[1]
Reboul, F.L. Radiotherapy and chemotherapy in locally advanced non-small cell lung cancer: Preclinical and early clinical data. Hematol. Oncol. Clin. North Am., 2004, 18(1), 41-53.
[2]
Denis-Bacelar, A.M.; Chittenden, S.J.; McCready, V.R.; Divoli, A.; Dearnaley, D.P.; O’Sullivan, J.M.; Johnson, B.; Flux, G.D. Bone lesion absorbed dose profiles in patients with metastatic prostate cancer treated with molecular radiotherapy. Br. J. Radiol., 2018, 20170795.
[3]
Oyen, W.J.; de Bono, J.S. Targeted α-Based Treatment of Metastatic Castration-Resistant Prostate Cancer: Revolutionizing Systemic Radiotherapy? J. Nucl. Med., 2016, 57(12), 1838-1839.
[4]
Oyen, W. Radiopharmaceuticals in the elderly cancer patient: Practical considerations, with a focus on prostate cancer therapy. Eur. J. Cancer, 2017, 77, 127-139.
[5]
Rose, T.; Garcia, E.; Bachand, F.; Kim, D.; Petrik, D.; Halperin, R.; Crook, J. QOL comparison of acute side effects from a high dose rate vs. low dose rate prostate brachytherapy boost combined with external beam radiotherapy. Brachytherapy, 2015, 14, S36.
[6]
Savard, J.; Ivers, H.; Savard, M.H.; Morin, C.M. Cancer treatments and their side effects are associated with aggravation of insomnia: results of a longitudinal study. Cancer, 2015, 121(10), 1703-1711.
[7]
De Francesco, I.; Thomas, K.; Tait, D. Pelvic intensity-modulated radiotherapy: Can we better quantify the late side-effects? Clin. Oncol. , 2015, 27(7), 428.
[8]
Harrabi, S.B.; Adeberg, S.; Welzel, T.; Rieken, S.; Habermehl, D.; Debus, J.; Combs, S.E. Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: Maximal tumor control with minimal side effects. Radiat. Oncol., 2014, 9(1), 203.
[9]
West, C.; Azria, D.; Chang-Claude, J.; Davidson, S.; Lambin, P.; Rosenstein, B.; De Ruysscher, D.; Talbot, C.; Thierens, H.; Valdagni, R. The REQUITE project: Validating predictive models and biomarkers of radiotherapy toxicity to reduce side-effects and improve quality of life in cancer survivors. Clin. Oncol. , 2014, 26(12), 739-742.
[10]
Chung, S.I. Smart, D.K.; Chung, E.J.; Citrin, D.E. In: Increasing the Therapeutic Ratio of Radiotherapy; Springer, 2017; pp. 79-102.
[11]
Johnke, R.M.; Sattler, J.A.; Allison, R.R. Radioprotective agents for radiation therapy: Future trends. Fut Oncol., 2014, 10(15), 2345-2357.
[12]
Prasanna, P.G.; Narayanan, D.; Hallett, K.; Bernhard, E.J.; Ahmed, M.M.; Evans, G.; Vikram, B.; Weingarten, M.; Coleman, C.N. Radioprotectors and radiomitigators for improving radiation therapy: The Small Business Innovation Research (SBIR) gateway for accelerating clinical translation. Radiat. Res., 2015, 184(3), 235-248.
[13]
Rosen, E.M.; Day, R.; Singh, V.K. New approaches to radiation protection. Front. Oncol., 2015, 4, 381.
[14]
Alok, A.; Chaudhury, N. Tetracycline hydrochloride: A potential clinical drug for radioprotection. Chemico-Biological Interactions., 2016, 245, 90-99.
[15]
Nimesh, H.; Tiwari, V.; Yang, C.; Gundala, S.R.; Chuttani, K.; Hazari, P.P.; Mishra, A.K.; Sharma, A.; Lal, J.; Katyal, A. Preclinical evaluation of DMA, a bisbenzimidazole, as radioprotector: Toxicity, pharmacokinetics, and biodistribution studies in Balb/c mice. Mol. Pharmacol., 2015, 88(4), 768-778.
[16]
Smith, B.R.; Eastman, C.M.; Njardarson, J.T.; Beyond, C. H, O, and N! Analysis of the Elemental Composition of US FDA Approved Drug Architectures: Miniperspective. J. Med. Chem., 2014, 57(23), 9764-9773.
[17]
Gu, J.; Zhu, S.; Li, X.; Wu, H.; Li, Y.; Hua, F. Effect of amifostine in head and neck cancer patients treated with radiotherapy: A systematic review and meta-analysis based on randomized controlled trials. PLoS One, 2014, 9(5), e95968.
[18]
Singh, V.K.; Fatanmi, O.O.; Wise, S.Y.; Newman, V.L.; Romaine, P.L.; Seed, T.M. The potentiation of the radioprotective efficacy of two medical countermeasures, gamma-tocotrienol and amifostine, by a combination prophylactic modality. Radiat. Protect. Dos, 2016, 172(1-3), 302-310.
[19]
Koukourakis, M.I.; Giatromanolaki, A.; Zois, C.E.; Kalamida, D.; Pouliliou, S.; Karagounis, I.V.; Yeh, T-L.; Abboud, M.I.; Claridge, T.D.; Schofield, C.J. Normal tissue radioprotection by amifostine via Warburg-type effects. Sci. Rep., 2016, 6, 30986.
[20]
Kamran, M.Z.; Ranjan, A.; Kaur, N.; Sur, S.; Tandon, V. Radioprotective agents: Strategies and translational advances. Med. Res. Rev., 2016, 36(3), 461-493.
[21]
Tan, D-X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 2015, 20(10), 18886-18906.
[22]
Vriend, J.; Reiter, R.J. Melatonin feedback on clock genes: A theory involving the proteasome. J. Pineal Res., 2015, 58(1), 1-11.
[23]
Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol., 2017, 15(3), 434-443.
[24]
Vinther, A.; Claesson, M. The influence of melatonin on the immune system and cancer. Article in Danish]. Ugeskr. Laeger, 2015, 177, V10140568.
[25]
Lacoste, B.; Angeloni, D.; Dominguez‐Lopez, S.; Calderoni, S.; Mauro, A.; Fraschini, F.; Descarries, L.; Gobbi, G. Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J. Pineal Res., 2015, 58(4), 397-417.
[26]
Ren, W.; Liu, G.; Chen, S.; Yin, J.; Wang, J.; Tan, B.; Wu, G.; Bazer, F.W.; Peng, Y.; Li, T. Melatonin signaling in T cells: Functions and applications. J. Pineal Res., 2017, 62(3)
[27]
Hardeland, R. Melatonin-More than just a pineal hormone. Biomed. J. Sci. Tech. Res, 2017, 1, 1-4.
[29]
Sliwinski, T.; Rozej, W.; Morawiec-Bajda, A.; Morawiec, Z.; Reiter, R.; Blasiak, J. Protective action of melatonin against oxidative DNA damage: chemical inactivation versus base-excision repair. Mutat. Res., 2007, 634(1-2), 220-227.
[31]
Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J. Effects of melatonin on DNA damage induced by cyclophosphamide in rats. Braz. J. Med. Biol. Res., 2013, 46(3), 278-286.
[32]
Santoro, R.; Marani, M.; Blandino, G.; Muti, P.; Strano, S. Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene, 2011, 31, 2931-2942.
[33]
Chuffa, L.G.; Fioruci-Fontanelli, B.A.; Mendes, L.O.; Ferreira Seiva, F.R.; Martinez, M.; Favaro, W.J.; Domeniconi, R.F.; Pinheiro, P.F.; Delazari Dos Santos, L.; Martinez, F.E. Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer, 2015, 15, 34.
[34]
Nduhirabandi, F.; Lamont, K.; Albertyn, Z.; Opie, L.H.; Lecour, S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J. Pineal Res., 2016, 60(1), 39-47.
[35]
Hu, Y.; Wang, Z.; Pan, S.; Zhang, H.; Fang, M.; Jiang, H.; Zhang, H.; Gao, Z.; Xu, K.; Li, Z.; Xiao, J.; Lin, Z. Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-kappaB signaling pathway after LPS treatment in neonatal rats. Oncotarget, 2017, 8(19), 31638-31654.
