2009, 5(Suppl. 1), S32-S35.
[http://dx.doi.org/10.4103/0973-1482.55138] [PMID: 20009291]
[13]
Dwarakanath, B.S. Cytotoxicity, radiosensitization, and chemosensitization of tumor cells by 2-deoxy-D-glucose in vitro. J. Cancer Res. Ther., 2009, 5(Suppl. 1), S27-S31.
[http://dx.doi.org/10.4103/0973-1482.55137] [PMID: 20009290]
[14]
Jain, V. Modifications of radiation responses by 2-deoxy-D-glucose in normal and cancer cells. Indian J. Nucl. Med., 1996, 11, 8-17.
[15]
Chen, K.; Xu, X.; Kobayashi, S.; Timm, D.; Jepperson, T.; Liang, Q. Caloric restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced cardiomyocyte death by multiple mechanisms. J. Biol. Chem., 2011, 286(25), 21993-22006.
[http://dx.doi.org/10.1074/jbc.M111.225805] [PMID: 21521688]
[16]
Singh, S.; Pandey, S.; Bhatt, A.N.; Chaudhary, R.; Bhuria, V.; Kalra, N.; Soni, R.; Roy, B.G.; Saluja, D.; Dwarakanath, B.S. Chronic dietary administration of the glycolytic inhibitor 2-Deoxy-D-Glucose (2-DG) inhibits the growth of implanted ehrlich’s ascites tumor in mice. PLoS One, 2015, 10(7),e0132089.
[http://dx.doi.org/10.1371/journal.pone.0132089] [PMID: 26135741]
[17]
Ohashi, T.; Akazawa, T.; Aoki, M.; Kuze, B.; Mizuta, K.; Ito, Y.; Inoue, N. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int. J. Cancer, 2013, 133(5), 1107-1118.
[http://dx.doi.org/10.1002/ijc.28114] [PMID: 23420584]
[18]
Gupta, S.; Roy, A.; Dwarakanath, B.S. Metabolic cooperation and competition in the tumor microenvironment: implications for therapy. Front. Oncol., 2017, 7, 68.
[http://dx.doi.org/10.3389/fonc.2017.00068] [PMID: 28447025]
[19]
Pietras, K.; Ostman, A. Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res., 2010, 316(8), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.045] [PMID: 20211171]
[20]
Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer, 2006, 6(5), 392-401.
[http://dx.doi.org/10.1038/nrc1877] [PMID: 16572188]
[21]
Amatangelo, M.D.; Bassi, D.E.; Klein-Szanto, A.J.; Cukierman, E. Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am. J. Pathol., 2005, 167(2), 475-488.
[http://dx.doi.org/10.1016/S0002-9440(10)62991-4] [PMID: 16049333]
[22]
Martinez-Outschoorn, U.; Sotgia, F.; Lisanti, M.P. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin. Oncol., 2014, 41(2), 195-216.
[http://dx.doi.org/10.1053/j.seminoncol.2014.03.002] [PMID: 24787293]
[23]
Choi, S.Y.; Collins, C.C.; Gout, P.W.; Wang, Y. Cancer generated lactic acid: a regulatory, immunosuppressive metabolite? J. Pathol., 2013, 230(4), 350-355.
[http://dx.doi.org/10.1002/path.4218] [PMID: 23729358]
[24]
Siemann, D.W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev., 2011, 37(1), 63-74.
[http://dx.doi.org/10.1016/j.ctrv.2010.05.001] [PMID: 20570444]
[25]
Nagy, J.A.; Chang, S.H.; Dvorak, A.M.; Dvorak, H.F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer, 2009, 100(6), 865-869.
[http://dx.doi.org/10.1038/sj.bjc.6604929] [PMID: 19240721]
[26]
Chiche, J.; Brahimi-Horn, M.C.; Pouysségur, J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med., 2010, 14(4), 771-794.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00994.x] [PMID: 20015196]
[27]
Peppicelli, S.; Ruzzolini, E.A.J.; Margheri, F.; Laurenzana, A.; Bianchini, F.; Calorini, L. Acidity of microenvironment as a further driver of tumor metabolic reprogramming. J. Clin. Cell. Immunol., 2017, 8(1), 485-489.
