Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Liposomes as Versatile Platform for Cancer Theranostics: Therapy, Bio-imaging, and Toxicological Aspects

Author(s): Swapnil Mehta, Sanjay Kulkarni, Ajinkya N. Nikam, Bharat S. Padya, Abhijeet Pandey and Srinivas Mutalik*

Volume 27, Issue 17, 2021

Published on: 11 March, 2021

Page: [1977 - 1991] Pages: 15

DOI: 10.2174/1381612827666210311142100

Price: $65

Abstract

Liposomes are nano-sized formulations having the benefits of site-specificity, biocompatibility, and biodegradability, which make them useful for the therapy and diagnosis of major diseases like cancer. In this review, various synthetic strategies of liposomes and their biomedical application in special concern to cancer are discussed. In context to the biomedical application, this article gives a detailed insight into subcellular targeted therapy and several therapeutic modifications like immunotherapy, receptor-based therapy, phototherapy, and combination therapy. The review also describes the liposome-based imaging platforms and the toxicity associated with liposomes. Owing to a significant amount of benefits of this carrier system, several products have been approved to be launched in the market and several others have already been marketed for clinical use.

Keywords: Liposomes, site-specificity, cancer therapy, imaging platform, toxicity, toxicological aspects.

[1]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[2]
Vahabi S, Eatemadi A. Nanoliposome encapsulated anesthetics for local anesthesia application. Biomed Pharmacother 2017; 86: 1-7.
[http://dx.doi.org/10.1016/j.biopha.2016.11.137] [PMID: 27936388]
[3]
Pandey A, Dhas N, Deshmukh P, et al. Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coord Chem Rev 2020; 409: 213212.
[http://dx.doi.org/10.1016/j.ccr.2020.213212]
[4]
Nikam AN, Pandey A, Fernandes G, et al. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives. Coord Chem Rev 2020; 419: 213356.
[http://dx.doi.org/10.1016/j.ccr.2020.213356]
[5]
Kotha R, Fernandes G, Nikam AN, et al. Surface engineered bimetallic nanoparticles based therapeutic and imaging platform: recent advancements and future perspective. Mater Sci Technol 2020; 36(16): 1729-48.
[http://dx.doi.org/10.1080/02670836.2020.1832323]
[6]
Jha A, Nikam AN, Kulkarni S, et al. Biomimetic nanoarchitecturing: A disguised attack on cancer cells. J Control Release 2020; 329: 413-33.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.005] [PMID: 33301837]
[7]
Pandey A, Kulkarni S, Vincent AP, Nannuri SH, George SD, Mutalik S. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. Int J Pharm 2020; 588: 119735.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119735] [PMID: 32763386]
[8]
Avadhani KS, Manikkath J, Tiwari M, et al. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 2017; 24(1): 61-74.
[http://dx.doi.org/10.1080/10717544.2016.1228718] [PMID: 28155509]
[9]
Shreya AB, Managuli RS, Menon J, et al. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: In vitro and in vivo performance evaluations. J Liposome Res 2016; 26(3): 221-32.
[http://dx.doi.org/10.3109/08982104.2015.1098659] [PMID: 26621370]
[10]
Nomani S, Govinda J. Nanoliposome: An alternative approach for drug delivery system. Int J Adv Pharm Med Bioallied Sci 2016; 2016: 1-10.
[11]
Shreya AB, Raut SY, Managuli RS, Udupa N, Mutalik S. Active targeting of drugs and bioactive molecules via oral administration by ligand-conjugated lipidic nanocarriers: recent advances. AAPS PharmSciTech 2018; 20(1): 15.
[http://dx.doi.org/10.1208/s12249-018-1262-2] [PMID: 30564942]
[12]
Shreya AB, Pandey A, Nikam AN, et al. One-pot development of spray dried cationic proliposomal dry powder insufflation: optimization, characterization and bio-interactions. J Drug Deliv Sci Technol 2020; 102298.