[36]
Esposito, E.; Cuzzocrea, S. Antiinflammatory Activity of Melatonin in Central Nervous System. Curr. Neuropharmacol., 2010, 8(3), 228-242.
[37]
Favero, G.; Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation. Int. J. Endocrinol., 2017, 2017, 1835195.
[38]
Reiter, R.J.; Calvo, J.R.; Karbownik, M.; Qi, W.; Tan, D.X. Melatonin and its relation to the immune system and inflammation. Ann. N. Y. Acad. Sci., 2000, 917, 376-386.
[39]
Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Qi, W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem. Biophys., 2001, 34(2), 237-256.
[40]
Reiter, R.J.; Acuna-Castroviejo, D.; Tan, D.X.; Burkhardt, S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann. N. Y. Acad. Sci., 2001, 939, 200-215.
[41]
Reiter, R.J.; Tan, D.X.; Gitto, E.; Sainz, R.M.; Mayo, J.C.; Leon, J.; Manchester, L.C. Vijayalaxmi; Kilic, E.; Kilic, U. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol. J. Pharmacol., 2004, 56(2), 159-170.
[43]
Vijayalaxmi; Reiter, R.J.; Tan, D.X.; Herman, T.S.; Thomas, C.R. Jr. Melatonin as a radioprotective agent: a review. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(3), 639-653.
[44]
Zetner, D.; Andersen, L.P.; Rosenberg, J. Melatonin as Protection Against Radiation Injury: A Systematic Review. Drug Res. (Stuttg.), 2016, 66(6), 281-296.
[45]
Das, B.; Bennett, P.V.; Cutter, N.C.; Sutherland, J.C.; Sutherland, B.M. Melatonin protects human cells from clustered DNA damages, killing and acquisition of soft agar growth induced by X-rays or 970 MeV/n Fe ions. Int. J. Radiat. Biol., 2011, 87(6), 545-555.
[46]
Vijayalaxmi; Reiter, R.J.; Meltz, M.L. Melatonin protects human blood lymphocytes from radiation-induced chromosome damage. Mutat. Res., 1995, 346(1), 23-31.
[47]
Vijayalaxmi; Reiter, R.J.; Herman, T.S.; Meltz, M.L. Melatonin and radioprotection from genetic damage: In vivo/in vitro studies with human volunteers. Mutat. Res., 1996, 371(3-4), 221-228.
[48]
Vijayalaxmi; Reiter, R.J.; Herman, T.S.; Meltz, M.L. Melatonin reduces gamma radiation-induced primary DNA damage in human blood lymphocytes. Mutat. Res., 1998, 397(2), 203-208.
[49]
Manda, K.; Ueno, M.; Anzai, K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J. Pineal Res., 2007, 42(4), 386-393.
[50]
Sener, G.; Jahovic, N.; Tosun, O.; Atasoy, B.M.; Yegen, B.C. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci., 2003, 74(5), 563-572.
[51]
Koc, M.; Buyukokuroglu, M.E.; Taysi, S. The effect of melatonin on peripheral blood cells during total body irradiation in rats. Biol. Pharm. Bull., 2002, 25(5), 656-657.
[52]
Vijayalaxmi; Meltz, M.L.; Reiter, R.J.; Herman, T.S. Melatonin and protection from genetic damage in blood and bone marrow: Whole-body irradiation studies in mice. J. Pineal Res., 1999, 27(4), 221-225.
[53]
Assayed, M.E.; Abd El-Aty, A.M. Protection of rat chromosomes by melatonin against gamma radiation-induced damage. Mutat. Res., 2009, 677(1-2), 14-20.
[54]
Badr, F.M.; El Habit, O.H.; Harraz, M.M. Radioprotective effect of melatonin assessed by measuring chromosomal damage in mitotic and meiotic cells. Mutat. Res., 1999, 444(2), 367-372.
[55]
Manda, K.; Ueno, M.; Anzai, K. Space radiation‐induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: Ameliorative potential of the melatonin metabolite, AFMK. J. Pineal Res., 2008, 45(4), 430-438.
[56]
Alonso-Gonzalez, C.; Gonzalez, A.; Martinez-Campa, C.; Gomez-Arozamena, J.; Cos, S. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair. J. Pineal Res., 2015, 58(2), 189-197.
[57]
Alonso-Gonzalez, C.; Gonzalez, A.; Martinez-Campa, C.; Menendez-Menendez, J.; Gomez-Arozamena, J.; Garcia-Vidal, A.; Cos, S. Melatonin enhancement of the radiosensitivity of human breast cancer cells is associated with the modulation of proteins involved in estrogen biosynthesis. Cancer Lett., 2016, 370(1), 145-152.
[58]
Griffin, F.; Marignol, L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int. J. Radiat. Biol., 2018, 94(5), 472-477.
[59]
Manchester, L.C.; Coto‐Montes, A.; Boga, J.A.; Andersen, L.P.H.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.X.; Reiter, R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res., 2015, 59(4), 403-419.
[60]
Zhang, H.M.; Zhang, Y. Melatonin: A well‐documented antioxidant with conditional pro‐oxidant actions. J. Pineal Res., 2014, 57(2), 131-146.
[61]
Ogawa, Y.; Sekine-Suzuki, E.; Nakanishi, I.; Matsumoto, K-i. LET dependent hydroxyl radical generation in water by heavy-ion beam irradiation. Free Radic. Biol. Med., 2017, 112, 63.
[62]
Lafargue, A.; Degorre, C.; Corre, I.; Alves-Guerra, M-C.; Gaugler, M-H.; Vallette, F.; Pecqueur, C.; Paris, F. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med., 2017, 108, 750-759.
[63]
Marklund, S.L.; Westman, N.G.; Lundgren, E.; Roos, G. Copper-and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res., 1982, 42(5), 1955-1961.
[64]
Simon, H-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[65]
Leach, J.K.; Van Tuyle, G.; Lin, P-S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res., 2001, 61(10), 3894-3901.
[66]
Spitz, D.R.; Azzam, E.I.; Li, J.J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev., 2004, 23(3-4), 311-322.
[67]
Jaiswal, M.; LaRusso, N.F.; Nishioka, N.; Nakabeppu, Y.; Gores, G.J. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res., 2001, 61(17), 6388-6393.
[68]
Chien, Y-H.; Bau, D-T.; Jan, K-Y. Nitric oxide inhibits DNA-adduct excision in nucleotide excision repair. Free Radic. Biol. Med., 2004, 36(8), 1011-1017.
[69]
Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre‐Jimenez, M.; Qin, L. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res., 2016, 61(3), 253-278.
[70]
Karbownik, M.; Reiter, R.J. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc. Soc. Exp. Biol. Med., 2000, 225(1), 9-22.
[71]
Marta, B.; Szafrańska, K.; Posmyk, M.M. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front. Plant Sci., 2016, 7, 575.
[72]
Gurer-Orhan, H.; Suzen, S. Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: Antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr. Med. Chem., 2015, 22(4), 490-499.
[73]
Koc, M.; Taysi, S.; Emin Buyukokuroglu, M.; Bakan, N. The Effect of Melatonin against Oxidative Damage during Total-Body Irradiation in Rats. Radiat. Res., 2003, 160(2), 251-255.
[74]
Erol, F.S.; Topsakal, C.; Ozveren, M.F.; Kaplan, M.; Ilhan, N.; Ozercan, I.H.; Yildiz, O.G. Protective effects of melatonin and vitamin E in brain damage due to gamma radiation. Neurosurg. Rev., 2004, 27(1), 65-69.
[75]
Bhatia, A.L.; Manda, K. Study on pre-treatment of melatonin against radiation-induced oxidative stress in mice. Envi. Toxicol. Pharmacol., 2004, 18(1), 13-20.
[76]
Karslioglu, I.; Ertekin, M.V.; Taysi, S.; Kocer, I.; Sezen, O.; Gepdiremen, A.; Koc, M.; Bakan, N. Radioprotective effects of melatonin on radiation-induced cataract. J. Radiat. Res., 2005, 46(2), 277-282.
[77]
Kailash, M.; Megumi, U.; Kazunori, A. Space radiation‐induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: ameliorative potential of the melatonin metabolite, AFMK. J. Pineal Res., 2008, 45(4), 430-438.
[78]
Ündeğer, Ü.; Giray, B.; Zorlu, A.F.; Öge, K.; Baçaran, N. Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain. Exp. Toxicol. Pathol., 2004, 55(5), 379-384.