[http://dx.doi.org/10.4172/2155-9899.1000485]
[28]
Justus, C.R.; Sanderlin, E.J.; Yang, L.V. Molecular connections between cancer cell metabolism and the tumor microenvironment. Int. J. Mol. Sci., 2015, 16(5), 11055-11086.
[http://dx.doi.org/10.3390/ijms160511055] [PMID: 25988385]
[29]
Chen, J.L.; Lucas, J.E.; Schroeder, T.; Mori, S.; Wu, J.; Nevins, J.; Dewhirst, M.; West, M.; Chi, J.T. The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet., 2008, 4(12),e1000293.
[http://dx.doi.org/10.1371/journal.pgen.1000293] [PMID: 19057672]
[30]
Xie, J.; Wu, H.; Dai, C.; Pan, Q.; Ding, Z.; Hu, D.; Ji, B.; Luo, Y.; Hu, X. Beyond Warburg effect--dual metabolic nature of cancer cells. Sci. Rep., 2014, 4, 4927.
[http://dx.doi.org/10.1038/srep04927] [PMID: 24820099]
[31]
Husain, Z.; Seth, P.; Sukhatme, V.P. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology. OncoImmunology, 2013, 2(11),e26383.
[http://dx.doi.org/10.4161/onci.26383] [PMID: 24404426]
[32]
Brand, A.; Singer, K.; Koehl, G.E.; Kolitzus, M.; Schoenhammer, G.; Thiel, A.; Matos, C.; Bruss, C.; Klobuch, S.; Peter, K.; Kastenberger, M.; Bogdan, C.; Schleicher, U.; Mackensen, A.; Ullrich, E.; Fichtner-Feigl, S.; Kesselring, R.; Mack, M.; Ritter, U.; Schmid, M.; Blank, C.; Dettmer, K.; Oefner, P.J.; Hoffmann, P.; Walenta, S.; Geissler, E.K.; Pouyssegur, J.; Villunger, A.; Steven, A.; Seliger, B.; Schreml, S.; Haferkamp, S.; Kohl, E.; Karrer, S.; Berneburg, M.; Herr, W.; Mueller-Klieser, W.; Renner, K.; Kreutz, M. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK Cells. Cell Metab., 2016, 24(5), 657-671.
[http://dx.doi.org/10.1016/j.cmet.2016.08.011] [PMID: 27641098]
[33]
Lawless, S.J.; Kedia-Mehta, N.; Walls, J.F.; McGarrigle, R.; Convery, O.; Sinclair, L.V.; Navarro, M.N.; Murray, J.; Finlay, D.K. Glucose represses dendritic cell-induced T cell responses. Nat. Commun., 2017, 8, 15620.
[http://dx.doi.org/10.1038/ncomms15620] [PMID: 28555668]
[34]
Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity, 2013, 38(4), 633-643.
[http://dx.doi.org/10.1016/j.immuni.2013.04.005] [PMID: 23601682]
[35]
Ward, P.S.; Thompson, C.B. Signaling in control of cell growth and metabolism. Cold Spring Harb. Perspect. Biol., 2012, 4(7),a006783.
[http://dx.doi.org/10.1101/cshperspect.a006783] [PMID: 22687276]
[36]
Bronte, V.; Pittet, M.J. The spleen in local and systemic regulation of immunity. Immunity, 2013, 39(5), 806-818.
[http://dx.doi.org/10.1016/j.immuni.2013.10.010] [PMID: 24238338]
[37]
Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Rauch, P.J.; Chudnovskiy, A.; Berger, C.; Ryan, R.J.; Iwamoto, Y.; Marinelli, B.; Gorbatov, R.; Forghani, R.; Novobrantseva, T.I.; Koteliansky, V.; Figueiredo, J.L.; Chen, J.W.; Anderson, D.G.; Nahrendorf, M.; Swirski, F.K.; Weissleder, R.; Pittet, M.J. Origins of tumor-associated macrophages and neutrophils. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2491-2496.
[http://dx.doi.org/10.1073/pnas.1113744109] [PMID: 22308361]
[38]
Qian, B.Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, 141(1), 39-51.
[http://dx.doi.org/10.1016/j.cell.2010.03.014] [PMID: 20371344]
[39]
Maier, P.; Hartmann, L.; Wenz, F.; Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci., 2016, 17(1),E102.
[http://dx.doi.org/10.3390/ijms17010102] [PMID: 26784176]
[40]
Rubner, Y.; Wunderlich, R.; Rühle, P.F.; Kulzer, L.; Werthmöller, N.; Frey, B.; Weiss, E.M.; Keilholz, L.; Fietkau, R.; Gaipl, U.S. How does ionizing irradiation contribute to the induction of anti-tumor immunity? Front. Oncol., 2012, 2, 75.
[http://dx.doi.org/10.3389/fonc.2012.00075] [PMID: 22848871]
[41]
Farooque, A.; Mathur, R.; Verma, A.; Kaul, V.; Bhatt, A.N.; Adhikari, J.S.; Afrin, F.; Singh, S.; Dwarakanath, B.S. Low dose radiation therapy of cancer: role of immune enhancement. Expert Rev. Anticancer Ther., 2011, 11(5), 791-802.
[http://dx.doi.org/10.1586/era.10.217] [PMID: 21554054]
[42]
Ahmed, M.M.; Hodge, J.W.; Guha, C.; Bernhard, E.J.; Vikram, B.; Coleman, C.N. Harnessing the potential of radiation-induced immune modulation for cancer therapy. Cancer Immunol. Res., 2013, 1(5), 280-284.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0141] [PMID: 24777964]
[43]
Kasid, U.; Suy, S.; Dent, P.; Ray, S.; Whiteside, T.L.; Sturgill, T.W. Activation of Raf by ionizing radiation. Nature, 1996, 382(6594), 813-816.
[http://dx.doi.org/10.1038/382813a0] [PMID: 8752275]
[44]
Lander, H.M.; Tauras, J.M.; Ogiste, J.S.; Hori, O.; Moss, R.A.; Schmidt, A.M. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem., 1997, 272(28), 17810-17814.
[http://dx.doi.org/10.1074/jbc.272.28.17810] [PMID: 9211935]
[45]
Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell Biol., 1998, 10(2), 248-253.
[http://dx.doi.org/10.1016/S0955-0674(98)80147-6] [PMID: 9561849]
[46]
Rho, H.S.; Park, S.S.; Lee, C.E. Gamma irradiation up-regulates expression of B cell differentiation molecule CD23 by NF-kappaB activation. J. Biochem. Mol. Biol., 2004, 37(4), 507-514.
[PMID: 15469741]
[47]
Shan, Y.X.; Jin, S.Z.; Liu, X.D.; Liu, Y.; Liu, S.Z. Ionizing radiation stimulates secretion of pro-inflammatory cytokines: dose-response relationship, mechanisms and implications. Radiat. Environ. Biophys., 2007, 46(1), 21-29.
[http://dx.doi.org/10.1007/s00411-006-0076-x] [PMID: 17072632]
[48]
Shankar, B.; Premachandran, S.; Bharambe, S.D.; Sundaresan, P.; Sainis, K.B. Modification of immune response by low dose ionizing radiation: role of apoptosis. Immunol. Lett., 1999, 68(2-3), 237-245.
[http://dx.doi.org/10.1016/S0165-2478(99)00074-7] [PMID: 10424426]
[49]
Villar, R.C. Radiotherapy and immunity- a mini review in: Immunosuppression- Role in Health and Diseases; Kapur, D.S., Ed.; InTech, 2012.
[50]
Lumniczky, K.; Sáfrány, G. The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences. Cancer Lett., 2015, 356(1), 114-125.
[http://dx.doi.org/10.1016/j.canlet.2013.08.024] [PMID: 23994343]
[51]
Siva, S.; MacManus, M.; Kron, T.; Best, N.; Smith, J.; Lobachevsky, P.; Ball, D.; Martin, O. A pattern of early radiation-induced inflammatory cytokine expression is associated with lung toxicity in patients with non-small cell lung cancer. PLoS One, 2014, 9(10)e109560
[http://dx.doi.org/10.1371/journal.pone.0109560] [PMID: 25289758]
[52]
Pandey, S.; Singh, S.; Anang, V.; Bhatt, A.N.; Natarajan, K.; Dwarakanath, B.S. Pattern recognition receptors in cancer progression and metastasis. Cancer Growth Metastasis, 2015, 8, 25-34.
[http://dx.doi.org/10.4137/CGM.S24314] [PMID: 26279628]
[53]
Schaue, D.; McBride, W.H. Links between innate immunity and normal tissue radiobiology. Radiat. Res., 2010, 173(4), 406-417.
[http://dx.doi.org/10.1667/RR1931.1] [PMID: 20334512]
[54]
Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Obeid, M.; Ortiz, C.; Criollo, A.; Mignot, G.; Maiuri, M.C.; Ullrich, E.; Saulnier, P.; Yang, H.; Amigorena, S.; Ryffel, B.; Barrat, F.J.; Saftig, P.; Levi, F.; Lidereau, R.; Nogues, C.; Mira, J.P.; Chompret, A.; Joulin, V.; Clavel-Chapelon, F.; Bourhis, J.; André, F.; Delaloge, S.; Tursz, T.; Kroemer, G.; Zitvogel, L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med., 2007, 13(9), 1050-1059.
[http://dx.doi.org/10.1038/nm1622] [PMID: 17704786]
[55]
Wei, S.; Egenti, M.U.; Teitz-Tennenbaum, S.; Zou, W.; Chang, A.E. Effects of tumor irradiation on host T-regulatory cells and systemic immunity in the context of adoptive T-cell therapy in mice. J. Immunother., 2013, 36(2), 124-132.
[http://dx.doi.org/10.1097/CJI.0b013e31828298e6] [PMID: 23377667]
[56]
Siva, S.; MacManus, M.P.; Martin, R.F.; Martin, O.A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett., 2015, 356(1), 82-90.
[http://dx.doi.org/10.1016/j.canlet.2013.09.018] [PMID: 24125863]
[57]
Cameron, A.M.; Lawless, S.J.; Pearce, E.J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol., 2016, 28(5), 408-416.
[http://dx.doi.org/10.1016/j.smim.2016.10.003] [PMID: 28340958]
[58]
Kelly, B.; O’Neill, L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, 25(7), 771-784.
[http://dx.doi.org/10.1038/cr.2015.68] [PMID: 26045163]
[59]
Galván-Peña, S.; O’Neill, L.A. Metabolic reprograming in macrophage polarization. Front. Immunol., 2014, 5, 420.
[PMID: 25228902]
[60]
Sun, J.C.; Lanier, L.L. Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity? Eur. J. Immunol., 2009, 39(8), 2059-2064.
[http://dx.doi.org/10.1002/eji.200939435] [PMID: 19637199]
[61]
Terme, M.; Ullrich, E.; Delahaye, N.F.; Chaput, N.; Zitvogel, L. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat. Immunol., 2008, 9(5), 486-494.
[http://dx.doi.org/10.1038/ni1580] [PMID: 18425105]
[62]
Andresen, L.; Skovbakke, S.L.; Persson, G.; Hagemann-Jensen, M.; Hansen, K.A.; Jensen, H.; Skov, S. 2-deoxy D-glucose prevents cell surface expression of NKG2D ligands through inhibition of N-linked glycosylation. J. Immunol., 2012, 188(4), 1847-1855.
[http://dx.doi.org/10.4049/jimmunol.1004085] [PMID: 22227571]
[63]
Steinman, R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol., 1991, 9, 271-296.
[http://dx.doi.org/10.1146/annurev.iy.09.040191.001415] [PMID: 1910679]
[64]
Stoitzner, P.; Green, L.K.; Jung, J.Y.; Price, K.M.; Atarea, H.; Kivell, B.; Ronchese, F. Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol. Immunother., 2008, 57(11), 1665-1673.
[http://dx.doi.org/10.1007/s00262-008-0487-4] [PMID: 18311487]
[65]
Ataera, H.; Hyde, E.; Price, K.M.; Stoitzner, P.; Ronchese, F. Murine melanoma-infiltrating dendritic cells are defective in antigen presenting function regardless of the presence of CD4CD25 regulatory T cells. PLoS One, 2011, 6(3)e17515
[http://dx.doi.org/10.1371/journal.pone.0017515] [PMID: 21390236]
[66]
Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol., 2011, 29, 235-271.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101324] [PMID: 21219185]
[67]
de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer, 2006, 6(1), 24-37.
[http://dx.doi.org/10.1038/nrc1782] [PMID: 16397525]
[68]
Kouidhi, S.; Noman, M.Z.; Kieda, C.; Elgaaied, A.B.; Chouaib, S. Intrinsic and tumor microenvironment-induced metabolism adaptations of T Cells and impact on their differentiation and function. Front. Immunol., 2016, 7, 114.
[http://dx.doi.org/10.3389/fimmu.2016.00114] [PMID: 27066006]
[69]
Buck, M.D.; O’Sullivan, D.; Pearce, E.L. T cell metabolism drives immunity. J. Exp. Med., 2015, 212(9), 1345-1360.
[http://dx.doi.org/10.1084/jem.20151159] [PMID: 26261266]
[70]
Jacobs, S.R.; Herman, C.E.; Maciver, N.J.; Wofford, J.A.; Wieman, H.L.; Hammen, J.J.; Rathmell, J.C. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol., 2008, 180(7), 4476-4486.
[http://dx.doi.org/10.4049/jimmunol.180.7.4476] [PMID: 18354169]
[71]
Michalek, R.D.; Gerriets, V.A.; Jacobs, S.R.; Macintyre, A.N.; MacIver, N.J.; Mason, E.F.; Sullivan, S.A.; Nichols, A.G.; Rathmell, J.C. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol., 2011, 186(6), 3299-3303.
[http://dx.doi.org/10.4049/jimmunol.1003613] [PMID: 21317389]
[72]
Rubtsov, Y.P.; Niec, R.E.; Josefowicz, S.; Li, L.; Darce, J.; Mathis, D.; Benoist, C.; Rudensky, A.Y. Stability of the regulatory T cell lineage in vivo. Science, 2010, 329(5999), 1667-1671.
[http://dx.doi.org/10.1126/science.1191996] [PMID: 20929851]
[73]
van der Windt, G.J.; Everts, B.; Chang, C.H.; Curtis, J.D.; Freitas, T.C.; Amiel, E.; Pearce, E.J.; Pearce, E.L. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity, 2012, 36(1), 68-78.
[http://dx.doi.org/10.1016/j.immuni.2011.12.007] [PMID: 22206904]
[74]
Bénéteau, M.; Zunino, B.; Jacquin, M.A.; Meynet, O.; Chiche, J.; Pradelli, L.A.; Marchetti, S.; Cornille, A.; Carles, M.; Ricci, J.E. Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proc. Natl. Acad. Sci. USA, 2012, 109(49), 20071-20076.
[http://dx.doi.org/10.1073/pnas.1206360109] [PMID: 23169636]
[75]
Chen, M.L.; Pittet, M.J.; Gorelik, L.; Flavell, R.A.; Weissleder, R.; von Boehmer, H.; Khazaie, K. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 419-424.
[http://dx.doi.org/10.1073/pnas.0408197102] [PMID: 15623559]
[76]
Chen, Y.; Sun, R.; Wu, X.; Cheng, M.; Wei, H.; Tian, Z. CD4+CD25+ regulatory T cells inhibit natural killer cell hepatocytotoxicity of hepatitis B virus transgenic mice via membrane-bound TGF-β and OX40. J. Innate Immun., 2016, 8(1), 30-42.
[http://dx.doi.org/10.1159/000431150] [PMID: 26067079]
[77]
Byrne, W.L.; Mills, K.H.; Lederer, J.A.; O’Sullivan, G.C. Targeting regulatory T cells in cancer. Cancer Res., 2011, 71(22), 6915-6920.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1156] [PMID: 22068034]
[78]
Kurtoglu, M.; Gao, N.; Shang, J.; Maher, J.C.; Lehrman, M.A.; Wangpaichitr, M.; Savaraj, N.; Lane, A.N.; Lampidis, T.J. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol. Cancer Ther., 2007, 6(11), 3049-3058.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0310] [PMID: 18025288]
[79]
De Rosa, V.; Galgani, M.; Porcellini, A.; Colamatteo, A.; Santopaolo, M.; Zuchegna, C.; Romano, A.; De Simone, S.; Procaccini, C.; La Rocca, C.; Carrieri, P.B.; Maniscalco, G.T.; Salvetti, M.; Buscarinu, M.C.; Franzese, A.; Mozzillo, E.; La Cava, A.; Matarese, G. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol., 2015, 16(11), 1174-1184.
[http://dx.doi.org/10.1038/ni.3269] [PMID: 26414764]
[80]
Abdullah Farooque, A.V.; Niharika, Singh; Seema, Gupta in International conference on Radiation Biology (ICRB-2016) “High LET Radiation Biology and Complex Natural Products in Biology and Medicine"., Chennai, India,2016.
[81]
Nelson, B.H. CD20+ B cells: the other tumor-infiltrating lymphocytes. J. Immunol., 2010, 185(9), 4977-4982.
[http://dx.doi.org/10.4049/jimmunol.1001323] [PMID: 20962266]
[82]
Linnebacher, M.; Maletzki, C. Tumor-infiltrating B cells: The ignored players in tumor immunology. OncoImmunology, 2012, 1(7), 1186-1188.
[http://dx.doi.org/10.4161/onci.20641] [PMID: 23170274]
[83]
Caro-Maldonado, A.; Wang, R.; Nichols, A.G.; Kuraoka, M.; Milasta, S.; Sun, L.D.; Gavin, A.L.; Abel, E.D.; Kelsoe, G.; Green, D.R.; Rathmell, J.C. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol., 2014, 192(8), 3626-3636.
[http://dx.doi.org/10.4049/jimmunol.1302062] [PMID: 24616478]
[84]
Parker, D.C. T cell-dependent B cell activation. Annu. Rev. Immunol., 1993, 11, 331-360.
[http://dx.doi.org/10.1146/annurev.iy.11.040193.001555] [PMID: 8476565]
[85]
Vitetta, E.S.; Fernandez-Botran, R.; Myers, C.D.; Sanders, V.M. Cellular interactions in the humoral immune response. Adv. Immunol., 1989, 45, 1-105.
[http://dx.doi.org/10.1016/S0065-2776(08)60692-6] [PMID: 2665437]
[86]
Phillips, M.M.; Sheaff, M.T.; Szlosarek, P.W. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res. Treat., 2013, 45(4), 251-262.
[http://dx.doi.org/10.4143/crt.2013.45.4.251] [PMID: 24453997]
[87]
Rodriguez, P.C.; Quiceno, D.G.; Zabaleta, J.; Ortiz, B.; Zea, A.H.; Piazuelo, M.B.; Delgado, A.; Correa, P.; Brayer, J.; Sotomayor, E.M.; Antonia, S.; Ochoa, J.B.; Ochoa, A.C. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res., 2004, 64(16), 5839-5849.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0465] [PMID: 15313928]
[88]
Srivastava, M.K.; Sinha, P.; Clements, V.K.; Rodriguez, P.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res., 2010, 70(1), 68-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2587] [PMID: 20028852]
[89]
Abdullah Farooque, F.A.; ; Jawahar, Singh,; Adhikari, ; Dwarakanath.,, B.S. 8th Annual Meeting of the Cytometry Society and the 16th Indo-US Cytometry Workshop. Tata Memorial Centre, Mumbai, India, 2015.
[90]
Gandhi, S.; Chandna, S. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev., 2017, 36(2), 375-393.
[http://dx.doi.org/10.1007/s10555-017-9669-x] [PMID: 28707199]
[91]
Multhoff, G.; Radons, J. Radiation, inflammation, and immune responses in cancer. Front. Oncol., 2012, 2, 58.
[http://dx.doi.org/10.3389/fonc.2012.00058] [PMID: 22675673]
[92]
Wang, H.; Wang, L.; Zhang, Y.; Wang, J.; Deng, Y.; Lin, D. Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int., 2016, 16, 9.
[http://dx.doi.org/10.1186/s12935-016-0280-y] [PMID: 26884725]
[93]
Botzer, L.E.; Maman, S.; Sagi-Assif, O.; Meshel, T.; Nevo, I.; Yron, I.; Witz, I.P. Hexokinase 2 is a determinant of neuroblastoma metastasis. Br. J. Cancer, 2016, 114(7), 759-766.
[http://dx.doi.org/10.1038/bjc.2016.26] [PMID: 26986252]
[94]
Brown, J. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism, 1962, 11, 1098-1112.
[PMID: 13873661]
[95]
McComb, R.B.; Yushok, W.D. Metabolism of ascites tumor cells. iv. enzymatic reactions involved in adenosinetriphosphate degradation induced by 2-deoxyglucose. Cancer Res., 1964, 24, 198-205.
[PMID: 14115684]
[96]
Sharma, P.K.; Dwarakanath, B.S.; Varshney, R. Radiosensitization by 2-deoxy-D-glucose and 6-aminonicotinamide involves activation of redox sensitive ASK1-JNK/p38MAPK signaling in head and neck cancer cells. Free Radic. Biol. Med., 2012, 53(7), 1500-1513.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.001] [PMID: 22824861]
[97]
Varshney, R.; Dwarakanath, B.; Jain, V. Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int. J. Radiat. Biol., 2005, 81(5), 397-408.
[http://dx.doi.org/10.1080/09553000500148590] [PMID: 16076755]
[98]
Varshney, R.; Gupta, S.; Dwarakanath, B.S. Radiosensitization of murine Ehrlich ascites tumor by a combination of 2-deoxy-D-glucose and 6-aminonicotinamide. Technol. Cancer Res. Treat., 2004, 3(6), 659-663.
[http://dx.doi.org/10.1177/153303460400300616] [PMID: 15560724]
[99]
Mohanti, B.K.; Rath, G.K.; Anantha, N.; Kannan, V.; Das, B.S.; Chandramouli, B.A.; Banerjee, A.K.; Das, S.; Jena, A.; Ravichandran, R.; Sahi, U.P.; Kumar, R.; Kapoor, N.; Kalia, V.K.; Dwarakanath, B.S.; Jain, V. Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int. J. Radiat. Oncol. Biol. Phys., 1996, 35(1), 103-111.
[http://dx.doi.org/10.1016/S0360-3016(96)85017-6] [PMID: 8641905]
[100]
Singh, D.; Banerji, A.K.; Dwarakanath, B.S.; Tripathi, R.P.; Gupta, J.P.; Mathew, T.L.; Ravindranath, T.; Jain, V. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther. Onkol., 2005, 181(8), 507-514.
[http://dx.doi.org/10.1007/s00066-005-1320-z] [PMID: 16044218]
[101]
Dwarakanath, B.S.; Singh, D.; Banerji, A.K.; Sarin, R.; Venkataramana, N.K.; Jalali, R.; Vishwanath, P.N.; Mohanti, B.K.; Tripathi, R.P.; Kalia, V.K.; Jain, V. Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects. J. Cancer Res. Ther., 2009, 5(Suppl. 1), S21-S26.
[http://dx.doi.org/10.4103/0973-1482.55136] [PMID: 20009289]
[102]
Venkataramanaa, N.K.; Venkatesh, P.K.; Dwarakanath, B.S.; Vani, S. Protective effect on normal brain tissue during a combinational therapy of 2-deoxy-d-glucose and hypofractionated irradiation in malignant gliomas. Asian J. Neurosurg., 2013, 8(1), 9-14.
[http://dx.doi.org/10.4103/1793-5482.110274] [PMID: 23741257]
[103]
Strum, S.B.; Adalsteinsson, O.; Black, R.R.; Segal, D.; Peress, N.L.; Waldenfels, J. Case report: Sodium dichloroacetate (DCA) inhibition of the “Warburg Effect” in a human cancer patient: complete response in non-Hodgkin’s lymphoma after disease progression with rituximab-CHOP. J. Bioenerg. Biomembr., 2013, 45(3), 307-315.
[http://dx.doi.org/10.1007/s10863-012-9496-2] [PMID: 23263938]
[104]
Zhu, W.; Ye, L.; Zhang, J.; Yu, P.; Wang, H.; Ye, Z.; Tian, J. PFK15, a Small molecule inhibitor of PFKFB3, induces cell cycle arrest, apoptosis and inhibits invasion in gastric cancer. PLoS One, 2016, 11(9),e0163768
[http://dx.doi.org/10.1371/journal.pone.0163768] [PMID: 27669567]
[105]
Li, S.; Wu, L.; Feng, J.; Li, J.; Liu, T.; Zhang, R.; Xu, S.; Cheng, K.; Zhou, Y.; Zhou, S.; Kong, R.; Chen, K.; Wang, F.; Xia, Y.; Lu, J.; Zhou, Y.; Dai, W.; Guo, C. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci. Rep., 2016, 6, 28479.
[http://dx.doi.org/10.1038/srep28479] [PMID: 27349173]
[106]
Cantelmo, A.R.; Conradi, L.C.; Brajic, A.; Goveia, J.; Kalucka, J.; Pircher, A.; Chaturvedi, P.; Hol, J.; Thienpont, B.; Teuwen, L.A.; Schoors, S.; Boeckx, B.; Vriens, J.; Kuchnio, A.; Veys, K.; Cruys, B.; Finotto, L.; Treps, L.; Stav-Noraas, T.E.; Bifari, F.; Stapor, P.; Decimo, I.; Kampen, K.; De Bock, K.; Haraldsen, G.; Schoonjans, L.; Rabelink, T.; Eelen, G.; Ghesquière, B.; Rehman, J.; Lambrechts, D.; Malik, A.B.; Dewerchin, M.; Carmeliet, P. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell, 2016, 30(6), 968-985.
[http://dx.doi.org/10.1016/j.ccell.2016.10.006] [PMID: 27866851]
[107]
Lian, N.; Jin, H.; Zhang, F.; Wu, L.; Shao, J.; Lu, Y.; Zheng, S. Curcumin inhibits aerobic glycolysis in hepatic stellate cells associated with activation of adenosine monophosphate-activated protein kinase. IUBMB Life, 2016, 68(7), 589-596.
[http://dx.doi.org/10.1002/iub.1518] [PMID: 27278959]
[108]
Majkowska-Skrobek, G.; Augustyniak, D.; Lis, P.; Bartkowiak, A.; Gonchar, M.; Ko, Y.H.; Pedersen, P.L.; Goffeau, A.; Ułaszewski, S. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy. Anticancer Drugs, 2014, 25(6), 673-682.
[PMID: 24557015]
[109]
Papaldo, P.; Lopez, M.; Cortesi, E.; Cammilluzzi, E.; Antimi, M.; Terzoli, E.; Lepidini, G.; Vici, P.; Barone, C.; Ferretti, G.; Di Cosimo, S.; Nistico, C.; Carlini, P.; Conti, F.; Di Lauro, L.; Botti, C.; Vitucci, C.; Fabi, A.; Giannarelli, D.; Marolla, P. Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide. J. Clin. Oncol., 2003, 21(18), 3462-3468.
[http://dx.doi.org/10.1200/JCO.2003.03.034] [PMID: 12972521]
[110]
Di Cosimo, S.; Ferretti, G.; Papaldo, P.; Carlini, P.; Fabi, A.; Cognetti, F. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc), 2003, 39(3), 157-174.
[http://dx.doi.org/10.1358/dot.2003.39.3.799451] [PMID: 12730701]
[111]
Fang, J.; Quinones, Q.J.; Holman, T.L.; Morowitz, M.J.; Wang, Q.; Zhao, H.; Sivo, F.; Maris, J.M.; Wahl, M.L. The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol. Pharmacol., 2006, 70(6), 2108-2115.
[http://dx.doi.org/10.1124/mol.106.026245] [PMID: 17000864]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy