Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Lymphatic Drug Transport and Associated Drug Delivery Technologies: A Comprehensive Review

Author(s): Manjot S. Punjabi, Anup Naha*, Disha Shetty and Usha Y. Nayak

Volume 27, Issue 17, 2021

Published on: 03 December, 2020

Page: [1992 - 1998] Pages: 7

DOI: 10.2174/1381612826999201203214247

Price: $65

Abstract

Lymphatic system is the secondary circulation system of the human body after the systemic circulation. Various problems, including the first-pass metabolism through oral administration of medicines, can be resolved by lymphatic targeting. Lymphatic absorption has been explored in detail, and studies reveal the improved bioavailability of medicines. In the case of cancer, AIDS, and various other health problems, lymphatic targeting has been focused on due to the fact that lymph nodes are involved greatly in tumor metastasis. This article reviews lymphatic absorption and its exploration in the treatment of various health problems. The physiology of the lymphatic system, the mechanisms of absorption, and the various formulation systems suitable for lymphatic absorption have been discussed. Some recent novel approaches like hydrodynamically driven device (HDD) and carbon nanotubes for lymphatic delivery have also been appraised.

Keywords: Lymphatic system, drug delivery, absorption, bioavailability, lymph nodes, drug target.

[1]
Zhang XY, Lu WY. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol Med 2014; 11(4): 247-54.
[PMID: 25610710]
[2]
Ali Khan A, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 2013; 8: 2733-44.
[PMID: 23926431]
[3]
Singh I, Swami R, Khan W, Sistla R. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv 2014; 11(2): 211-29.
[http://dx.doi.org/10.1517/17425247.2014.866088] [PMID: 24350774]
[4]
Charman WN, Stella VJ. Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm 1986; 34(1-2): 175-8.
[http://dx.doi.org/10.1016/0378-5173(86)90027-X]
[5]
Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 2001; 50(1-2): 3-20.
[http://dx.doi.org/10.1016/S0169-409X(01)00150-8] [PMID: 11489331]
[6]
Hauss DJ, Fogal SE, Ficorilli JV, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci 1998; 87(2): 164-9.
[http://dx.doi.org/10.1021/js970300n] [PMID: 9519148]
[7]
Wang C, Liu P, Zhuang Y, et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine 2014; 32(42): 5475-83.
[http://dx.doi.org/10.1016/j.vaccine.2014.07.081] [PMID: 25110295]
[8]
Patravale VB, Prabhu RH, Chaitali R. Bora. Lymphatic delivery: concept, challenges and applications. Indian Drugs 2017; 54(8): 5-22.
[9]
Warshaw AL, Walker WA, Isselbacher KJ. Protein uptake by the intestine: evidence for absorption of intact macromolecules. Gastroenterology 1974; 66(5): 987-92.
[http://dx.doi.org/10.1016/S0016-5085(74)80174-5] [PMID: 4207917]
[10]
Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics. Adv Drug Deliv Rev 1995; 17(1): 129-48.
[http://dx.doi.org/10.1016/0169-409X(95)00045-9]
[11]
Patel HM, Boodle KM, Vaughan-Jones R. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta 1984; 801(1): 76-86.
[http://dx.doi.org/10.1016/0304-4165(84)90214-9] [PMID: 6087919]
[12]
Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 2008; 16(10): 798-805.
[http://dx.doi.org/10.1080/10611860802475688] [PMID: 19005941]
[13]
Kim CK, Han JH. Lymphatic delivery and pharmacokinetics of methotrexate after intramuscular injection of differently charged liposome-entrapped methotrexate to rats. J Microencapsul 1995; 12(4): 437-46.
[http://dx.doi.org/10.3109/02652049509087256] [PMID: 8583318]
[14]
Ahn H, Park JH. Liposomal delivery systems for intestinal lymphatic drug transport. Biomater Res 2016; 20: 36.
[http://dx.doi.org/10.1186/s40824-016-0083-1] [PMID: 27895934]
[15]
Porter CJ, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev 2001; 50(1-2): 61-80.
[http://dx.doi.org/10.1016/S0169-409X(01)00151-X] [PMID: 11489334]
[16]
Owen RL. Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer’s patches-a personal and historical perspective. Semin Immunol 1999; 11(3): 157-63.
[http://dx.doi.org/10.1006/smim.1999.0171] [PMID: 10381861]
[17]
Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems-an overview. Acta Pharm Sin B 2013; 3(6): 361-72.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[18]
Stremmel W, Lotz G, Strohmeyer G, Berk PD. Identification, isolation, and partial characterization of a fatty acid binding protein from rat jejunal microvillous membranes. J Clin Invest 1985; 75(3): 1068-76.
[http://dx.doi.org/10.1172/JCI111769] [PMID: 3884664]
[19]
Noguchi T, Charman WN, Stella VJ. The effect of drug lipophilicity and lipid vehicles on the lymphatic absorption of various testosterone esters. Int J Pharm 1985; 24(2-3): 173-84.