[79]
Şener, G.; Atasoy, B.M.; Ersoy, Y.; Arbak, S.; Şengöz, M.; Yeğen, B.Ç. Melatonin protects against ionizing radiation‐induced oxidative damage in corpus cavernosum and urinary bladder in rats. J. Pineal Res., 2004, 37(4), 241-246.
[80]
Yildirim, O.; Comoğlu, S.; Yardimci, S.; Akmansu, M.; Bozkurt, G.; Sürücü, S. Preserving effects of melatonin on the levels of glutathione and malondialdehyde in rats exposed to irradiation. Gen. Physiol. Biophys., 2008, 27(1), 32-37.
[81]
Sharma, S.; Haldar, C. Melatonin prevents X-ray irradiation induced oxidative damagein peripheral blood and spleen of the seasonally breeding rodent, Funambulus pennanti during reproductively active phase. Int. J. Radiat. Biol., 2006, 82(6), 411-419.
[82]
Sharma, S.; Haldar, C.; Chaube, S.K. Effect of exogenous melatonin on X-ray induced cellular toxicity in lymphatic tissue of Indian tropical male squirrel, Funambulus pennanti. Int. J. Radiat. Biol., 2008, 84(5), 363-374.
[83]
Najafi, M.; Shirazi, A.; Motevaseli, E.; Geraily, G.; Norouzi, F.; Heidari, M.; Rezapoor, S. The melatonin immunomodulatory actions in radiotherapy. Biophys. Rev., 2017, 9(2), 139-148.
[84]
Miller, E.; Morel, A.; Saso, L.; Saluk, J. Melatonin redox activity. Its potential clinical applications in neurodegenerative disorders. Curr. Top. Med. Chem., 2015, 15(2), 163-169.
[85]
Guo, Y.; Sun, J.; Li, T.; Zhang, Q.; Bu, S.; Wang, Q.; Lai, D. Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/ HO-1 signaling pathway. Sci. Rep., 2017, 7, 9599.
[86]
Jung, K.H.; Hong, S.W.; Zheng, H.M.; Lee, H.S.; Lee, H.; Lee, D.H.; Lee, S.Y.; Hong, S.S. Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J. Pineal Res., 2010, 48(3), 239-250.
[87]
Janjetovic, Z.; Jarrett, S.G.; Lee, E.F.; Duprey, C.; Reiter, R.J.; Slominski, A.T. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep., 2017, 7(1), 1274.
[88]
Tripathi, D.N.; Jena, G.B. Effect of melatonin on the expression of Nrf2 and NF-kappaB during cyclophosphamide-induced urinary bladder injury in rat. J. Pineal Res., 2010, 48(4), 324-331.
[89]
Negi, G.; Kumar, A.; Sharma, S.S. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: Effects on NF-kappaB and Nrf2 cascades. J. Pineal Res., 2011, 50(2), 124-131.
[90]
Yahyapour, R.; Motevaseli, E.; Rezaeyan, A.; Abdollahi, H.; Farhood, B.; Cheki, M.; Rezapoor, S.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Villa, V. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: Molecular mechanisms and implications in radiation therapeutics. Clin. Transl. Oncol., 2018, 20(8), 975-988.
[91]
Szumiel, I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria. Int. J. Radiat. Biol., 2015, 91(1), 1-12.
[92]
Cheki, M.; Yahyapour, R.; Farhood, B.; Rezaeyan, A.; Shabeeb, D.; Amini, P.; Rezapoor, S.; Najafi, M. COX-2 in Radiotherapy; A potential target for radioprotection and radiosensitization. Curr. Mol. Pharmacol., 2018, 11(3), 173-183.
[93]
Yahyapour, R.; Amini, P.; Rezapoor, S.; Rezaeyan, A.; Farhood, B.; Cheki, M.; Fallah, H.; Najafi, M. Targeting of inflammation for radiation protection and mitigation. Curr. Mol. Pharmacol., 2018, 11(3), 203-210.
[94]
Najafi, M.; Motevaseli, E.; Shirazi, A.; Geraily, G.; Rezaeyan, A.; Norouzi, F.; Rezapoor, S.; Abdollahi, H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: Clinical implications. Int. J. Radiat. Biol., 2018, 94(4), 335-356.
[95]
Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med., 2010, 48(2), 348-356.
[96]
Pazhanisamy, S.K.; Li, H.; Wang, Y.; Batinic-Haberle, I.; Zhou, D. NADPH oxidase inhibition attenuates total body irradiation-induced haematopoietic genomic instability. Mutagenesis, 2011, 26(3), 431-435.
[97]
Mao, X.W.; Nishiyama, N.C.; Campbell-Beachler, M.; Gifford, P.; Haynes, K.E.; Gridley, D.S.; Pecaut, M.J. Role of NADPH oxidase as a mediator of oxidative damage in low-dose irradiated and hindlimb-unloaded mice. Radiat. Res., 2017, 188(4), 392-399.
[98]
Sakai, Y.; Yamamori, T.; Yoshikawa, Y.; Bo, T.; Suzuki, M.; Yamamoto, K.; Ago, T.; Inanami, O. NADPH oxidase 4 mediates ROS production in radiation-induced senescent cells and promotes migration of inflammatory cells. Free Radic. Res., 2018, 52(1), 92-102.
[99]
Weyemi, U.; Redon, C.E.; Aziz, T.; Choudhuri, R.; Maeda, D.; Parekh, P.R.; Bonner, M.Y.; Arbiser, J.L.; Bonner, W.M. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat. Res., 2015, 183(3), 262-270.
[100]
Collins-Underwood, J.R.; Zhao, W.; Sharpe, J.G.; Robbins, M.E. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radical . Biol. Med., 2008, 45(6), 929-938.
[101]
Cagin, Y.F.; Parlakpinar, H.; Polat, A.; Vardi, N.; Atayan, Y.; Erdogan, M.A.; Ekici, K.; Yildiz, A.; Sarihan, M.E.; Aladag, H. The protective effects of apocynin on ionizing radiation-induced intestinal damage in rats. Drug Dev. Ind. Pharm., 2016, 42(2), 317-324.
[102]
Wang, Y.; Liu, Q.; Zhao, W.; Zhou, X.; Miao, G.; Sun, C.; Zhang, H. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation-Induced Cell Death. Dose Response, 2017, 15(1), 1559325817699697.
[103]
Khayyal, M.T.; El-Ghazaly, M.A.; El-Hazek, R.M.; Nada, A.S. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats. Inflammopharmacology, 2009, 17(5), 255-266.
[104]
Pinheiro, R.M.; Calixto, J.B. Effect of the selective COX-2 inhibitors, celecoxib and rofecoxib in rat acute models of inflammation. Inflamm. Res., 2002, 51(12), 603-610.
[105]
Malaviya, R.; Gow, A.J.; Francis, M.; Abramova, E.V.; Laskin, J.D.; Laskin, D.L. Radiation-Induced Lung Injury and Inflammation in Mice: Role of Inducible Nitric Oxide Synthase and Surfactant Protein D. Toxicol. Sci., 2015, 144(1), 27-38.
[106]
Hosseinimehr, S.J.; Fathi, M.; Ghasemi, A.; Shiadeh, S.N.R.; Pourfallah, T.A. Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Research in Pharmaceutical Sciences., 2017, 12(1), 82-87.
[107]
Fardid, R.; Najafi, M.; Salajegheh, A.; Kazemi, E.; Rezaeyan, A. Radiation-induced non-targeted effect in vivo: Evaluation of cyclooygenase-2 and endothelin-1 gene expression in rat heart tissues. J. Cancer Res. Ther., 2017, 13(1), 51-55.
[108]
R., Ramis M.; Esteban, S.; Miralles, A.; Tan, D.-X.; J Reiter, R. Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: A review. Curr. Med. Chem., 2015, 22(22), 2690-2711.
[109]
Zhou, J.; Zhang, S.; Zhao, X.; Wei, T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-beta1-42. J. Pineal Res., 2008, 45(2), 157-165.
[110]
Tain, Y.L.; Chen, C.C.; Lee, C.T.; Kao, Y.H.; Sheen, J.M.; Yu, H.R.; Huang, L.T. Melatonin regulates L-arginine transport and NADPH oxidase in young rats with bile duct ligation: Role of protein kinase C. Pediatr. Res., 2013, 73(4 Pt 1), 395-401.