[13]
Managuli RS, Wang JT-W, Faruqu FM, et al. Surface engineered nanoliposomal platform for selective lymphatic uptake of asenapine maleate: In vitro and in vivo studies. Mater Sci Eng C 2020; 109: 110620.
[http://dx.doi.org/10.1016/j.msec.2019.110620] [PMID: 32228915]
[14]
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15(8): 787-804.
[http://dx.doi.org/10.1080/17425247.2018.1503249] [PMID: 30025212]
[15]
Khorasani S, Danaei M, Mozafari MR. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci Technol 2018; 79: 106-15.
[http://dx.doi.org/10.1016/j.tifs.2018.07.009]
[16]
Kumar Giri T, Giri A, Kumar Barman T, Maity S. Nanoliposome is a promising carrier of protein and peptide biomolecule for the treatment of cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2016; 16(7): 816-31.
[http://dx.doi.org/10.2174/1871520616666151116121821]
[17]
Gollavilli H, Hegde AR, Managuli RS, et al. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surf B Biointerfaces 2020; 193: 111122.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111122] [PMID: 32498002]
[18]
Zamani P, Momtazi-Borojeni AA, Nik ME, Oskuee RK, Sahebkar A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J Cell Physiol 2018; 233(7): 5189-99.
[http://dx.doi.org/10.1002/jcp.26361] [PMID: 29215747]
[19]
Fakhravar Z, Ebrahimnejad P, Daraee H, Akbarzadeh A. Nanoliposomes: Synthesis methods and applications in cosmetics. J Cosmet Laser Ther 2016; 18(3): 174-81.
[http://dx.doi.org/10.3109/14764172.2015.1039040] [PMID: 25968161]
[20]
Rieth MD, Lozano A. Preparation of DPPC liposomes using probe-tip sonication: Investigating intrinsic factors affecting temperature phase transitions. Biochem Biophys Rep 2020; 22: 100764.
[http://dx.doi.org/10.1016/j.bbrep.2020.100764] [PMID: 32337375]
[21]
Genç R, Ortiz M, O’Sullivan CK. Curvature-tuned preparation of nanoliposomes. Langmuir 2009; 25(21): 12604-13.
[http://dx.doi.org/10.1021/la901789h] [PMID: 19856992]
[22]
Colas J-C, Shi W, Rao VS, Omri A, Mozafari MR, Singh H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 2007; 38(8): 841-7.
[http://dx.doi.org/10.1016/j.micron.2007.06.013] [PMID: 17689087]
[23]
Sorgi FL, Huang L. Large scale production of DC-Chol cationic liposomes by microfluidization. Int J Pharm 1996; 144(2): 131-9.
[http://dx.doi.org/10.1016/S0378-5173(96)04733-3]
[24]
Want MY, Islammudin M, Chouhan G, et al. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. Int J Nanomedicine 2017; 12: 2189-204.
[http://dx.doi.org/10.2147/IJN.S106548] [PMID: 28356736]
[25]
Maitani Y, Soeda H, Junping W, Takayama K. Modified ethanol injection method for liposomes containing β-sitosterol β-D-glucoside. J Liposome Res 2001; 11(1): 115-25.
[http://dx.doi.org/10.1081/LPR-100103174] [PMID: 19530923]
[26]
Mozafari MR. Nanoliposomes: preparation and analysis. Methods Mol Biol 2010; 605: 29-50.
[http://dx.doi.org/10.1007/978-1-60327-360-2_2] [PMID: 20072871]
[27]
Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 1979; 557(1): 9-23.
[http://dx.doi.org/10.1016/0005-2736(79)90085-3] [PMID: 95096]
[28]
Rasti B, Jinap S, Mozafari MR, Yazid AM. Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chem 2012; 135(4): 2761-70.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.016] [PMID: 22980870]
[29]
Mozafari MR. Nanoliposomes: preparation and analysis.Liposomes. Springer 2010; pp. 29-50.