[http://dx.doi.org/10.1016/0378-5173(85)90018-3]
[20]
Barenholz Y, Amselem S, Goren D, et al. Stability of liposomal doxorubicin formulations: problems and prospects. Med Res Rev 1993; 13(4): 449-91.
[http://dx.doi.org/10.1002/med.2610130404] [PMID: 8361255]
[21]
Xie Y, Bagby TR, Cohen MS, Forrest ML. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 2009; 6(8): 785-92.
[http://dx.doi.org/10.1517/17425240903085128] [PMID: 19563270]
[22]
Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 2001; 50(1-2): 143-56.
[http://dx.doi.org/10.1016/S0169-409X(01)00154-5] [PMID: 11489337]
[23]
Ahammed V, Narayan R, Paul J, et al. Development and in vivo evaluation of functionalized ritonavir proliposomes for lymphatic targeting. Life Sci 2017; 183: 11-20.
[http://dx.doi.org/10.1016/j.lfs.2017.06.022] [PMID: 28647214]
[24]
Kaminskas LM, Ascher DB, McLeod VM, et al. PEGylation of interferon α2 improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. J Control Release 2013; 168(2): 200-8.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.006] [PMID: 23499718]
[25]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi 2017; 25(2): 219-34.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[26]
Fan L, Chen J, Zhang X, Liu Y, Xu C. Follicle-stimulating hormone polypeptide modified nanoparticle drug delivery system in the treatment of lymphatic metastasis during ovarian carcinoma therapy. Gynecol Oncol 2014; 135(1): 125-32.
[http://dx.doi.org/10.1016/j.ygyno.2014.06.030] [PMID: 25003656]
[27]
Desai J, Thakkar H. Darunavir-loaded lipid nanoparticles for targeting to HIV reservoirs. AAPS PharmSciTech 2018; 19(2): 648-60.
[http://dx.doi.org/10.1208/s12249-017-0876-0] [PMID: 28948564]
[28]
Wang T, Shen L, Zhang Z, et al. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption. Drug Deliv 2017; 24(1): 1565-73.
[http://dx.doi.org/10.1080/10717544.2017.1386730] [PMID: 29029577]
[29]
Kobayashi H, Kawamoto S, Sakai Y, et al. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 2004; 96(9): 703-8.
[30]
Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 2014; 193: 241-56.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.051] [PMID: 24801249]
[31]
Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015; 14(11): 781-803.
[http://dx.doi.org/10.1038/nrd4608] [PMID: 26471369]
[32]
Eby JK, Dane KY, O’Neil CP, Hirosue S, Swartz MA, Hubbell JA. Polymer micelles with pyridyl disulfide-coupled antigen travel through lymphatics and show enhanced cellular responses following immunization. Acta Biomater 2012; 8(9): 3210-7.
[http://dx.doi.org/10.1016/j.actbio.2012.06.007] [PMID: 22698945]
[33]
Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 2014; 190: 465-76.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.042] [PMID: 24993430]
[34]
Wang J, Wang Y, Liang W. Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles. J Control Release 2012; 160(3): 637-51.
[http://dx.doi.org/10.1016/j.jconrel.2012.02.021] [PMID: 22405904]
[35]
Ghosh S, Roy T. Nanoparticulate drug-delivery systems: lymphatic uptake and its gastrointestinal applications. J Appl Pharm Sci 2014; 4(6): 123-30.
[36]
Tripathi PK, Khopade AJ, Nagaich S, Shrivastava S, Jain S, Jain NK. Dendrimer grafts for delivery of 5-fluorouracil. Pharmazie 2002; 57(4): 261-4.
[PMID: 11998447]
[37]
Wijagkanalan W, Kawakami S, Hashida M. Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm Res 2011; 28(7): 1500-19.
[http://dx.doi.org/10.1007/s11095-010-0339-8] [PMID: 21181549]
[38]
Dukhin SS, Labib ME. Hydrodynamically-driven drug release during interstitial flow through hollow fibers implanted near lymphatics. Colloids Surf A Physicochem Eng Asp 2017; 521: 177-92.
[http://dx.doi.org/10.1016/j.colsurfa.2016.08.052] [PMID: 28579697]
[39]
Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 2008; 60(6): 702-16.
[http://dx.doi.org/10.1016/j.addr.2007.09.007] [PMID: 18155316]
[40]
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15(8): 787-804.
[http://dx.doi.org/10.1080/17425247.2018.1503249] [PMID: 30025212]
[41]
Brocks DR, Davies NM. Lymphatic drug absorption via the enterocytes: pharmacokinetic simulation, modeling, and considerations for optimal drug development. J Pharm Pharm Sci 2018; 21(1s): 254s-70s.
[http://dx.doi.org/10.18433/jpps30217] [PMID: 30348249]
[42]
Cote A, Rao BD, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors 2019; 144: 16-34..
[http://dx.doi.org/10.1016/j.addr.2019.08.009]
[43]
Available from. http://www.catie.ca/en/home Canada’s source for HI and Hepatitis B information.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy