Abstract
Background: Astroglioma, one major form of brain tumors, has remained principally tough to handle for decades, due to the complexity of tumor pathology and the poor response to chemo- and radio-therapies.
Methods: Our previous study demonstrated that nifurtimox could regulate the signaling axis of AKT-GSK3β in various tumor types including the astroglioma U251 cells. Intriguingly, earlier case studies suggested that nifurtimox could possibly permeate the blood brain barrier and arrest neuroblastoma in the brain. These observations jointly encouraged us to explore whether nifurtimox would hinder the growth of astroglioma in vivo.
Results: Our results exhibited that nifurtimox could competently hinder the development of astroglioma in the mouse brain as compared to temozolomide, the first line of drug for brain tumors. Meanwhile the surviving rate, as well as the body-weight was dramatically upregulated upon nifurtimox treatment, as compared to that of temozolomide. These findings offered nifurtimox as a better alternative drug in treating astroglioma in vivo.
Conclusion: Persistently, the manipulation of the signaling axis of AKT-GSK3β in astroglioma was found in line with earlier findings in neuroblastoma when treated with nifurtimox.
Keywords: Astroglioma, Nifurtimox treatment, Temozolomide, in vivo, AKT-GSK3β, blood brain barrier.
Current Molecular Medicine
Title:Nifurtimox Hampered the Progression of Astroglioma In vivo Via Manipulating the AKT-GSK3β axis
Volume: 20 Issue: 9
Author(s): Qiuxia Zhang, Zhenshuai Chen, Wei Yuan, Yu-Qing Tang, Jiangli Zhu, Wentao Wu, Hongguang Ren, Hui Wang, Weiyi Zheng, Zhongjian Zhang*Eryan Kong*
Affiliation:
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang,China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang,China
Keywords: Astroglioma, Nifurtimox treatment, Temozolomide, in vivo, AKT-GSK3β, blood brain barrier.
Abstract:
Background: Astroglioma, one major form of brain tumors, has remained principally tough to handle for decades, due to the complexity of tumor pathology and the poor response to chemo- and radio-therapies.
Methods: Our previous study demonstrated that nifurtimox could regulate the signaling axis of AKT-GSK3β in various tumor types including the astroglioma U251 cells. Intriguingly, earlier case studies suggested that nifurtimox could possibly permeate the blood brain barrier and arrest neuroblastoma in the brain. These observations jointly encouraged us to explore whether nifurtimox would hinder the growth of astroglioma in vivo.
Results: Our results exhibited that nifurtimox could competently hinder the development of astroglioma in the mouse brain as compared to temozolomide, the first line of drug for brain tumors. Meanwhile the surviving rate, as well as the body-weight was dramatically upregulated upon nifurtimox treatment, as compared to that of temozolomide. These findings offered nifurtimox as a better alternative drug in treating astroglioma in vivo.
Conclusion: Persistently, the manipulation of the signaling axis of AKT-GSK3β in astroglioma was found in line with earlier findings in neuroblastoma when treated with nifurtimox.
Export Options
About this article
Cite this article as:
Zhang Qiuxia , Chen Zhenshuai , Yuan Wei , Tang Yu-Qing, Zhu Jiangli , Wu Wentao , Ren Hongguang , Wang Hui , Zheng Weiyi , Zhang Zhongjian *, Kong Eryan *, Nifurtimox Hampered the Progression of Astroglioma In vivo Via Manipulating the AKT-GSK3β axis, Current Molecular Medicine 2020; 20 (9) . https://dx.doi.org/10.2174/1566524020666200409124258
DOI https://dx.doi.org/10.2174/1566524020666200409124258 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Targeting the G2/M Transition for Antitumor Therapy
Letters in Drug Design & Discovery Role of Glucocorticoids in Breast Cancer
Current Pharmaceutical Design Identification of Novel Structurally Diverse Anaplastic Lymphoma Kinase Inhibitors Based on Pharmacophore Modeling, Virtual Screening and Molecular Docking
Combinatorial Chemistry & High Throughput Screening p-Trifluoroacetophenone Oxime Ester Derivatives: Synthesis, Antimicrobial and Cytotoxic Evaluation and Molecular Modeling Studies
Letters in Drug Design & Discovery Calcium-engaged Mechanisms of Nongenomic Action of Neurosteroids
Current Neuropharmacology Altering the Tropism of Lentiviral Vectors through Pseudotyping
Current Gene Therapy Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells
Anti-Cancer Agents in Medicinal Chemistry Recent Advances in the Design and Development of Anticancer Molecules based on PROTAC Technology
Current Medicinal Chemistry EZN-2208 (PEG-SN38), A 40 kDa Polyethylene Glycol (PEG) Conjugate, As an Anticancer Agent: Review of Preclinical and Clinical Data
Current Bioactive Compounds Editorial (Hot Topic: Survival Signaling Through Focal Adhesion Kinase in Tumors)
Anti-Cancer Agents in Medicinal Chemistry New Anti-Mitotic Drugs with Distinct Anti-Calmodulin Activity
Mini-Reviews in Medicinal Chemistry Cancer-Homing Toxins
Current Pharmaceutical Design Resveratrol Regulates Nrf2-Mediated Expression of Antioxidant and Xenobiotic Metabolizing Enzymes in Pesticides-Induced Parkinsonism
Protein & Peptide Letters New Promises to Cure Cancer and Other Genetic Diseases/Disorders: Epi-drugs Through Epigenetics
Current Topics in Medicinal Chemistry Malaria and artemisinin derivatives: an updated review
Mini-Reviews in Medicinal Chemistry The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration
Current Neuropharmacology SYNTHESIS AND APPLICATIONS OF Fe3O4/SiO2 CORE-SHELL MATERIALS
Current Pharmaceutical Design Implication of Complement System and its Regulators in Alzheimers Disease
Current Neuropharmacology Subcellular Trafficking in Rhabdovirus Infection and Immune Evasion: A Novel Target for Therapeutics
Infectious Disorders - Drug Targets Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery
Current Pharmaceutical Design