[http://dx.doi.org/10.1007/978-1-60327-360-2_2]
[30]
Shin GH, Chung SK, Kim JT, Joung HJ, Park HJ. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. J Agric Food Chem 2013; 61(46): 11119-26.
[http://dx.doi.org/10.1021/jf4035404] [PMID: 24175657]
[31]
Bhardwaj A, Srivastava SK, Singh S, et al. CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget 2014; 5(22): 11490-500.
[http://dx.doi.org/10.18632/oncotarget.2571] [PMID: 25359780]
[32]
Sur I, Taipale J. The role of enhancers in cancer. Nat Rev Cancer 2016; 16(8): 483-93.
[http://dx.doi.org/10.1038/nrc.2016.62] [PMID: 27364481]
[33]
de Souza JA, Hunt B, Asirwa FC, Adebamowo C, Lopes G. Global health equity: cancer care outcome disparities in high-, middle-, and low-income countries. J Clin Oncol 2016; 34(1): 6-13.
[http://dx.doi.org/10.1200/JCO.2015.62.2860] [PMID: 26578608]
[34]
Mukherjee S, Liang L, Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 2020; 12(2): 147.
[http://dx.doi.org/10.3390/pharmaceutics12020147] [PMID: 32053995]
[35]
Wang F, Li C, Cheng J, Yuan Z. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int J Environ Res Public Health 2016; 13(12): 1182.
[http://dx.doi.org/10.3390/ijerph13121182] [PMID: 27898016]
[36]
Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 2015; 468(3): 463-70.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[37]
Tyagi N, Rathore SS, Ghosh PC. Enhanced killing of human epidermoid carcinoma (KB) cells by treatment with ricin encapsulated into sterically stabilized liposomes in combination with monensin. Drug Deliv 2011; 18(6): 394-404.
[http://dx.doi.org/10.3109/10717544.2011.567309] [PMID: 21438723]
[38]
Singh SK, Singh S, Lillard JW Jr, Singh R. Drug delivery approaches for breast cancer. Int J Nanomedicine 2017; 12: 6205-18.
[http://dx.doi.org/10.2147/IJN.S140325] [PMID: 28883730]
[39]
Radhakrishnan H, Palanisamy S, Subbiah L. Theranostic liposomes in cancer: current status and applications. SSRN Electr J 2019.
[40]
Shi N-Q, Li Y, Zhang Y, Li Z-Q, Qi X-R. Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic peptidic ligand-decorated accelerating active targeted nanomedicines. Int J Nanomedicine 2018; 13: 5537-59.
[http://dx.doi.org/10.2147/IJN.S172556] [PMID: 30271146]
[41]
Perillo E, Allard-Vannier E, Falanga A, et al. Quantitative and qualitative effect of gH625 on the nanoliposome-mediated delivery of mitoxantrone anticancer drug to HeLa cells. Int J Pharm 2015; 488(1-2): 59-66.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.039] [PMID: 25891256]
[42]
Shi N-Q, Li Y, Zhang Y, et al. Intelligent “Peptide-gathering mechanical arm” Tames Wild “Trojan-Horse” peptides for the controlled delivery of cancer nanotherapeutics. ACS Appl Mater Interfaces 2017; 9(48): 41767-81.
[http://dx.doi.org/10.1021/acsami.7b15523] [PMID: 29161013]
[43]
Chiani M, Norouzian D, Shokrgozar MA, et al. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artif Cells Nanomed Biotechnol 2018; 46(4): 757-63.
[http://dx.doi.org/10.1080/21691401.2017.1337029] [PMID: 28643525]
[44]
Shao L, Kahraman N, Yan G, Wang J, Ozpolat B, Ittmann M. Targeting the TMPRSS2/ERG fusion mRNA using liposomal nanovectors enhances docetaxel treatment in prostate cancer. Prostate 2020; 80(1): 65-73.
[http://dx.doi.org/10.1002/pros.23918] [PMID: 31614005]
[45]
Wang J, Chai J, Liu L, et al. Dual-functional melanin-based nanoliposomes for combined chemotherapy and photothermal therapy of pancreatic cancer. RSC Advances 2019; 9(6): 3012-9.
[http://dx.doi.org/10.1039/C8RA09420A]
[46]
Wang S, Liu H, Xin J, et al. Chlorin-based photoactivable Galectin-3-inhibitor nanoliposome for enhanced photodynamic therapy and NK cell-related immunity in Melanoma. ACS Appl Mater Interfaces 2019; 11(45): 41829-41.
[http://dx.doi.org/10.1021/acsami.9b09560] [PMID: 31617343]
[47]
Shi J, Su Y, Liu W, Chang J, Zhang Z. A nanoliposome-based photoactivable drug delivery system for enhanced cancer therapy and overcoming treatment resistance. Int J Nanomedicine 2017; 12: 8257-75.
[http://dx.doi.org/10.2147/IJN.S143776] [PMID: 29180864]
[48]
Krishnamoorthy G, Stephen P, Prabhu M, Sehgal PK, Sadulla S. Collagen coated nanoliposome as a targeted and controlled drug delivery system.AIP Conference Proceedings. American Institute of Physics 2010; pp. 163-8.
[http://dx.doi.org/10.1063/1.3504292]
[49]
Wang G, Wang J-J, Wang Y-Z, Feng S, Jing G, Fu X-L. Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death. Artificial cells, nanomedicine, and biotechnology 2018; 46(sup 3): S180-91.
[http://dx.doi.org/10.1080/21691401.2018.1489825]
[50]
Wang G, Wang JJ, Chen XL, et al. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis 2013; 4(8): e746-6.
[http://dx.doi.org/10.1038/cddis.2013.242] [PMID: 23907460]
[51]
Antal DS, Schwaiger S, Ellmerer-Müller EP, Stuppner H. Cotinus coggygria wood: novel flavanone dimer and development of an HPLC/UV/MS method for the simultaneous determination of fourteen phenolic constituents. Planta Med 2010; 76(15): 1765-72.
[http://dx.doi.org/10.1055/s-0030-1249878] [PMID: 20446241]
[52]
Kuwabara M, Asanuma T, Niwa K, Inanami O. Regulation of cell survival and death signals induced by oxidative stress. J Clin Biochem Nutr 2008; 43(2): 51-7.
[http://dx.doi.org/10.3164/jcbn.2008045] [PMID: 18818753]
[53]
Wang G, Wang JJ, To TS, Zhao HF, Wang J. Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes. Int J Nanomedicine 2015; 10: 5005-23.
[PMID: 26345416]
[54]
Palmisano A, Krushkal J, Li M-C, et al. Bioinformatics tools and resources for cancer immunotherapy study. Biomarkers for Immunotherapy of Cancer. Springer 2020; pp. 649-78.
[http://dx.doi.org/10.1007/978-1-4939-9773-2_29]
[55]
Park Y-J, Kuen D-S, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med 2018; 50(8): 109.
[http://dx.doi.org/10.1038/s12276-018-0130-1] [PMID: 30135516]
[56]
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018; 8(9): 1069-86.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367] [PMID: 30115704]
[57]
Lim S, Park J, Shim MK, et al. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019; 9(25): 7906-23.
[http://dx.doi.org/10.7150/thno.38425] [PMID: 31695807]
[58]
Lam SS, Zhou F, Hode T, et al. Advances in strategies and methodologies in cancer immunotherapy. Discov Med 2015; 19(105): 293-301.
[PMID: 25977192]
[59]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[60]
Alipour Talesh G, Ebrahimi Z, Badiee A, et al. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett 2016; 176: 57-64.
[http://dx.doi.org/10.1016/j.imlet.2016.05.016] [PMID: 27260485]
[61]
Mansourian M, Badiee A, Jalali SA, et al. Effective induction of anti-tumor immunity using p5 HER-2/neu derived peptide encapsulated in fusogenic DOTAP cationic liposomes co-administrated with CpG-ODN. Immunol Lett 2014; 162(1 Pt A): 87-93.
[http://dx.doi.org/10.1016/j.imlet.2014.07.008] [PMID: 25086399]
[62]
Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369(2): 134-44.
[http://dx.doi.org/10.1056/NEJMoa1305133] [PMID: 23724846]
[63]
Chakraborty D, Pati S, Bose S, Dhar S, Dutta S, Sa G. Cancer immunotherapy: present scenarios and the future of immunotherapy. Nucleus 2019; 1-12.
[64]
Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010; 27(7): 286-98.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[65]
Sharkey RM, Goldenberg DM. Use of antibodies and immunoconjugates for the therapy of more accessible cancers. Adv Drug Deliv Rev 2008; 60(12): 1407-20.
[http://dx.doi.org/10.1016/j.addr.2008.04.011] [PMID: 18508155]
[66]
Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panagopoulos I. Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 2006; 45(7): 717-9.
[http://dx.doi.org/10.1002/gcc.20329] [PMID: 16575875]
[67]
Clark J, Merson S, Jhavar S, et al. Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 2007; 26(18): 2667-73.
[http://dx.doi.org/10.1038/sj.onc.1210070] [PMID: 17043636]
[68]
Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006; 66(17): 8347-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1966] [PMID: 16951141]
[69]
Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310(5748): 644-8.
[70]
Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009; 71(3): 409-19.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[71]
Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 2008; 40(3): 362-82.
[http://dx.doi.org/10.1016/j.biocel.2007.08.011] [PMID: 17936056]
[72]
Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 2006; 5(4): 818-24.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0543] [PMID: 16648551]
[73]
Moghimipour E, Rezaei M, Ramezani Z, et al. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur J Pharm Sci 2018; 114: 166-74.
[http://dx.doi.org/10.1016/j.ejps.2017.12.011] [PMID: 29247686]
[74]
Zhang L, Wang D, Yang K, et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv Sci (Weinh) 2018; 5(8): 1800049.
[http://dx.doi.org/10.1002/advs.201800049] [PMID: 30128231]
[75]
Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart nanostructures for cargo delivery: uncaging and activating by light. J Am Chem Soc 2017; 139(13): 4584-610.
[http://dx.doi.org/10.1021/jacs.6b08313] [PMID: 28192672]
[76]
Strong LE, West JL. Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles. ACS Biomater Sci Eng 2015; 1(8): 685-92.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00111] [PMID: 26366438]
[77]
Lovell JF, Jin CS, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 2011; 10(4): 324-32.
[http://dx.doi.org/10.1038/nmat2986] [PMID: 21423187]
[78]
Huang Z, Xu H, Meyers AD, et al. Photodynamic therapy for treatment of solid tumors--potential and technical challenges. Technol Cancer Res Treat 2008; 7(4): 309-20.
[http://dx.doi.org/10.1177/153303460800700405] [PMID: 18642969]
[79]
Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J Pharm Sci 2013; 102(1): 6-28.
[http://dx.doi.org/10.1002/jps.23356] [PMID: 23132644]
[80]
Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3(5): 380-7.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[81]
Xu H, Chen B, Gong W, Yang Z, Qu J. Nanoliposomes co-encapsulating photoswitchable probe and photosensitizer for super-resolution optical imaging and photodynamic therapy. Cytometry A 2020; 97(1): 54-60.
[http://dx.doi.org/10.1002/cyto.a.23864] [PMID: 31313510]
[82]
Spring BQ, Bryan Sears R, Zheng LZ, et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat Nanotechnol 2016; 11(4): 378-87.
[http://dx.doi.org/10.1038/nnano.2015.311] [PMID: 26780659]
[83]
Xu H, Ohulchanskyy TY, Yakovliev A, et al. Nanoliposomes co-encapsulating CT imaging contrast agent and photosensitizer for enhanced, imaging guided photodynamic therapy of cancer. Theranostics 2019; 9(5): 1323-35.
