Abstract
Definitions of polymorphism in a gene include occurrence of a rarer allele of at least 1% frequency; or occurrence of the commonest allele at less than 95% frequency. Many alleles of single nucleotide polymorphisms (SNPs) in genes occur at much higher frequency (up to 50%). Many common diseases have a substantial genetic component. The prevailing hypothesis for the molecular basis of common diseases is that it involves the combinatoric action of common polymorphic alleles of minor effect (common disease / common variant, CD / CV hypothesis). The ready development of genome-wide databases of high frequency SNPs is enabling the testing of this hypothesis. A contrasting approach has been the study of very highly selected cases and families by linkage and mutation detection techniques to identify rare mutations of large effect on a gene, often private to a single family (rare disease / rare variant, RD / RV hypothesis. These approaches have formed the mainstay of disease gene discovery, the latter having been feasible for a decade, the former just now becoming feasible. However, an intermediate possibility exists. Sequence changes at an intermediate frequency (herewith, “paucimorphisms”, arbitrarily 0.0005 < q < 0.05) may exist and may have a moderate effect. A number of different loci may predispose to the same disease, although only one paucimorphic allele of one particular gene will be found in any one individual. Exploring the “paucimorphisms hypothesis” will require mutation detection applied both at the level of large numbers of relatively unselected cases and at the population level. In this review we consider the foundations of this hypothesis, relevant available technologies and possible future approaches to systematically explore this hypothesis.
Keywords: paucimorphic aleles, polymorphic alleles, rarer allele, single nucleotide polymorphisms
Current Genomics
Title: Paucimorphic Alleles versus Polymorphic Alleles and Rare Mutations in Disease Causation: Theory, Observation and Detection
Volume: 5 Issue: 5
Author(s): Ian N.M. Day, Khalid K. Alharbi, Matt Smith, Mohammed A. Aldahmesh, Xiao-He Chen, Andrew J. Lotery, Gabriella Pante-de-Sousa, Guangwei Hou, Shu Ye, Diana Eccles, Nicholas C. P. Cross, Keith R. Fox and Santiago Rodriguez
Affiliation:
Keywords: paucimorphic aleles, polymorphic alleles, rarer allele, single nucleotide polymorphisms
Abstract: Definitions of polymorphism in a gene include occurrence of a rarer allele of at least 1% frequency; or occurrence of the commonest allele at less than 95% frequency. Many alleles of single nucleotide polymorphisms (SNPs) in genes occur at much higher frequency (up to 50%). Many common diseases have a substantial genetic component. The prevailing hypothesis for the molecular basis of common diseases is that it involves the combinatoric action of common polymorphic alleles of minor effect (common disease / common variant, CD / CV hypothesis). The ready development of genome-wide databases of high frequency SNPs is enabling the testing of this hypothesis. A contrasting approach has been the study of very highly selected cases and families by linkage and mutation detection techniques to identify rare mutations of large effect on a gene, often private to a single family (rare disease / rare variant, RD / RV hypothesis. These approaches have formed the mainstay of disease gene discovery, the latter having been feasible for a decade, the former just now becoming feasible. However, an intermediate possibility exists. Sequence changes at an intermediate frequency (herewith, “paucimorphisms”, arbitrarily 0.0005 < q < 0.05) may exist and may have a moderate effect. A number of different loci may predispose to the same disease, although only one paucimorphic allele of one particular gene will be found in any one individual. Exploring the “paucimorphisms hypothesis” will require mutation detection applied both at the level of large numbers of relatively unselected cases and at the population level. In this review we consider the foundations of this hypothesis, relevant available technologies and possible future approaches to systematically explore this hypothesis.
Export Options
About this article
Cite this article as:
Day N.M. Ian, Alharbi K. Khalid, Smith Matt, Aldahmesh A. Mohammed, Chen Xiao-He, Lotery J. Andrew, Pante-de-Sousa Gabriella, Hou Guangwei, Ye Shu, Eccles Diana, P. Cross C. Nicholas, Fox R. Keith and Rodriguez Santiago, Paucimorphic Alleles versus Polymorphic Alleles and Rare Mutations in Disease Causation: Theory, Observation and Detection, Current Genomics 2004; 5 (5) . https://dx.doi.org/10.2174/1389202043349156
DOI https://dx.doi.org/10.2174/1389202043349156 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
CEACAM1 in Malignant Melanoma: A Diagnostic and Therapeutic Target
Current Topics in Medicinal Chemistry Nanoparticles for Tumor Targeted Therapies and Their Pharmacokinetics
Current Drug Metabolism Stat3 Orchestrates Tumor Development and Progression: The Achilles Heel of Head and Neck Cancers?
Current Cancer Drug Targets P-Glycoprotein - Implications of Metabolism of Neoplastic Cells and Cancer Therapy
Current Cancer Drug Targets Vybrant DyeCycle Violet Stain Discriminates Two Different Subsets of CD34+ Cells
Current Stem Cell Research & Therapy Flavonoids Overcome Drug Resistance to Cancer Chemotherapy by Epigenetically Modulating Multiple Mechanisms
Current Cancer Drug Targets HS-MMGKG: A Fast Multi-objective Harmony Search Algorithm for Two-locus Model Detection in GWAS
Current Bioinformatics ABC Transporters, Bile Acids, and Inflammatory Stress in Liver Cancer
Current Pharmaceutical Biotechnology Aryl and Acyclic Unsaturated Derivatives of Thioguanine and 6- Mercaptopurine: Synthesis and Cytotoxic Activity
Letters in Drug Design & Discovery Neurophysiological Mechanisms Related to Pain Management in Bone Tumors
Current Neuropharmacology Therapeutic Strategies to Target Multiple Kinases in Glioblastoma
Anti-Cancer Agents in Medicinal Chemistry Potential Application of Induced Pluripotent Stem Cells in Cell Replacement Therapy for Parkinsons Disease
CNS & Neurological Disorders - Drug Targets Anticancer Drugs Targeting the Apoptotic Pathway
Medicinal Chemistry Reviews - Online (Discontinued) Zoledronic Acid Inhibits the RhoA-mediated Amoeboid Motility of Prostate Cancer Cells
Current Cancer Drug Targets Reversible Michael Additions: Covalent Inhibitors and Prodrugs
Mini-Reviews in Medicinal Chemistry Anticancer Mechanisms of Berberine: A Good Choice for Glioblastoma Multiforme Therapy
Current Medicinal Chemistry The Connections Among Autophagy, Inflammasome and Mitochondria
Current Drug Targets Mechanisms of Angiogenesis: Perspectives from Antiangiogenic Tumor Therapies
Current Angiogenesis (Discontinued) The Prevalence of Frailty in Patients Admitted to Hospital with Vertebral Fragility Fractures
Current Rheumatology Reviews Growth Factors in the Pathogenesis of Retinal Neurodegeneration in Diabetes Mellitus
Current Neuropharmacology