[111]
Li, D.; Tian, Z.; Tang, W.; Zhang, J.; Lu, L.; Sun, Z.; Zhou, Z.; Fan, F. The Protective Effects of 5-Methoxytryptamine-α-lipoic Acid on Ionizing Radiation-Induced Hematopoietic Injury. Int. J. Mol. Sci., 2016, 17(6), 935.
[112]
Fardid, R.; Salajegheh, A.; Mosleh-Shirazi, M.A.; Sharifzadeh, S.; Okhovat, M.A.; Najafi, M.; Rezaeyan, A.; Abaszadeh, A. Melatonin ameliorates the production of cox-2, inos, and the formation of 8-ohdg in non-targeted lung tissue after pelvic irradiation. Cell J., 2017, 19(2), 324-331.
[113]
Ghobadi, A.; Shirazi, A.; Najafi, M.; Kahkesh, M.H.; Rezapoor, S. Melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J. Med. Phys., 2017, 42(4), 241.
[114]
Shirazi, A.; Hadadi, G.H.; Ghazi, K.M.; Abou, A.F.; Mahdavi, S.R.; Eshraghian, M. Evaluation of melatonin for prevention of radiation myelopathy in irradiated cervical spinal cord. 2009, 11(1), 43-48.
[115]
Haddadi, G.; Shirazi, A.; Sepehrizadeh, Z.; Mahdavi, S.R.; Haddadi, M. Radioprotective effect of melatonin on the cervical spinal cord in irradiated rats. Cell J. (Yakhteh), 2013, 14(4), 246.
[116]
Aghazadeh, S.; Azarnia, M.; Shirazi, A.; Mahdavi, S.R.; Zangii, B.M. Melatonin as a protective agent in spinal cord damage after gamma irradiation. Report . Pract. Oncol. Radioth., 2007, 12(2), 95-99.
[117]
Ortiz, F.; Acuna-Castroviejo, D.; Doerrier, C.; Dayoub, J.C.; Lopez, L.C.; Venegas, C.; Garcia, J.A.; Lopez, A.; Volt, H.; Luna-Sanchez, M.; Escames, G. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J. Pineal Res., 2015, 58(1), 34-49.
[118]
Leach, J.K.; Van Tuyle, G.; Lin, P.S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res., 2001, 61(10), 3894-3901.
[119]
Strom, E.; Sathe, S.; Komarov, P.G.; Chernova, O.B.; Pavlovska, I.; Shyshynova, I.; Bosykh, D.A.; Burdelya, L.G.; Macklis, R.M.; Skaliter, R.; Komarova, E.A.; Gudkov, A.V. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat. Chem. Biol., 2006, 2(9), 474-479.
[120]
Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Slominski, A. Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes. J. Pineal Res., 2008, 44(4), 397-407.
[121]
Mohseni, M.; Mihandoost, E.; Shirazi, A.; Sepehrizadeh, Z.; Bazzaz, J.T.; Ghazi-khansari, M. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat. Res., 2012, 738-739, 19-27.
[122]
Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Oikawa, S.; Murata, M. Nitrative and oxidative DNA damage in infection-related carcinogenesis in relation to cancer stem cells. Genes Environ., 2016, 38(1), 26.
[123]
Basudhar, D.; Somasundaram, V.; de Oliveira, G.A.; Kesarwala, A.; Heinecke, J.L.; Cheng, R.Y.; Glynn, S.A.; Ambs, S.; Wink, D.A.; Ridnour, L.A. Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression. Antioxid. Redox Signal., 2017, 26(18), 1044-1058.
[124]
Vaccaro, M.; Irrera, N.; Cutroneo, G.; Rizzo, G.; Vaccaro, F.; Anastasi, G.P.; Borgia, F.; Cannavò, S.P.; Altavilla, D.; Squadrito, F. Differential expression of nitric oxide synthase isoforms nNOS and iNOS in patients with non-segmental generalized vitiligo. Int. J. Mol. Sci., 2017, 18(12), 2533.
[126]
Nagane, M.; Yasui, H.; Sakai, Y.; Yamamori, T.; Niwa, K.; Hattori, Y.; Kondo, T.; Inanami, O. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway. Biochem. Biophys. Res. Commun., 2015, 456(1), 541-546.