[http://dx.doi.org/10.7150/thno.31079] [PMID: 30867833]
[84]
Tong R, Kohane DS. New strategies in cancer nanomedicine. Annu Rev Pharmacol Toxicol 2016; 56: 41-57.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103456] [PMID: 26514197]
[85]
Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 2009; 6(3): 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[86]
Mohanty C, Das M, Kanwar JR, Sahoo SK. Receptor mediated tumor targeting: an emerging approach for cancer therapy. Curr Drug Deliv 2011; 8(1): 45-58.
[http://dx.doi.org/10.2174/156720111793663606] [PMID: 21034422]
[87]
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240: 489-503.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.012] [PMID: 27287891]
[88]
Chu E, DeVita VT Jr. Physicians’ Cancer Chemotherapy Drug Manual 2014. Jones & Bartlett Publishers 2014.
[89]
Wargo JA, Reuben A, Cooper ZA, Oh KS, Sullivan RJ. Immune effects of chemotherapy, radiation, and targeted therapy and opportunities for combination with immunotherapy.Seminars in oncology. Elsevier 2015; pp. 601-16.
[http://dx.doi.org/10.1053/j.seminoncol.2015.05.007]
[90]
Lee JH, Nan A. Combination drug delivery approaches in metastatic breast cancer. Journal of drug delivery 2012; 2012.
[http://dx.doi.org/10.1155/2012/915375]
[91]
Waterhouse DN, Gelmon KA, Klasa R, et al. Development and assessment of conventional and targeted drug combinations for use in the treatment of aggressive breast cancers. Curr Cancer Drug Targets 2006; 6(6): 455-89.
[http://dx.doi.org/10.2174/156800906778194586] [PMID: 17017873]
[92]
Pavitra E, Dariya B, Srivani G, et al. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Seminars in cancer biology. Elsevier 2019.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.017]
[93]
Yu EY, Bishop M, Zheng B, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 2017; 17(3): 1648-54.
[http://dx.doi.org/10.1021/acs.nanolett.6b04865] [PMID: 28206771]
[94]
Mezzanotte L, An N, Mol IM, Löwik CW, Kaijzel EL. A new multicolor bioluminescence imaging platform to investigate NF-κB activity and apoptosis in human breast cancer cells. PLoS One 2014; 9(1): e85550.
[http://dx.doi.org/10.1371/journal.pone.0085550] [PMID: 24465597]
[95]
Zhang L, Sheng D, Wang D, et al. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics 2018; 8(6): 1591-606.
[http://dx.doi.org/10.7150/thno.22430] [PMID: 29556343]
[96]
Zhou Y, Li G, Zhu L, Li C, Cornelius LA, Wang LV. Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo. J Biophotonics 2015; 8(11-12): 961-7.
[http://dx.doi.org/10.1002/jbio.201400143] [PMID: 25676898]
[97]
Xu G, Xue Y, Özkurt ZG, et al. Photoacoustic imaging features of intraocular tumors: Retinoblastoma and uveal melanoma. PLoS One 2017; 12(2): e0170752.
[http://dx.doi.org/10.1371/journal.pone.0170752] [PMID: 28231293]
[98]
Han Z, Lv L, Ma Y, et al. Cypate-mediated thermosensitive nanoliposome for tumor imaging and photothermal triggered drug release. J Biophotonics 2017; 10(12): 1607-16.
[http://dx.doi.org/10.1002/jbio.201600270] [PMID: 28106955]
[99]
Zheng X, Xing D, Zhou F, Wu B, Chen WR. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol Pharm 2011; 8(2): 447-56.
[http://dx.doi.org/10.1021/mp100301t] [PMID: 21197955]
[100]
Zheng X, Zhou F, Wu B, Chen WR, Xing D. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol Pharm 2012; 9(3): 514-22.
