Abstract
Background: Astroglioma, one major form of brain tumors, has remained principally tough to handle for decades, due to the complexity of tumor pathology and the poor response to chemo- and radio-therapies.
Methods: Our previous study demonstrated that nifurtimox could regulate the signaling axis of AKT-GSK3β in various tumor types including the astroglioma U251 cells. Intriguingly, earlier case studies suggested that nifurtimox could possibly permeate the blood brain barrier and arrest neuroblastoma in the brain. These observations jointly encouraged us to explore whether nifurtimox would hinder the growth of astroglioma in vivo.
Results: Our results exhibited that nifurtimox could competently hinder the development of astroglioma in the mouse brain as compared to temozolomide, the first line of drug for brain tumors. Meanwhile the surviving rate, as well as the body-weight was dramatically upregulated upon nifurtimox treatment, as compared to that of temozolomide. These findings offered nifurtimox as a better alternative drug in treating astroglioma in vivo.
Conclusion: Persistently, the manipulation of the signaling axis of AKT-GSK3β in astroglioma was found in line with earlier findings in neuroblastoma when treated with nifurtimox.
Keywords: Astroglioma, Nifurtimox treatment, Temozolomide, in vivo, AKT-GSK3β, blood brain barrier.
Current Molecular Medicine
Title:Nifurtimox Hampered the Progression of Astroglioma In vivo Via Manipulating the AKT-GSK3β axis
Volume: 20 Issue: 9
Author(s): Qiuxia Zhang, Zhenshuai Chen, Wei Yuan, Yu-Qing Tang, Jiangli Zhu, Wentao Wu, Hongguang Ren, Hui Wang, Weiyi Zheng, Zhongjian Zhang*Eryan Kong*
Affiliation:
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang,China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang,China
Keywords: Astroglioma, Nifurtimox treatment, Temozolomide, in vivo, AKT-GSK3β, blood brain barrier.
Abstract:
Background: Astroglioma, one major form of brain tumors, has remained principally tough to handle for decades, due to the complexity of tumor pathology and the poor response to chemo- and radio-therapies.
Methods: Our previous study demonstrated that nifurtimox could regulate the signaling axis of AKT-GSK3β in various tumor types including the astroglioma U251 cells. Intriguingly, earlier case studies suggested that nifurtimox could possibly permeate the blood brain barrier and arrest neuroblastoma in the brain. These observations jointly encouraged us to explore whether nifurtimox would hinder the growth of astroglioma in vivo.
Results: Our results exhibited that nifurtimox could competently hinder the development of astroglioma in the mouse brain as compared to temozolomide, the first line of drug for brain tumors. Meanwhile the surviving rate, as well as the body-weight was dramatically upregulated upon nifurtimox treatment, as compared to that of temozolomide. These findings offered nifurtimox as a better alternative drug in treating astroglioma in vivo.
Conclusion: Persistently, the manipulation of the signaling axis of AKT-GSK3β in astroglioma was found in line with earlier findings in neuroblastoma when treated with nifurtimox.
Export Options
About this article
Cite this article as:
Zhang Qiuxia , Chen Zhenshuai , Yuan Wei , Tang Yu-Qing, Zhu Jiangli , Wu Wentao , Ren Hongguang , Wang Hui , Zheng Weiyi , Zhang Zhongjian *, Kong Eryan *, Nifurtimox Hampered the Progression of Astroglioma In vivo Via Manipulating the AKT-GSK3β axis, Current Molecular Medicine 2020; 20 (9) . https://dx.doi.org/10.2174/1566524020666200409124258
DOI https://dx.doi.org/10.2174/1566524020666200409124258 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Subject Index To Volume 12
Current Pharmaceutical Design Endoradiotherapy with Peptides - Status and Future Development
Current Medicinal Chemistry EZN-2208 (PEG-SN38), A 40 kDa Polyethylene Glycol (PEG) Conjugate, As an Anticancer Agent: Review of Preclinical and Clinical Data
Current Bioactive Compounds Biosafety of Herpesvirus Vectors
Current Gene Therapy Tacrine Derivatives and Alzheimers Disease
Current Medicinal Chemistry Protein Oxidative Folding in the Intermembrane Mitochondrial Space: More than Protein Trafficking
Current Protein & Peptide Science Anti-cancer and Other Bioactivities of Korean Angelica gigas Nakai (AGN) and Its Major Pyranocoumarin Compounds
Anti-Cancer Agents in Medicinal Chemistry Brain Tumor Causes, Symptoms, Diagnosis and Radiotherapy Treatment
Current Medical Imaging Multi-target Activities of Selected Alkaloids and Terpenoids
Mini-Reviews in Organic Chemistry Small Molecule Fluorescent Ligands as Central Nervous System Imaging Probes
Mini-Reviews in Medicinal Chemistry Zebrafish as a Model System to Screen Radiation Modifiers
Current Genomics Melittin: A Natural Peptide with Expanded Therapeutic Applications
The Natural Products Journal Phenolic and Organic Acids from <i>Spondias pinnata</i> Fruits
The Natural Products Journal Editorial (Hot Topic: Survival Signaling Through Focal Adhesion Kinase in Tumors)
Anti-Cancer Agents in Medicinal Chemistry Selective Divalent Copper Chelation for the Treatment of Diabetes Mellitus
Current Medicinal Chemistry Ewing Sarcoma Family Tumors: Past, Present and Future Prospects
Current Cancer Therapy Reviews RNAi Applications in Therapy Development for Neurodegenerative Disease
Current Pharmaceutical Design Ferric Cycle Activity and Alzheimer Disease
Current Neurovascular Research The Ubiquitin+Proteasome Protein Degradation Pathway as a Therapeutic Strategy in the Treatment of Solid Tumor Malignancies
Anti-Cancer Agents in Medicinal Chemistry Adrenomedullin and Nitric Oxide: Implications for the Etiology and Treatment of Primary Brain Tumors
CNS & Neurological Disorders - Drug Targets