[1]
Uetake, Y.; Sluder, G. Cell-cycle progression without an intact microtuble cytoskeleton. Curr. Biol., 2007, 17(23), 2081-2086. [http://dx.doi.org/10.1016/j.cub.2007.10.065]. [PMID: 18060787].
[2]
Fazeli, Z.; Abedindo, A.; Omrani, M.D.; Ghaderian, S.M.H. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: A systematic review. Stem Cell Rev., 2018, 14(1), 1-12. [http://dx.doi.org/10.1007/s12015-017-9765-x]. [PMID: 28884412].
[3]
Schuettengruber, B.; Chourrout, D.; Vervoort, M.; Leblanc, B.; Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell, 2007, 128(4), 735-745. [http://dx.doi.org/10.1016/j.cell.2007.02.009]. [PMID: 17320510].
[4]
Zhou, C.; Ji, J.; Shi, M.; Yang, L.; Yu, Y.; Liu, B.; Zhu, Z.; Zhang, J. Suberoylanilide hydroxamic acid enhances the antitumor activity of oxaliplatin by reversing the oxaliplatin induced Src activation in gastric cancer cells. Mol. Med. Rep., 2014, 10(5), 2729-2735. [http://dx.doi.org/10.3892/mmr.2014.2548]. [PMID: 25199623].
[5]
Borisy, G.; Heald, R.; Howard, J.; Janke, C.; Musacchio, A.; Nogales, E. Microtubules: 50 years on from the discovery of tubulin. Nat. Rev. Mol. Cell Biol., 2016, 17(5), 322-328. [http://dx.doi.org/10.1038/nrm.2016.45]. [PMID: 27103327].
[6]
Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: more than just vascular targeting agents? J. Pharmacol. Exp. Ther., 2015, 355(2), 212-227. [http://dx.doi.org/10.1124/jpet.115.226225]. [PMID: 26354991].
[7]
Marquez-Curtis, L.A.; Janowska-Wieczorek, A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Res. Int., 2013, 2013, 561098-561098. [http://dx.doi.org/10.1155/2013/561098]. [PMID: 24381939].
[8]
Wong, R.S.Y.; Cheong, S-K. Role of mesenchymal stem cells in leukaemia: Dr. Jekyll or Mr. Hyde? Clin. Exp. Med., 2014, 14(3), 235-248. [http://dx.doi.org/10.1007/s10238-013-0247-4]. [PMID: 23794030].
[9]
Wang, W.; Bochtler, T.; Wuchter, P.; Manta, L.; He, H.; Eckstein, V.; Ho, A.D.; Lutz, C. Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia. Eur. J. Haematol., 2017, 99(5), 392-398. [http://dx.doi.org/10.1111/ejh.12934]. [PMID: 28800175].
[10]
Rubio, S.; Quintana, J.; Eiroa, J.L.; Triana, J.; Estévez, F. Betuletol 3-methyl ether induces G(2)-M phase arrest and activates the sphingomyelin and MAPK pathways in human leukemia cells. Mol. Carcinog., 2010, 49(1), 32-43. [PMID: 19676104].
[11]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365. [http://dx.doi.org/10.1016/S0165-6147(03)00161-5]. [PMID: 12871669].
[12]
La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Passacantilli, S.; Naccarato, V.; Ortar, G.; Mazzoccoli, C.; Ruggieri, V.; Agriesti, F.; Piccoli, C.; Tataranni, T.; Nalli, M.; Brancale, A.; Vultaggio, S.; Mercurio, C.; Varasi, M.; Saponaro, C.; Sergio, S.; Maffia, M.; Coluccia, A.M.L.; Hamel, E.; Silvestri, R. 3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin. ACS Med. Chem. Lett., 2017, 8(5), 521-526. [http://dx.doi.org/10.1021/acsmedchemlett.7b00022]. [PMID: 28523104].
[13]
W.-C.;Chao, M.-W.; Cheng, C.-C.; Wei, Y.-C.; Wu, Y.-W.; Liou, J.-P.; Hsiao, G.; Lee, Y.-C.; Yang, C.-R. Anti-leukemia effects of the novel synthetic 1-benzylindole derivative 21-900 in vitro and in vivo. Sci. Rep., 2017, 7, 42291. [DOI: 10.1038/srep42291].
[14]
Magalhães, H.I.F.; Wilke, D.V.; Bezerra, D.P.; Cavalcanti, B.C.; Rotta, R.; de Lima, D.P.; Beatriz, A.; Moraes, M.O.; Diniz-Filho, J.; Pessoa, C. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)-methanone inhibits tubulin polymerization, induces G2/M arrest, and triggers apoptosis in human leukemia HL-60 cells. Toxicol. Appl. Pharmacol., 2013, 272(1), 117-126. [http://dx.doi.org/10.1016/j.taap.2013.06.001]. [PMID: 23756174].
[15]
Yang, J-S.; Hour, M-J.; Huang, W-W.; Lin, K-L.; Kuo, S-C.; Chung, J-G. MJ-29 inhibits tubulin polymerization, induces mitotic arrest, and triggers apoptosis via cyclin-dependent kinase 1-mediated Bcl-2 phosphorylation in human leukemia U937 cells. J. Pharmacol. Exp. Ther., 2010, 334(2), 477-488. [http://dx.doi.org/10.1124/jpet.109.165415]. [PMID: 20463006].
[16]
Jeyaraju, D.V.; Hurren, R.; Wang, X.; MacLean, N.; Gronda, M.; Shamas-Din, A.; Minden, M.D.; Giaever, G.; Schimmer, A.D. A novel isoflavone, ME-344, targets the cytoskeleton in acute myeloid leukemia. Oncotarget, 2016, 7(31), 49777-49785. [http://dx.doi.org/10.18632/oncotarget.10446]. [PMID: 27391350].
[17]
Bernard, D.; Gebbia, M.; Prabha, S.; Gronda, M.; MacLean, N.; Wang, X.; Hurren, R.; Sukhai, M.A.; Cho, E.E.; Manolson, M.F.; Datti, A.; Wrana, J.; Minden, M.D.; Al-Awar, R.; Aman, A.; Nislow, C.; Giaever, G.; Schimmer, A.D. Select microtubule inhibitors increase lysosome acidity and promote lysosomal disruption in acute myeloid leukemia (AML) cells. Apoptosis, 2015, 20(7), 948-959. [http://dx.doi.org/10.1007/s10495-015-1123-3]. [PMID: 25832785].
[18]
Xi, J.; Zhu, X.; Feng, Y.; Huang, N.; Luo, G.; Mao, Y.; Han, X.; Tian, W.; Wang, G.; Han, X.; Luo, R.; Huang, Z.; An, J. Development of a novel class of tubulin inhibitors with promising anticancer activities. Mol. Cancer Res., 2013, 11(8), 856-864. [http://dx.doi.org/10.1158/1541-7786.MCR-12-0177]. [PMID: 23666368].
[19]
Fang, L.; Shen, L.; Fang, Y.; Hu, Y.; He, Q.; Yang, B. MZ3 can induce G2/M-phase arrest and apoptosis in human leukemia cells. J. Cancer Res. Clin. Oncol., 2008, 134(12), 1337-1345. [http://dx.doi.org/10.1007/s00432-008-0416-0]. [PMID: 18491135].
[20]
Jalily, P.H.; Hadfield, J.A.; Hirst, N.; Rossington, S.B. Novel cyanocombretastatins as potent tubulin polymerisation inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(21), 6731-6734. [http://dx.doi.org/10.1016/j.bmcl.2012.08.089]. [PMID: 23010271].