[http://dx.doi.org/10.1021/mp200526m] [PMID: 22332810]
[101]
Wang L, Gao C, Liu K, et al. Cypate‐conjugated porous upconversion nanocomposites for programmed delivery of heat shock protein 70 small interfering RNA for gene silencing and photothermal ablation. Adv Funct Mater 2016; 26(20): 3480-9.
[http://dx.doi.org/10.1002/adfm.201600035]
[102]
Fan R, Wang H, Zhang L, Ma T, Tian Y, Li H. Nanocrystallized oleanolic acid better inhibits proliferation, migration and invasion in intracranial glioma via caspase-3 pathway. J Cancer 2020; 11(7): 1949-58.
[http://dx.doi.org/10.7150/jca.38847] [PMID: 32194806]
[103]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[104]
Forssen EA. The design and development of DaunoXome® for solid tumor targeting in vivo. Adv Drug Deliv Rev 1997; 24(2-3): 133-50.
[http://dx.doi.org/10.1016/S0169-409X(96)00453-X]
[105]
Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015; 10(2): 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[106]
ONIVYDE® (irinotecan liposome injection) | Health Care Professional Info. Onivyde HCP Available from: https://www.onivyde.com/hcp/
[107]
Doxil Advanced Patient Information. Available from: https://www.drugs.com/cons/doxil.html
[108]
Lipoplatin (Liposomal Cisplatin). Available from: http://www.lipoplatin.com/
[109]
Myocet liposomal 50 mg powder, dispersion and solvent for concentrate for dispersion for infusion - Summary of Product Characteristics (SmPC) - (emc). Available from: https://www.medicines.org.uk/emc/product/5378
[110]
DaunoXome - FDA prescribing information, side effects and uses. Available from: https://www.drugs.com/pro/daunoxome.html
[111]
Luye Pharma’s Lipusu® and CMNa® Recommended by 2019 China Guidelines on Radiotherapy for Esophageal Cancer-Paclitaxel Liposome the Preferred Medication for Multiple Chemo/Radio Therapies - Press Releases - Luye Pharma Group. 2019. Available from: https://www.luye.cn/lvye_en/view.php?id=1766
[112]
Marqibo: Side Effects, Dosage & Uses. Available from: https://www.drugs.com/marqibo.html
[113]
AmBisome® | AmBisome (amphotericin B) liposome for injection. Available from: https://www.ambisome.com/
[114]
Pancreatic cancer treatment option | ONIVYDE® (irinotecan liposome injection. Onivyde Patient Available from: https://www.onivyde.com/for-patients/
[115]
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 381-91.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[116]
Home | ONPATTRO® (patisiran) lipid complex injection 10 mg/5 mL. Available from: https://www.onpattro.com/
[117]
Tegsedi. Available from: https://tegsedi.com/
[118]
Nuclear Medicine Radiopharmaceuticals | AAA. Adacap Available from: https://www.adacap.com/
[119]
Mepact: uses, side effects, benefits/risks. Available from: https://www.drugs.com/uk/mepact.html
[120]
Lopalco A, Denora N. Nanoformulations for Drug delivery: safety, toxicity, and efficacy. Computational Toxicology. Springer 2018; pp. 347-65.
[http://dx.doi.org/10.1007/978-1-4939-7899-1_17]
[121]
Praveen A, Aqil M, Imam SS, Ahad A, Moolakkadath T, Ahmad FJ. Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: Formulation design, characterization and nasal toxicity study. Colloids Surf B Biointerfaces 2019; 174: 553-62.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.025] [PMID: 30502666]
[122]
Ramachandran S, Quist AP, Kumar S, Lal R. Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir 2006; 22(19): 8156-62.
[http://dx.doi.org/10.1021/la0607499] [PMID: 16952256]
[123]
Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol 2011; 49(10): 1039-45.
[http://dx.doi.org/10.3109/13880209.2011.563315] [PMID: 21936628]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy