Abstract
Ion channels have a critical role in the function of the nervous system, where they instigate and conduct nerve impulses by asserting control over the voltage potential across the plasma membrane. Propagation of electrical impulses occurs by opening of voltage-gated ion channels. Ion channel blockers prevent this from occurring, and can therefore be used in the treatment of central nervous system disorders and neuropathic pain. Recent identification of ion channel gene mutations in Mendelian epilepsies suggests that genetically driven neuronal hyperexcitability plays an important role in epileptogenesis. Studies with animal seizure models have indicated that changes in temporal and spatial expression of voltage-gated sodium channels may be important in the pathology of epilepsy. This paper is aimed at elucidating the organization of the ion channels and covers a review on the antiepileptic drugs, both established and currently under development targeted to the ion channels in order to bring about effective seizure control.
Keywords: epilepsy, voltage-gated ion channels, antiepileptic drugs, sodium ion channel, calcium ion channel, potassium ion channel, h-channels