[21]
Kumar, S.; Mehndiratta, S.; Nepali, K.; Gupta, M.K.; Koul, S.; Sharma, P.R.; Saxena, A.K.; Dhar, K.L. Novel indole-bearing combretastatin analogues as tubulin polymerization inhibitors. Org. Med. Chem. Lett., 2013, 3(1), 3-3. [http://dx.doi.org/10.1186/2191-2858-3-3]. [PMID: 23452433].
[22]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Casolari, A.; Hamel, E.; Fabbri, E.; Gambari, R. Synthesis and evaluation of haloacetyl, α-bromoacryloyl and nitrooxyacetyl benzo[b]furan and benzo[b]thiophene derivatives as potent antiproliferative agents against leukemia L1210 and K562 cells. Lett. Drug Des. Discov., 2010, 7(7), 476-486. [http://dx.doi.org/10.2174/157018010791526296]. [PMID: 20676361].
[23]
Lee, W.H.; Liu, H.E.; Chang, J-Y.; Liou, J-P.; Huang, H-M. MPT0B169, a new tubulin inhibitor, inhibits cell growth and induces G2/M arrest in nonresistant and paclitaxel-resistant cancer cells. Pharmacology, 2013, 92(1-2), 90-98. [http://dx.doi.org/10.1159/000351852]. [PMID: 23949011].
[24]
Wong, S.M.; Liu, F.H.; Lee, Y.L.; Huang, H.M. MPT0B169, a new antitubulin agent, inhibits Bcr-Abl expression and induces mitochondrion-mediated apoptosis in nonresistant and imatinib-resistant chronic myeloid leukemia cells. PLoS One, 2016, 11(1)e0148093 [http://dx.doi.org/10.1371/journal.pone.0148093]. [PMID: 26815740].
[25]
El Agha, E.; Kramann, R.; Schneider, R.K.; Li, X.; Seeger, W.; Humphreys, B.D.; Bellusci, S. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell, 2017, 21(2), 166-177. [http://dx.doi.org/10.1016/j.stem.2017.07.011]. [PMID: 28777943].
[26]
Kim, S.M.; Woo, J.S.; Jeong, C.H.; Ryu, C.H.; Lim, J.Y.; Jeun, S-S. Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res., 2012, 72(18), 4807-4817. [http://dx.doi.org/10.1158/0008-5472.CAN-12-0123]. [PMID: 22962275].
[27]
Zhou, H.; Mak, P.Y.; Mu, H.; Mak, D.H.; Zeng, Z.; Cortes, J.; Liu, Q.; Andreeff, M.; Carter, B.Z. Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo. Leukemia, 2017, 31(10), 2065-2074. [http://dx.doi.org/10.1038/leu.2017.87]. [PMID: 28321124].
[28]
Keating, A. Mesenchymal stromal cells: new directions. Cell Stem Cell, 2012, 10(6), 709-716. [http://dx.doi.org/10.1016/j.stem.2012.05.015]. [PMID: 22704511].
[29]
Man, R-J.; Tang, D-J.; Lu, X-Y.; Duan, Y-T.; Tao, X-X.; Yang, M-R.; Wang, L-L.; Wang, B-Z.; Xu, C.; Zhu, H-L. Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor. MedChemComm, 2016, 7, 1759-1767. [http://dx.doi.org/10.1039/C6MD00255B].
[30]
Moortgat, S.; Lederer, D.; Deprez, M.; Buzatu, M.; Clapuyt, P.; Boulanger, S.; Benoit, V.; Mary, S.; Guichet, A.; Ziegler, A.
Colin, E.; Bonneau, D.; Maystadt, I. Expanding the phenotypic spectrum associated with OPHN1 mutations: Report of 17 individuals with intellectual disability but no cerebellar hypoplasia. Eur. J. Med. Genet., 2018, 61(8), 442-450. [http://dx.doi.org/10.1016/j.ejmg.2018.03.002]. [PMID: 29510240].
[31]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152. [http://dx.doi.org/10.1056/NEJMra1406184]. [PMID: 26376137].
[32]
Cheong, S.K.; Chin, S.F.; Azizon, O.; Ainoon, O.; Hamidah, N.H. Unexpected epithelial membrane antigen (EMA) and cytokeratin expression in a case of infantile acute monoblastic Leukaemia. Hematology, 1996, 1(3), 223-225. [http://dx.doi.org/10.1080/10245332.1996.11746308]. [PMID: 27406616].
[33]
Díaz-Beyá, M.; Navarro, A.; Ferrer, G.; Díaz, T.; Gel, B.; Camós, M.; Pratcorona, M.; Torrebadell, M.; Rozman, M.; Colomer, D.; Monzo, M.; Esteve, J. Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene. Leukemia, 2013, 27(3), 595-603. [http://dx.doi.org/10.1038/leu.2012.278]. [PMID: 23022987].
[34]
Harris, N.L.; Jaffe, E.S.; Diebold, J.; Flandrin, G.; Muller-Hermelink, H.K.; Vardiman, J.; Lister, T.A.; Bloomfield, C.D. The World Health Organization classification of neoplasms of the hematopoietic and lymphoid tissues: Report of the clinical advisory committee meeting--airlie house, virginia, november, 1997. Hematol. J., 2000, 1(1), 53-66. [http://dx.doi.org/10.1038/sj.thj.6200013]. [PMID: 11920170].
[35]
Daser, A.; Rabbitts, T.H. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin. Cancer Biol., 2005, 15(3), 175-188. [http://dx.doi.org/10.1016/j.semcancer.2005.01.007]. [PMID: 15826832].
[36]
Tallman, M.S.; Kim, H.T.; Paietta, E.; Bennett, J.M.; Dewald, G.; Cassileth, P.A.; Wiernik, P.H.; Rowe, J.M. Acute monocytic leukemia (French-American-British classification M5) does not have a worse prognosis than other subtypes of acute myeloid leukemia: A report from the eastern cooperative oncology group. J. Clin. Oncol., 2004, 22(7), 1276-1286. [http://dx.doi.org/10.1200/JCO.2004.08.060]. [PMID: 14970186].
[37]
Haferlach, T.; Schoch, C.; Schnittger, S.; Kern, W.; Löffler, H.; Hiddemann, W. Distinct genetic patterns can be identified in acute monoblastic and acute monocytic leukaemia (FAB AML M5a and M5b): A study of 124 patients. Br. J. Haematol., 2002, 118(2), 426-431. [http://dx.doi.org/10.1046/j.1365-2141.2002.03599.x]. [PMID: 12139726].
[38]
Xue, Y.; He, J.; Wang, Y.; Guo, Y.; Xie, X.; He, Y.; Chai, Y.; Ruan, Z. Secondary near-pentaploidy and/or near-tetraploidy characterized by the duplication of 8;21 translocation in the M2 subtype of acute myeloid leukemia. Int. J. Hematol., 2000, 71(4), 359-365. [PMID: 10905056].
[39]
Martinelli, G.; Sartor, C.; Papayannidis, C.; Iacobucci, I.; Paolini, S.; Clissa, C.; Ottaviani, E.; Finelli, C. Molecular biology in myelodysplastic syndromes and acute myeloid leukemias “smoldering”. Recenti Prog. Med., 2014, 105(3), 118-122. [PMID: 24675454].
[40]
Nucifora, G.; Dickstein, J.I.; Torbenson, V.; Roulston, D.; Rowley, J.D.; Vardiman, J.W. Correlation between cell morphology and expression of the AML1/ETO chimeric transcript in patients with acute myeloid leukemia without the t(8;21). Leukemia, 1994, 8(9), 1533-1538. [PMID: 7522291].
[41]
Badros, A.; Burger, A.M.; Philip, S.; Niesvizky, R.; Kolla, S.S.; Goloubeva, O.; Harris, C.; Zwiebel, J.; Wright, J.J.; Espinoza-Delgado, I.; Baer, M.R.; Holleran, J.L.; Egorin, M.J.; Grant, S. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin. Cancer Res., 2009, 15(16), 5250-5257. [http://dx.doi.org/10.1158/1078-0432.CCR-08-2850]. [PMID: 19671864].
[42]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202. [http://dx.doi.org/10.1038/nature02393]. [PMID: 15014504].
[43]
Yang, L.L.; Li, G.B.; Yan, H.X.; Sun, Q.Z.; Ma, S.; Ji, P.; Wang, Z.R.; Feng, S.; Zou, J.; Yang, S.Y. Discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization. Eur. J. Med. Chem., 2012, 56, 30-38. [http://dx.doi.org/10.1016/j.ejmech.2012.08.007]. [PMID: 22944772].
[44]
Fournel, M.; Bonfils, C.; Hou, Y.; Yan, P.T.; Trachy-Bourget, M.C.; Kalita, A.; Liu, J.; Lu, A.H.; Zhou, N.Z.; Robert, M.F.; Gillespie, J.; Wang, J.J.; Ste-Croix, H.; Rahil, J.; Lefebvre, S.; Moradei, O.; Delorme, D.; Macleod, A.R.; Besterman, J.M.; Li, Z. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2008, 7(4), 759-768. [http://dx.doi.org/10.1158/1535-7163.MCT-07-2026]. [PMID: 18413790].
[45]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. [http://dx.doi.org/10.3945/an.114.008052]. [PMID: 26178025].
[46]
Wang, J.; Hevi, S.; Kurash, J.K.; Lei, H.; Gay, F.; Bajko, J.; Su, H.; Sun, W.; Chang, H.; Xu, G.; Gaudet, F.; Li, E.; Chen, T. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet., 2009, 41(1), 125-129. [http://dx.doi.org/10.1038/ng.268]. [PMID: 19098913].
[47]
Ledbetter, M.C.; Porter, K.R.A. “Microtubule” in Plant Cell Fine Structure. J. Cell Biol., 1963, 19(1), 239-250. [http://dx.doi.org/10.1083/jcb.19.1.239]. [PMID: 19866635].
[48]
Zhang, R.; Alushin, G.M.; Brown, A.; Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell, 2015, 162(4), 849-859. [http://dx.doi.org/10.1016/j.cell.2015.07.012]. [PMID: 26234155].
[49]
Tilney, L.G.; Bryan, J.; Bush, D.J.; Fujiwara, K.; Mooseker, M.S.; Murphy, D.B.; Snyder, D.H. Microtubules: Evidence for 13 protofilaments. J. Cell Biol., 1973, 59(2 Pt 1), 267-275. [http://dx.doi.org/10.1083/jcb.59.2.267]. [PMID: 4805001].
[50]
Unger, E.; Böhm, K.J.; Vater, W. Structural diversity and dynamics of microtubules and polymorphic tubulin assemblies. Electron Microsc. Rev., 1990, 3(2), 355-395. [http://dx.doi.org/10.1016/0892-0354(90)90007-F]. [PMID: 2103347].
[51]
Honore, S.; Pasquier, E.; Braguer, D. Understanding microtubule dynamics for improved cancer therapy. Cell. Mol. Life Sci., 2005, 62(24), 3039-3056. [http://dx.doi.org/10.1007/s00018-005-5330-x]. [PMID: 16314924].
[52]
Pellegrini, F.; Budman, D.R. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest., 2005, 23(3), 264-273. [http://dx.doi.org/10.1081/CNV-200055970]. [PMID: 15948296].
[53]
Walker, R.A.; O’Brien, E.T.; Pryer, N.K.; Soboeiro, M.F.; Voter, W.A.; Erickson, H.P.; Salmon, E.D. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol., 1988, 107(4), 1437-1448. [http://dx.doi.org/10.1083/jcb.107.4.1437]. [PMID: 3170635].
[54]
Sontag, C.A.; Staley, J.T.; Erickson, H.P. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell Biol., 2005, 169(2), 233-238. [http://dx.doi.org/10.1083/jcb.200410027]. [PMID: 15851515].
[55]
David-Pfeuty, T.; Erickson, H.P.; Pantaloni, D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc. Natl. Acad. Sci. USA, 1977, 74(12), 5372-5376. [http://dx.doi.org/10.1073/pnas.74.12.5372]. [PMID: 202954].
[56]
Gerdes, K.; Howard, M.; Szardenings, F. Pushing and pulling in prokaryotic DNA segregation. Cell, 2010, 141(6), 927-942. [http://dx.doi.org/10.1016/j.cell.2010.05.033]. [PMID: 20550930].
[57]
MacNeal, R.K.; Purich, D.L. Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly. J. Biol. Chem., 1978, 253(13), 4683-4687. [PMID: 659441].
[58]
Matov, A.; Applegate, K.; Kumar, P.; Thoma, C.; Krek, W.; Danuser, G.; Wittmann, T. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat. Methods, 2010, 7(9), 761-768. [http://dx.doi.org/10.1038/nmeth.1493]. [PMID: 20729842].
[59]
Billger, M.A.; Bhattacharjee, G.; Williams, R.C., Jr Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: Neither variability of growth and shortening rates nor “rescue” requires microtubule-associated proteins. Biochemistry, 1996, 35(42), 13656-13663. [http://dx.doi.org/10.1021/bi9616965]. [PMID: 8885845].
[60]
Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature, 1984, 312(5991), 237-242. [http://dx.doi.org/10.1038/312237a0]. [PMID: 6504138].
[61]
Dhonukshe, P.; Gadella, T.W.J., Jr Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell, 2003, 15(3), 597-611. [http://dx.doi.org/10.1105/tpc.008961]. [PMID: 12615935].
[62]
Mooberry, S.L.; Tien, G.; Hernandez, A.H.; Plubrukarn, A.; Davidson, B.S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res., 1999, 59(3), 653-660. [PMID: 9973214].
[63]
Jordan, M.A.; Toso, R.J.; Thrower, D.; Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA, 1993, 90(20), 9552-9556. [http://dx.doi.org/10.1073/pnas.90.20.9552]. [PMID: 8105478].
[64]
Gigant, B.; Wang, C.; Ravelli, R.B.G.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435(7041), 519-522. [http://dx.doi.org/10.1038/nature03566]. [PMID: 15917812].
[65]
Jordan, M.A.; Margolis, R.L.; Himes, R.H.; Wilson, L. Identification of a distinct class of vinblastine binding sites on microtubules. J. Mol. Biol., 1986, 187(1), 61-73. [http://dx.doi.org/10.1016/0022-2836(86)90406-7]. [PMID: 3959083].
[66]
Mahboobi, S.; Sellmer, A.; Beckers, T. Development of tubulin inhibitors as antimitotic agents for cancer therapy. Bioactive Natural Products, 2006, 33, 719-750.
[67]
Ravelli, R.B.G.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202. [http://dx.doi.org/10.1038/nature02393]. [PMID: 15014504].
[68]
Uppuluri, S.; Knipling, L.; Sackett, D.L.; Wolff, J. Localization of the colchicine-binding site of tubulin. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11598-11602. [http://dx.doi.org/10.1073/pnas.90.24.11598]. [PMID: 8265596].
[69]
Serrano, L.; Avila, J.; Maccioni, R.B. Limited proteolysis of tubulin and the localization of the binding site for colchicine. J. Biol. Chem., 1984, 259(10), 6607-6611. [PMID: 6725263].
[70]
Ekins, S.; Freundlich, J.S.; Coffee, M. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000 Res., 2014, 3, 277-277. [http://dx.doi.org/10.12688/f1000research.5741.1]. [PMID: 25653841].
[71]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17. [http://dx.doi.org/10.2174/1568011023354290]. [PMID: 12678749].
[72]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265. [http://dx.doi.org/10.1038/nrc1317]. [PMID: 15057285].
[73]
Harrison, M.R.; Holen, K.D.; Liu, G. Beyond taxanes: A review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin. Adv. Hematol. Oncol., 2009, 7, 54-64.
[74]
Mickley, L.A.; Rothenberg, M.L.; Hamilton, T.C.; Ozols, R.F.; Fojo, A.T. Expression of a multidrug resistance gene in normal tissue and human-tumors. Proc. Am. Assoc. Cancer Res., 1988, 29, 297-297.
[75]
Fojo, A.T.; Ueda, K.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(1), 265-269. [http://dx.doi.org/10.1073/pnas.84.1.265]. [PMID: 2432605].
[76]
Li, C.; Yu, D.F.; Newman, R.A.; Cabral, F.; Stephens, L.C.; Hunter, N.; Milas, L.; Wallace, S. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res., 1998, 58(11), 2404-2409. [PMID: 9622081].
[77]
Li, C.; Price, J.E.; Milas, L.; Hunter, N.R.; Ke, S.; Yu, D.F.; Charnsangavej, C.; Wallace, S. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin. Cancer Res., 1999, 5(4), 891-897. [PMID: 10213226].
[78]
O’Brien, M.E.R.; Socinski, M.A.; Popovich, A.Y.; Bondarenko, I.N.; Tomova, A.; Bilynsky, B.T.; Hotko, Y.S.; Ganul, V.L.; Kostinsky, I.Y.; Eisenfeld, A.J.; Sandalic, L.; Oldham, F.B.; Bandstra, B.; Sandler, A.B.; Singer, J.W. Randomized phase III trial comparing single-agent paclitaxel Poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naïve advanced non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(7), 728-734. [http://dx.doi.org/10.1097/JTO.0b013e31817c6b68]. [PMID: 18594318].
[79]
Bradley, M.O.; Swindell, C.S.; Anthony, F.H.; Witman, P.A.; Devanesan, P.; Webb, N.L.; Baker, S.D.; Wolff, A.C.; Donehower, R.C. Tumor targeting by conjugation of DHA to paclitaxel. J. Control. Release, 2001, 74(1-3), 233-236. [http://dx.doi.org/10.1016/S0168-3659(01)00321-2]. [PMID: 11489499].
[80]
Yuan, Y.; Lu, X.; Tao, C.L.; Chen, X.; Shao, H.W.; Huang, S.L. Forced expression of indoleamine-2,3-dioxygenase in human umbilical cord-derived mesenchymal stem cells abolishes their anti-apoptotic effect on leukemia cell lines in vitro. In Vitro Cell. Dev. Biol. Anim., 2013, 49(10), 752-758. [http://dx.doi.org/10.1007/s11626-013-9667-4]. [PMID: 23949777].
[81]
Liu, Y.; Song, B.; Wei, Y.; Chen, F.; Chi, Y.; Fan, H.; Liu, N.; Li, Z.; Han, Z.; Ma, F. Exosomes from mesenchymal stromal cells enhance imatinib-induced apoptosis in human leukemia cells via activation of caspase signaling pathway. Cytotherapy, 2018, 20(2), 181-188. [http://dx.doi.org/10.1016/j.jcyt.2017.11.006]. [PMID: 29269240].
[82]
Li, X.; Ling, W.; Pennisi, A.; Wang, Y.; Khan, S.; Heidaran, M.; Pal, A.; Zhang, X.; He, S.; Zeitlin, A.; Abbot, S.; Faleck, H.; Hariri, R.; Shaughnessy, J.D., Jr; van Rhee, F.; Nair, B.; Barlogie, B.; Epstein, J.; Yaccoby, S. Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells, 2011, 29(2), 263-273. [http://dx.doi.org/10.1002/stem.572]. [PMID: 21732484].
[83]
Ginsburg, A.; Shemesh, A.; Millgram, A.; Dharan, R.; Levi-Kalisman, Y.; Ringel, I.; Raviv, U. Structure of Dynamic, Taxol-stabilized, and GMPPCP-stabilized microtubule. J. Phys. Chem. B, 2017, 121(36), 8427-8436. [http://dx.doi.org/10.1021/acs.jpcb.7b01057]. [PMID: 28820593].
[84]
Yang, C.H.; Horwitz, S.B. Taxol®: The first microtubule stabilizing agent. Int. J. Mol. Sci., 2017, 18(8), 18. [http://dx.doi.org/10.3390/ijms18081733]. [PMID: 28792473].
[85]
Sears, J.E.; Boger, D.L. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties. Acc. Chem. Res., 2015, 48(3), 653-662. [http://dx.doi.org/10.1021/ar500400w]. [PMID: 25586069].
[86]
Florian, S.; Mitchison, T.J. Anti-Microtubule Drugs. In: Mitotic Spindle: Methods and Protocols; Chang, P.; Ohi, R., Eds.; Humana Press: New York, NY, 2016; Vol. 1413, pp. 403-421. [Publisher name missing] [http://dx.doi.org/10.1007/978-1-4939-3542-0_25]
[87]
Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed., 2017, 7(4), 285-294. [PMID: 28884079].
[88]
Reddy, V.G.; Bonam, S.R.; Reddy, T.S.; Akunuri, R.; Naidu, V.G.M.; Nayak, V.L.; Bhargava, S.K.; Kumar, H.M.S.; Srihari, P.; Kamal, A. 4β-amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anticancer agents for prostate cancer. Eur. J. Med. Chem., 2018, 144, 595-611. [http://dx.doi.org/10.1016/j.ejmech.2017.12.050]. [PMID: 29289884].
[89]
Conforti, A.; Starc, N.; Biagini, S.; Tomao, L.; Pitisci, A.; Algeri, M.; Sirleto, P.; Novelli, A.; Grisendi, G.; Candini, O.; Carella, C.; Dominici, M.; Locatelli, F.; Bernardo, M.E. Resistance to neoplastic transformation of ex-vivo expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress. Oncotarget, 2016, 7(47), 77416-77429. [http://dx.doi.org/10.18632/oncotarget.12678]. [PMID: 27764806].
[90]
Yao, Y-F.; Wang, Z-C.; Wu, S-Y.; Li, Q.F.; Yu, C.; Liang, X-Y.; Lv, P-C.; Duan, Y-T.; Zhu, H-L. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem. Pharmacol., 2017, 137, 10-28. [http://dx.doi.org/10.1016/j.bcp.2017.04.026]. [PMID: 28456516].
[91]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and B-Ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6, 25387-25399. [http://dx.doi.org/10.1038/srep25387]. [PMID: 27138035].
[92]
Yokoyama, H.; Koch, B.; Walczak, R.; Ciray-Duygu, F.; González-Sánchez, J.C.; Devos, D.P.; Mattaj, I.W.; Gruss, O.J. The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation. Nat. Commun., 2014, 5, 3270-3278. [http://dx.doi.org/10.1038/ncomms4270]. [PMID: 24509916].
[93]
Barui, A.; Chowdhury, F.; Pandit, A.; Datta, P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials, 2018, 156, 28-44. [http://dx.doi.org/10.1016/j.biomaterials.2017.11.036]. [PMID: 29190496].
[94]
Li, C-L.; Leng, Y.; Zhao, B.; Gao, C.; Du, F-F.; Jin, N.; Lian, Q-Z.; Xu, S-Y.; Yan, G-L.; Xia, J-J.; Zhuang, G-H.; Fu, Q-L.; Qi, Z-Q. Human iPSC-MSC-derived xenografts modulate immune responses by inhibiting the cleavage of caspases. Stem Cells, 2017, 35(7), 1719-1732. [http://dx.doi.org/10.1002/stem.2638]. [PMID: 28520232].
[95]
Kubben, N.; Zhang, W.; Wang, L.; Voss, T.C.; Yang, J.; Qu, J.; Liu, G-H.; Misteli, T. Repression of the antioxidant NRF2 pathway in premature aging. Cell, 2016, 165(6), 1361-1374. [http://dx.doi.org/10.1016/j.cell.2016.05.017]. [PMID: 27259148].
[96]
Wang, Y.C.; Juric, D.; Francisco, B.; Yu, R.X.; Duran, G.E.; Chen, K.G.; Chen, X.; Sikic, B.I. Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosomes Cancer, 2006, 45(4), 365-374. [http://dx.doi.org/10.1002/gcc.20300]. [PMID: 16382445].
[97]
Horwitz, S.B.; Cohen, D.; Rao, S.; Ringel, I.; Shen, H.J.; Yang, C.P. Taxol: mechanisms of action and resistance. J. Natl. Cancer Inst. Monogr., 1993, 15, 55-61. [PMID: 7912530].
[98]
Horwitz, S.B.; Lothstein, L.; Manfredi, J.J.; Mellado, W.; Parness, J.; Roy, S.N.; Schiff, P.B.; Sorbara, L.; Zeheb, R. Taxol: Mechanisms of action and resistance. Ann. N. Y. Acad. Sci., 1986, 466, 733-744. [http://dx.doi.org/10.1111/j.1749-6632.1986.tb38455.x]. [PMID: 2873780].
[99]
Dumontet, C.; Duran, G.E.; Steger, K.A.; Beketic-Oreskovic, L.; Sikic, B.I. Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res., 1996, 56(5), 1091-1097. [PMID: 8640766].
[100]
Tian, Y.; Wang, J.; Wang, W.; Ding, Y.; Sun, Z.; Zhang, Q.; Wang, Y.; Xie, H.; Yan, S.; Zheng, S. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res. Ther., 2016, 7(1), 157-171. [http://dx.doi.org/10.1186/s13287-016-0416-y]. [PMID: 27788674].
[101]
Wen, X.; Zheng, P.; Ma, Y.; Ou, Y.; Huang, W.; Li, S.; Liu, S.; Zhang, X.; Wang, Z.; Zhang, Q.; Cheng, W.; Lin, R.; Li, H.; Cai, Y.; Hu, C.; Wu, N.; Wan, L.; Pan, T.; Rao, J.; Bei, X.; Wu, W.; Jin, J.; Yan, J.; Liu, G. Salutaxel, a Conjugate of docetaxel and a muramyl dipeptide (mdp) analogue, acts as multifunctional prodrug that inhibits tumor growth and metastasis. J. Med. Chem., 2018, 61(4), 1519-1540. [http://dx.doi.org/10.1021/acs.jmedchem.7b01407]. [PMID: 29357251].
[102]
Ankrum, J.A.; Ong, J.F.; Karp, J.M. Mesenchymal stem cells: Immune evasive, not immune privileged. Nat. Biotechnol., 2014, 32(3), 252-260. [http://dx.doi.org/10.1038/nbt.2816]. [PMID: 24561556].
[103]
Boyerinas, B.; Park, S-M.; Murmann, A.E.; Gwin, K.; Montag, A.G.; Zillhardt, M.; Hua, Y-J.; Lengyel, E.; Peter, M.E. Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int. J. Cancer, 2012, 130(8), 1787-1797. [http://dx.doi.org/10.1002/ijc.26190]. [PMID: 21618519].
[104]
Vrignaud, P.; Sémiond, D.; Lejeune, P.; Bouchard, H.; Calvet, L.; Combeau, C.; Riou, J-F.; Commerçon, A.; Lavelle, F.; Bissery, M-C. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin. Cancer Res., 2013, 19(11), 2973-2983. [http://dx.doi.org/10.1158/1078-0432.CCR-12-3146]. [PMID: 23589177].
[105]
Sémiond, D.; Sidhu, S.S.; Bissery, M.C.; Vrignaud, P. Can taxanes provide benefit in patients with CNS tumors and in pediatric patients with tumors? An update on the preclinical development of cabazitaxel. Cancer Chemother. Pharmacol., 2013, 72(3), 515-528. [http://dx.doi.org/10.1007/s00280-013-2214-x]. [PMID: 23820961].
[106]
Duran, G.E.; Derdau, V.; Weitz, D.; Philippe, N.; Blankenstein, J.; Atzrodt, J.; Sémiond, D.; Gianolio, D.A.; Macé, S.; Sikic, B.I. Cabazitaxel is more active than first-generation taxanes in ABCB1(+) cell lines due to its reduced affinity for P-glycoprotein. Cancer Chemother. Pharmacol., 2018, 81(6), 1095-1103. [http://dx.doi.org/10.1007/s00280-018-3572-1]. [PMID: 29675746].
[107]
Milas, L.; Mason, K.A.; Hunter, N.; Li, C.; Wallace, S. Poly(L-glutamic acid)-paclitaxel conjugate is a potent enhancer of tumor radiocurability. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(3), 707-712. [http://dx.doi.org/10.1016/S0360-3016(02)04153-6]. [PMID: 12573758].
[108]
Singer, J.W.; Baker, B.; De Vries, P.; Kumar, A.; Shaffer, S.; Vawter, E.; Bolton, M.; Garzone, P. Poly-(L)-glutamic acid-paclitaxel (CT-2103) XYOTAX (TM), a biodegradable polymeric drug conjugate - Characterization, preclinical pharmacology, and preliminary clinical data. In: Polymer Drugs in the Clinical Stage: Advantages and Prospects; Springer: US, 2003; Vol. 519, pp. 81-99.
[109]
Sparreboom, A.; Wolff, A.C.; Verweij, J.; Zabelina, Y.; van Zomeren, D.M.; McIntire, G.L.; Swindell, C.S.; Donehower, R.C.; Baker, S.D. Disposition of docosahexaenoic acid-paclitaxel, a novel taxane, in blood: In vitro and clinical pharmacokinetic studies. Clin. Cancer Res., 2003, 9(1), 151-159. [PMID: 12538463].
[110]
Tabernero, J.; Phase, I. Pharmacokinetic and pharmacodynamic study of weekly 1-Hour and 24-hour infusion BMS-214662, a farnesyltransferase inhibitor, in patients with advanced solid Tumors. J. Clin. Oncol., 2010, 28, 5350-5350. [DOI: 10.1200/JCO.2005.00.398].
[111]
Izquierdo, M.A.; Bowman, A.; García, M.; Jodrell, D.; Martinez, M.; Pardo, B.; Gómez, J.; López-Martin, J.A.; Jimeno, J.; Germá, J.R.; Smyth, J.F. Phase I clinical and pharmacokinetic study of plitidepsin as a 1-hour weekly intravenous infusion in patients with advanced solid tumors. Clin. Cancer Res., 2008, 14(10), 3105-3112. [http://dx.doi.org/10.1158/1078-0432.CCR-07-1652]. [PMID: 18483378].
[112]
Homsi, J.; Bedikian, A.Y.; Papadopoulos, N.E.; Kim, K.B.; Hwu, W-J.; Mahoney, S.L.; Hwu, P. Phase 2 open-label study of weekly docosahexaenoic acid-paclitaxel in patients with metastatic uveal melanoma. Melanoma Res., 2010, 20(6), 507-510. [http://dx.doi.org/10.1097/CMR.0b013e3283403ce9]. [PMID: 20881508].
[113]
Bedikian, A.Y.; DeConti, R.C.; Conry, R.; Agarwala, S.; Papadopoulos, N.; Kim, K.B.; Ernstoff, M. Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann. Oncol., 2011, 22(4), 787-793. [http://dx.doi.org/10.1093/annonc/mdq438]. [PMID: 20855467].
[114]
Jones, R.J.; Hawkins, R.E.; Eatock, M.M.; Ferry, D.R.; Eskens, F.A.L.M.; Wilke, H.; Evans, T.R.J. A phase II open-label study of DHA-paclitaxel (Taxoprexin) by 2-h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma. Cancer Chemother. Pharmacol., 2008, 61(3), 435-441. [http://dx.doi.org/10.1007/s00280-007-0486-8]. [PMID: 17440725].
[115]
Bissery, M-C.; Vrignaud, P.; Combeau, C.; Riou, J-F.; Bouchard, H.; Commercon, A.; Lavelle, F. Preclinical evaluation of XRP9881A, a new taxoid. Proceedings of the American Association for Cancer Research Annual Meeting, 2004, pp. 1253-1253.
[116]
Zatloukal, P.; Gervais, R.; Vansteenkiste, J.; Bosquee, L.; Sessa, C.; Brain, E.; Dansin, E.; Urban, T.; Dohollou, N.; Besenval, M.; Quoix, E. Randomized multicenter phase II study of larotaxel (XRP9881) in combination with cisplatin or gemcitabine as first-line chemotherapy in nonirradiable stage IIIB or stage IV non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(8), 894-901. [http://dx.doi.org/10.1097/JTO.0b013e31817e6669]. [PMID: 18670308].
[117]
Bissery, M.C. Preclinical evaluation of new taxoids. Curr. Pharm. Des., 2001, 7(13), 1251-1257. [http://dx.doi.org/10.2174/1381612013397465]. [PMID: 11472265].
[118]
Diéras, V.; Limentani, S.; Romieu, G.; Tubiana-Hulin, M.; Lortholary, A.; Kaufman, P.; Girre, V.; Besenval, M.; Valero, V. Phase II multicenter study of larotaxel (XRP9881), a novel taxoid, in patients with metastatic breast cancer who previously received taxane-based therapy. Ann. Oncol., 2008, 19(7), 1255-1260. [http://dx.doi.org/10.1093/annonc/mdn060]. [PMID: 18381372].
[119]
Bollag, D.M.; McQueney, P.A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C.M. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res., 1995, 55(11), 2325-2333. [PMID: 7757983].
[120]
Müller, A.M.; Florek, M. 5-Azacytidine/5-Azacitidine. Recent Results Cancer Res., 2014, 201, 299-324. [http://dx.doi.org/10.1007/978-3-642-54490-3_19]. [PMID: 24756801].
[121]
Momparler, R.L. Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin. Oncol., 2005, 32(5), 443-451. [http://dx.doi.org/10.1053/j.seminoncol.2005.07.008]. [PMID: 16210084].
[122]
Zhao, Q.; Fan, J.; Hong, W.; Li, L.; Wu, M. Inhibition of cancer cell proliferation by 5-fluoro-2′-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. Springerplus, 2012, 1(1), 65. [http://dx.doi.org/10.1186/2193-1801-1-65]. [PMID: 23397046].
[123]
Marquez, V.E.; Kelley, J.A.; Agbaria, R.; Ben-Kasus, T.; Cheng, J.C.; Yoo, C.B.; Jones, P.A. Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. Ann. N. Y. Acad. Sci., 2005, 37. [http://dx.doi.org/10.1196/annals.1359.037].
[124]
Srivastava, P.; Paluch, B.E.; Matsuzaki, J.; James, S.R.; Collamat-Lai, G.; Taverna, P.; Karpf, A.R.; Griffiths, E.A. Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics, 2015, 10(3), 237-246. [http://dx.doi.org/10.1080/15592294.2015.1017198]. [PMID: 25793777].
[125]
Agarwal, S.; Amin, K.S.; Jagadeesh, S.; Baishay, G.; Rao, P.G.; Barua, N.C.; Bhattacharya, S.; Banerjee, P.P. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol. Cancer, 2013, 12(1), 99. [http://dx.doi.org/10.1186/1476-4598-12-99]. [PMID: 24001151].
[126]
Dueñas-Gonzalez, A.; Coronel, J.; Cetina, L.; González-Fierro, A.; Chavez-Blanco, A.; Taja-Chayeb, L. Hydralazine-valproate: a repositioned drug combination for the epigenetic therapy of cancer. Expert Opin. Drug Metab. Toxicol., 2014, 10(10), 1433-1444. [http://dx.doi.org/10.1517/17425255.2014.947263]. [PMID: 25154405].
[127]
Gao, Z.; Xu, Z.; Hung, M.S.; Lin, Y.C.; Wang, T.; Gong, M.; Zhi, X.; Jablons, D.M.; You, L. Procaine and procainamide inhibit the Wnt canonical pathway by promoter demethylation of WIF-1 in lung cancer cells. Oncol. Rep., 2009, 22(6), 1479-1484. [PMID: 19885602].
[128]
Rilova, E.; Erdmann, A.; Gros, C.; Masson, V.; Aussagues, Y.; Poughon-Cassabois, V.; Rajavelu, A.; Jeltsch, A.; Menon, Y.; Novosad, N.; Gregoire, J.M.; Vispé, S.; Schambel, P.; Ausseil, F.; Sautel, F.; Arimondo, P.B.; Cantagrel, F. Design, synthesis and biological evaluation of 4-amino-N- (4-aminophenyl)benzamide analogues of quinoline-based SGI-1027 as inhibitors of DNA methylation. ChemMedChem, 2014, 9(3), 590-601. [http://dx.doi.org/10.1002/cmdc.201300420]. [PMID: 24678024].
[129]
Ramasamy, T. S.; Ayob, A. Z.; Myint, H. H.; Thiagarajah, S.; Amini, F. Targeting colorectal cancer stem cells using curcumin
and curcumin analogues: Insights into the mechanism of the therapeutic
efficacy. Cancer Cell Int, 2015, 15, 015-0241. [http://dx.doi.org/10.1186/s12935-015-0241-x]
[130]
Graça, I.; Sousa, E.J.; Baptista, T.; Almeida, M.; Ramalho-Carvalho, J.; Palmeira, C.; Henrique, R.; Jerónimo, C. Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr. Pharm. Des., 2014, 20(11), 1803-1811. [http://dx.doi.org/10.2174/13816128113199990516]. [PMID: 23888969].
[131]
Lee, E.; Jeong, K.W.; Jnawali, H.N.; Shin, A.; Heo, Y.S.; Kim, Y. Cytotoxic activity of 3,6-dihydroxyflavone in human cervical cancer cells and its therapeutic effect on c-Jun N-terminal kinase inhibition. Molecules, 2014, 19(9), 13200-13211. [http://dx.doi.org/10.3390/molecules190913200]. [PMID: 25165860].
[132]
Chakrabarty, S.; Ganguli, A.; Das, A.; Nag, D.; Chakrabarti, G. Epigallocatechin-3-gallate shows anti-proliferative activity in HeLa cells targeting tubulin-microtubule equilibrium. Chem. Biol. Interact., 2015, 242, 380-389. [http://dx.doi.org/10.1016/j.cbi.2015.11.004]. [PMID: 26554336].
[133]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978. [http://dx.doi.org/10.1007/s11095-010-0089-7]. [PMID: 20306120].
[134]
Qiang, W.; Jin, T.; Yang, Q.; Liu, W.; Liu, S.; Ji, M.; He, N.; Chen, C.; Shi, B.; Hou, P. PRIMA-1 selectively induces global DNA demethylation in p53 mutant-type thyroid cancer cells. J. Biomed. Nanotechnol., 2014, 10(7), 1249-1258. [http://dx.doi.org/10.1166/jbn.2014.1862]. [PMID: 24804545].
[135]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. [http://dx.doi.org/10.3945/an.114.008052]. [PMID: 26178025].
[136]
Wyrębska, A.; Gach, K.; Janecka, A. Combined effect of parthenolide and various anti-cancer drugs or anticancer candidate substances on malignant cells in vitro and in vivo. Mini Rev. Med. Chem., 2014, 14(3), 222-228. [http://dx.doi.org/10.2174/1389557514666140219113509]. [PMID: 24552263].
[137]
Richon, V.M. Targeting histone deacetylases: Development of vorinostat for the treatment of cancer. Epigenomics, 2010, 2(3), 457-465. [http://dx.doi.org/10.2217/epi.10.20]. [PMID: 22121904].
[138]
Li, X.; Zhang, J.; Xie, Y.; Jiang, Y.; Yingjie, Z.; Xu, W. Progress of HDAC inhibitor panobinostat in the treatment of cancer. Curr. Drug Targets, 2014, 15(6), 622-634. [http://dx.doi.org/10.2174/1389450115666140306152642]. [PMID: 24597570].
[139]
Wang, X.; Xu, J.; Wang, H.; Wu, L.; Yuan, W.; Du, J.; Cai, S. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial-mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells. Biochem. Biophys. Res. Commun., 2015, 456(1), 320-326. [http://dx.doi.org/10.1016/j.bbrc.2014.11.079]. [PMID: 25434997].
[140]
Ganai, S. A. Strategy for enhancing the therapeutic efficacy of
histone deacetylase inhibitor dacinostat: The novel paradigm to
tackle monotonous cancer chemoresistance. Arch Pharm Res, 2015, 19, 015-0673. [http://dx.doi.org/10.1007/s12272-015-0673-9]
[141]
Xing, L.F.; Wang, D.T.; Yang, Y.; Pan, S.Y. Effect of HDAC-6 on PD cell induced by lactacystin. Asian Pac. J. Trop. Med., 2015, 8(10), 855-859. [http://dx.doi.org/10.1016/j.apjtm.2015.09.013]. [PMID: 26522302].
[142]
Kirschbaum, M.H.; Foon, K.A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J.M.; Newman, E.M. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk. Lymphoma, 2014, 55(10), 2301-2304. [http://dx.doi.org/10.3109/10428194.2013.877134]. [PMID: 24369094].
[143]
Apuri, S.; Sokol, L. An overview of investigational Histone deacetylase inhibitors (HDACis) for the treatment of non-Hodgkin’s lymphoma. Expert Opin. Investig. Drugs, 2016, 25(6), 687-696. [http://dx.doi.org/10.1517/13543784.2016.1164140]. [PMID: 26954526].
[144]
Ruiz, R.; Raez, L.E.; Rolfo, C. Entinostat (SNDX-275) for the treatment of non-small cell lung cancer. Expert Opin. Investig. Drugs, 2015, 24(8), 1101-1109. [http://dx.doi.org/10.1517/13543784.2015.1056779]. [PMID: 26098363].
[145]
Duenas-Gonzalez, A.; Candelaria, M.; Perez-Plascencia, C.; Perez-Cardenas, E.; de la Cruz-Hernandez, E.; Herrera, L.A. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev., 2008, 34(3), 206-222. [http://dx.doi.org/10.1016/j.ctrv.2007.11.003]. [PMID: 18226465].
[146]
Tsunedomi, R.; Iizuka, N.; Harada, S.; Oka, M. Susceptibility of hepatoma-derived cells to histone deacetylase inhibitors is associated with ID2 expression. Int. J. Oncol., 2013, 42(4), 1159-1166. [http://dx.doi.org/10.3892/ijo.2013.1811]. [PMID: 23403953].
[147]
Nielsen, T.K.; Hildmann, C.; Riester, D.; Wegener, D.; Schwienhorst, A.; Ficner, R. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2007, 63(Pt 4), 270-273. [http://dx.doi.org/10.1107/S1744309107012377]. [PMID: 17401192].
[148]
Tao, Y.F.; Lin, F.; Yan, X.Y.; Gao, X.G.; Teng, F.; Fu, Z.R.; Wang, Z.X. Galectin-9 in Combination with EX-527 prolongs the survival of cardiac allografts in mice after cardiac transplantation. Transplant. Proc., 2015, 47(6), 2003-2009. [http://dx.doi.org/10.1016/j.transproceed.2015.04.091]. [PMID: 26293089].
[149]
Mahajan, S.S.; Scian, M.; Sripathy, S.; Posakony, J.; Lao, U.; Loe, T.K.; Leko, V.; Thalhofer, A.; Schuler, A.D.; Bedalov, A.; Simon, J.A. Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors. J. Med. Chem., 2014, 57(8), 3283-3294. [http://dx.doi.org/10.1021/jm4018064]. [PMID: 24697269].
[150]
Yang, L.; Liang, Q.; Shen, K.; Ma, L.; An, N.; Deng, W.; Fei, Z.; Liu, J. A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells. Biomed. Pharmacother., 2015, 71, 70-78. [http://dx.doi.org/10.1016/j.biopha.2015.02.019]. [PMID: 25960218].
[151]
Eigl, B.J.; North, S.; Winquist, E.; Finch, D.; Wood, L.; Sridhar, S.S.; Powers, J.; Good, J.; Sharma, M.; Squire, J.A.; Bazov, J.; Jamaspishvili, T.; Cox, M.E.; Bradbury, P.A.; Eisenhauer, E.A.; Chi, K.N. A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Invest. New Drugs, 2015, 33(4), 969-976. [http://dx.doi.org/10.1007/s10637-015-0252-4]. [PMID: 25983041].
[152]
Lee, F.Y.F.; Borzilleri, R.; Fairchild, C.R.; Kim, S.H.; Long, B.H.; Reventos-Suarez, C.; Vite, G.D.; Rose, W.C.; Kramer, R.A. BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin. Cancer Res., 2001, 7(5), 1429-1437. [PMID: 11350914].
[153]
Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene, 2003, 22(47), 7280-7295. [http://dx.doi.org/10.1038/sj.onc.1206934]. [PMID: 14576838].
[154]
Bergstralh, D.T.; Ting, J.P.Y. Microtubule stabilizing agents: Their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat. Rev., 2006, 32(3), 166-179. [http://dx.doi.org/10.1016/j.ctrv.2006.01.004]. [PMID: 16527420].
[155]
Diaz-Padilla, I.; Oza, A.M. Epothilones in the treatment of ovarian cancer. Future Oncol., 2011, 7(4), 559-568. [http://dx.doi.org/10.2217/fon.11.26]. [PMID: 21463144].
[156]
Cortes, J.; Baselga, J. Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist, 2007, 12(3), 271-280. [http://dx.doi.org/10.1634/theoncologist.12-3-271]. [PMID: 17405891].
[157]
Yoshimura, F.; Rivkin, A.; Gabarda, A.E.; Chou, T.C.; Dong, H.; Sukenick, G.; Morel, F.F.; Taylor, R.E.; Danishefsky, S.J. Synthesis and conformational analysis of (E)-9,10-dehydroepothilone B: A suggestive link between the chemistry and biology of epothilones. Angew. Chem. Int. Ed. Engl., 2003, 42(22), 2518-2521. [http://dx.doi.org/10.1002/anie.200351407]. [PMID: 12800175].
[158]
Chou, T.C.; Zhang, X.G.; Balog, A.; Su, D.S.; Meng, D.; Savin, K.; Bertino, J.R.; Danishefsky, S.J.; Desoxyepothilone, B.; Desoxyepothilone, B. B:An efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9642-9647. [http://dx.doi.org/10.1073/pnas.95.16.9642]. [PMID: 9689134].
[159]
Chou, T.C.; O’Connor, O.A.; Tong, W.P.; Guan, Y.; Zhang, Z.G.; Stachel, S.J.; Lee, C.; Danishefsky, S.J. The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: Curative effects of desoxyepothilones B and F against human tumor xenografts in nude mice. Proc. Natl. Acad. Sci. USA, 2001, 98(14), 8113-8118. [http://dx.doi.org/10.1073/pnas.131153098]. [PMID: 11438750].
[160]
Zhou, Y.; Zhong, Z.; Liu, F.; Sun, M.; Craig, D.; Eng, S.; Feng, L.; Sherrill, M.; Cropp, G.F.; Yu, K.; Hannah, A.L.; Johnson, R.G., Jr KOS-1584: a rationally designed epothilone D analog with improved potency and pharmacokinetic (PK) properties. Proceedings of the American Association for Cancer Research Annual Meeting, 2005, pp. 595-595.
[161]
Goodin, S.; Kane, M.P.; Rubin, E.H. Epothilones: Mechanism of action and biologic activity. J. Clin. Oncol., 2004, 22(10), 2015-2025. [http://dx.doi.org/10.1200/JCO.2004.12.001]. [PMID: 15143095].
[162]
Fojo, A.T.; Menefee, M. Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR). Semin. Oncol., 2005, 32(6)(Suppl. 7), S3-S8. [http://dx.doi.org/10.1053/j.seminoncol.2005.09.010]. [PMID: 16360716].
[163]
Lee, J.J.; Swain, S.M. Development of novel chemotherapeutic agents to evade the mechanisms of multidrug resistance (MDR). Semin. Oncol., 2005, 32(6)(Suppl. 7), S22-S26. [http://dx.doi.org/10.1053/j.seminoncol.2005.09.013]. [PMID: 16360719].
[164]
Villanueva, C.; Dufresne, A.; Pivot, X.; Viel, E. [Efficacy and safety of ixabepilone (BMS-247550), a novel epothilone B analogue]. Bull. Cancer, 2008, 95(2), 197-204. [PMID: 18304905].
[165]
Gregory, R.K.; Smith, I.E. Vinorelbine--a clinical review. Br. J. Cancer, 2000, 82(12), 1907-1913. [PMID: 10864196].
[166]
Joel, S. The comparative clinical pharmacology of vincristine and vindesine: Does vindesine offer any advantage in clinical use? Cancer Treat. Rev., 1996, 21(6), 513-525. [http://dx.doi.org/10.1016/0305-7372(95)90015-2]. [PMID: 8599802].
[167]
Goa, K.L.; Faulds, D. Vinorelbine. A review of its pharmacological properties and clinical use in cancer chemotherapy. Drugs Aging, 1994, 5(3), 200-234. [http://dx.doi.org/10.2165/00002512-199405030-00006]. [PMID: 7803948].
[168]
Schutz, F.A.B.; Bellmunt, J.; Rosenberg, J.E.; Choueiri, T.K. Vinflunine: Drug safety evaluation of this novel synthetic vinca alkaloid. Expert Opin. Drug Saf., 2011, 10(4), 645-653. [http://dx.doi.org/10.1517/14740338.2011.581660]. [PMID: 21524237].
[169]
Cui, J.; Sun, W.; Hao, X.; Wei, M.; Su, X.; Zhang, Y.; Su, L.; Liu, X. X. EHMT2 inhibitor BIX-01294 induces apoptosis through
PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer
Cell Int, 2015, 15, 0140-0149.
[170]
Fu, L.; Yan, F.X.; An, X.R.; Hou, J. Effects of the histone methyltransferase inhibitor UNC0638 on histone H3K9 dimethylation of cultured ovine somatic cells and development of resulting early cloned embryos. Reprod. Domest. Anim., 2014, 49(2), e21-e25. [http://dx.doi.org/10.1111/rda.12277]. [PMID: 24467723].
[171]
Tiffen, J.C.; Gunatilake, D.; Gallagher, S.J.; Gowrishankar, K.; Heinemann, A.; Cullinane, C.; Dutton-Regester, K.; Pupo, G.M.; Strbenac, D.; Yang, J.Y.; Madore, J.; Mann, G.J.; Hayward, N.K.; McArthur, G.A.; Filipp, F.V.; Hersey, P. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 2015, 6(29), 27023-27036. [http://dx.doi.org/10.18632/oncotarget.4809]. [PMID: 26304929].
[172]
Horiuchi, K.Y.; Eason, M.M.; Ferry, J.J.; Planck, J.L.; Walsh, C.P.; Smith, R.F.; Howitz, K.T.; Ma, H. Assay development for histone methyltransferases. Assay Drug Dev. Technol., 2013, 11(4), 227-236. [http://dx.doi.org/10.1089/adt.2012.480]. [PMID: 23557020].
[173]
Maes, T.; Mascaró, C.; Ortega, A.; Lunardi, S.; Ciceri, F.; Somervaille, T.C.; Buesa, C. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics, 2015, 7(4), 609-626. [http://dx.doi.org/10.2217/epi.15.9]. [PMID: 26111032].
[174]
Qian, S.; Wang, Y.; Ma, H.; Zhang, L. Expansion and functional divergence of jumonji C-containing histone demethylases: Significance of duplications in ancestral angiosperms and vertebrates. Plant Physiol., 2015, 168(4), 1321-1337. [http://dx.doi.org/10.1104/pp.15.00520]. [PMID: 26059336].
[175]
Verrotti, A.; Carelli, A.; di Genova, L.; Striano, P. Epilepsy and chromosome 18 abnormalities: A review. Seizure, 2015, 32, 78-83. [http://dx.doi.org/10.1016/j.seizure.2015.09.013]. [PMID: 26552569].