[127]
Zhang, S.; Li, J.; Li, Y.; Liu, Y.; Guo, H.; Xu, X. Nitric oxide synthase activity correlates with OGG1 in ozone-induced lung injury animal models. Front. Physiol., 2017, 8, 249.
[128]
Jaiswal, M.; LaRusso, N.F.; Nishioka, N.; Nakabeppu, Y.; Gores, G.J. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res., 2001, 61(17), 6388-6393.
[129]
Chevillard, S.; Radicella, J.P.; Levalois, C.; Lebeau, J.; Poupon, M.F.; Oudard, S.; Dutrillaux, B.; Boiteux, S. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene, 1998, 16(23), 3083-3086.
[130]
Mahjabeen, I.; Ali, K.; Zhou, X.; Kayani, M.A. Deregulation of base excision repair gene expression and enhanced proliferation in head and neck squamous cell carcinoma. Tumour Biol., 2014, 35(6), 5971-5983.
[131]
Mahjabeen, I.; Chen, Z.; Zhou, X.; Kayani, M.A. Decreased mRNA expression levels of base excision repair (BER) pathway genes is associated with enhanced Ki-67 expression in HNSCC. Med. Oncol., 2012, 29(5), 3620-3625.
[132]
Kumar, A.; Pant, M.C.; Singh, H.S.; Khandelwal, S. Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India. Tumour Biol., 2012, 33(1), 111-119.
[133]
Galano, A.; Tan, D-X.; Reiter, R.J. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules, 2018, 23(3), 530.
[134]
Majidinia, M.; Sadeghpour, A.; Mehrzadi, S.; Reiter, R.J.; Khatami, N.; Yousefi, B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J. Pineal Res., 2017.
[135]
Rezapoor, S.; Shirazi, A.; Abbasi, S.; Bazzaz, J.T.; Izadi, P.; Rezaeejam, H.; Valizadeh, M.; Soleimani-Mohammadi, F.; Najafi, M. Modulation of radiation-induced base excision repair pathway gene expression by melatonin. J. Med. Phys., 2017, 42(4), 245-250.
[136]
Karbownik, M.; Reiter, R.J.; Qi, W.; Garcia, J.J.; Tan, D.X.; Manchester, L.C. Vijayalaxmi. Protective effects of melatonin against oxidation of guanine bases in DNA and decreased microsomal membrane fluidity in rat liver induced by whole body ionizing radiation. Mol. Cell. Biochem., 2000, 211(1-2), 137-144.
[137]
Valizadeh, M.; Shirazi, A.; Izadi, P.; Tavakkoly Bazzaz, J.; Rezaeejam, H. Expression levels of two DNA repair-related genes under 8 Gy ionizing radiation and 100 Mg/Kg melatonin delivery in rat peripheral blood. J. Biomed. Phys. Eng., 2017, 7(1), 27-36.
[139]
Yahyapour, R.; Motevaseli, E.; Rezaeyan, A.; Abdollahi, H.; Farhood, B.; Cheki, M.; Najafi, M.; Villa, V. Mechanisms of radiation bystander and non-targeted effects: Implications to radiation carcinogenesis and radiotherapy. Curr. Radiopharm., 2018, 11(1), 34-45.
[140]
Najafi, M.; Shirazi, A.; Motevaseli, E.; Rezaeyan, A.H.; Salajegheh, A.; Rezapoor, S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology, 2017, 25(4), 403-413.
[141]
Xu, Y.; Chen, Y.; Liu, H.; Lei, X.; Guo, J.; Cao, K.; Liu, C.; Li, B.; Cai, J.; Ju, J. Heat-killed Salmonella typhimurium (HKST) protects mice against radiation in TLR4-dependent manner. Oncotarget, 2017, 8(40), 67082.
[142]
Ho, M.-F.; Ingle, J.N.; Bongartz, T.; Kalari, K.R.; Goss, P.E.; Shepherd, L.E.; Mushiroda, T.; Kubo, M.; Wang, L.; Weinshilboum, R.M. TCL1A SNPs and estrogen-mediated toll-like receptor- MYD88-dependent NF-