Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

CDK9: Therapeutic Perspective in HCC Therapy

Author(s): Jędrzej Borowczak*, Krzysztof Szczerbowski, Ewa Stec, Dariusz Grzanka and Łukasz Szylberg

Volume 20, Issue 5, 2020

Page: [318 - 324] Pages: 7

DOI: 10.2174/1568009620666200212124357

Price: $65

Abstract

CDK9 is an important cell-cycle control enzyme essential in transcription, elongation, and mRNA maturation. Overexpression of CDK9 has been reported in several diseases, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, and malignant melanoma. Recent research revealed that CDK9-inhibitors have a major impact on the induction of apoptosis in hepatocellular carcinoma (HCC) cell lines. Despite surprisingly promising results in in vitro and in vivo research, no CDK9 related therapy is currently allowed in cases of HCC. Furthermore, due to their high specificity, the inhibitors had no effects on unaltered hepatocytes and no toxic effects were shown. Considering that they were well tolerated and showed relatively few severe side-effects in mice, CDK9- inhibitors would seem to be promising targets in HCC biomarker-guided immunotherapy. Studies have verified that CDK9 has a pivotal role in c-Myc-mediated tumor growth and CDK9 inhibitors inhibit not only its progression but diametrically decrease both the mass and size of HCC nodules. CDK9-inhibitors seem to be a promising target in HCC treatment.

Keywords: CDK9, c-Myc, HCC, inhibitors, P-TEFb, therapy.

Graphical Abstract

[1]
Franco, L.C.; Morales, F.; Boffo, S.; Giordano, A. CDK9: A key player in cancer and other diseases. J. Cell. Biochem., 2018, 119(2), 1273-1284.
[http://dx.doi.org/10.1002/jcb.26293] [PMID: 28722178]
[2]
Bacon, C.W.; D’Orso, I. CDK9: A signaling hub for transcriptional control. Transcription, 2018, 1-19.
[http://dx.doi.org/10.1080/21541264.2018.1523668] [PMID: 30227759]
[3]
Boffo, S.; Damato, A.; Alfano, L.; Giordano, A. CDK9 inhibitors in acute myeloid leukemia. J. Exp. Clin. Cancer Res. 37., 2018, 1-10.
[4]
Kretz, A.; Schaum, M.; Richter, J.; Kitzig, E.F.; Engler, C.C.; Leithäuser, F.; Henne-Bruns, D.; Knippschild, U.; Lemke, J. CDK9 is a prognostic marker and therapeutic target in pancreatic cancer. 2017, Tumour Biol., 39(2) 1010428317694304
[5]
Rahaman, M.H.; Kumarasiri, M.; Mekonnen, L.B.; Yu, M.; Diab, S.; Albrecht, H.; Milne, R.W.; Wang, S. Targeting CDK9: A promising therapeutic opportunity in prostate cancer. Endocr. Relat. Cancer, 2016, 23(12), T211-T226.
[http://dx.doi.org/10.1530/ERC-16-0299] [PMID: 27582311]
[6]
Itkonen, H.M.; Poulose, N.; Walker, S.; Mills, I.G. CDK9 inhibition induces a metabolic switch that renders prostate cancer cells dependent on fatty acid oxidation. Neoplasia, 2019, 21(7), 713-720.
[http://dx.doi.org/10.1016/j.neo.2019.05.001] [PMID: 31151054]
[7]
Brisard, D.; Eckerdt, F.; Marsh, L.A.; Blyth, G.T.; Jain, S.; Cristofanilli, M.; Horiuchi, D.; Platanias, L.C. Antineoplastic effects of selective CDK9 inhibition with atuveciclib on cancer stem-like cells in triple-negative breast cancer. Oncotarget, 2018, 9(99), 37305-37318.
[http://dx.doi.org/10.18632/oncotarget.26468] [PMID: 30647871]
[8]
Morales, F.; Giordano, A. Overview of CDK9 as a Target in Cancer Research. Cell Cycle, 2016, 15(4), 519-527.
[9]
Gudipaty, S.A.; Mcnamara, R.P.; Morton, E.L.; Orso, I.D. PPM1G Binds 7SK RNA and Hexim1 To Block P-TEFb Assembly into the 7SK snRNP and Sustain Transcription Elongation. Mol. Cell. Biol., 2015, 35(22), 3810-3828.
[10]
Nguyen, V.T.; Kiss, T.; Michels, A.A.; Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature, 2001, 414(6861), 322-325.
[http://dx.doi.org/10.1038/35104581] [PMID: 11713533]
[11]
Li, Q.; Price, J.P.; Byers, S.A.; Cheng, D.; Peng, J.; Price, D.H. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J. Biol. Chem., 2005, 280(31), 28819-28826.
[12]
Villanueva, A.; Hernandez-Gea, V.; Llovet, J.M. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(1), 34-42.
[http://dx.doi.org/10.1038/nrgastro.2012.199] [PMID: 23147664]
[13]
Claudio, P.P.; Cui, J.; Ghafouri, M.; Mariano, C.; White, M.K.; Safak, M.; Sheffield, J.B.; Giordano, A.; Khalili, K.; Amini, S. Cdk9 phosphorylates p53 on serine 392 independently of CKII. J. Cell. Physiol., 2006, 612, 602-612.
[14]
Hellvard, A.; Zeitlmann, L.; Heiser, U.; Astrid, K.; Niestroj, A.; Demuth, H.; Koziel, J.; Delaleu, N.; Potempa, J.; Mydel, P. Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Nat. Publ. Gr., 2016.
[15]
Thomas, L.W.; Lam, C.; Edwards, S.W. Mcl-1; The molecular regulation of protein function. FEBS Lett., 2010, 584(14), 2981-2989.
[http://dx.doi.org/10.1016/j.febslet.2010.05.061] [PMID: 20540941]
[16]
Huang, C.; Lujambio, A.; Zuber, J.; Tschaharganeh, D.F.; Doran, M.G.; Evans, M.J.; Kitzing, T.; Zhu, N.; Stanchina, E. De.; Sawyers, C.L. CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes Dev., 2014, 1, 1800-1814.
[17]
Kulik, L.; El-serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 2018, 1-15.
[http://dx.doi.org/10.1053/j.gastro.2018.08.065] [PMID: 30367835]
[18]
Golabi, P.; Otgonsuren, M.; Sayiner, M.; Locklear, C.T.; Younossi, Z.M. Mortality assessment of patients with hepatocellular carcinoma according to underlying disease and treatment modalities. Medicine, 96(9)
[http://dx.doi.org/10.1097/MD.0000000000005904]
[19]
Papendorf, F.; Kirchhoff, T.; Wohlberedt, T.; Kubicka, S.; Klempnauer, J.; Galanski, M. Survival rate in patients with hepatocellular carcinoma: a retrospective analysis of 389 patients. Br. J. Cancer, 92(10)2005, , 1862-1868.
[20]
Schwartz, J.M.; Carithers Jr, R.L.; Sirlin, C.B.; Kressel, H.Y.; Savarese, D.M. Clinical features and diagnosis of hepatocellular carcinoma. 2019.
[21]
Pardee, A.D.; Butterfield, L.H.; Pardee, A.D.; Butterfield, L.H. Immunotherapy of hepatocellular carcinoma immunotherapy of hepatocellular carcinoma unique challenges and clinical opportunities © 2012 landes bioscience; November. 2015.
[22]
Bishayee, A. The role of inflammation in liver cancer, 2014. In: Inflammation and cancer; 401-435. Springer, Basel.
[23]
Unsal, V.; Belge-Kurutaş, E. Experimental hepatic carcinogenesis: oxidative stress and natural antioxidants. Open Access Maced. J. Med. Sci., 2017, 5(5), 686-691.
[http://dx.doi.org/10.3889/oamjms.2017.101] [PMID: 28932315]
[24]
Niu, Z.S.; Niu, X.J.; Wang, W.H. Genetic alterations in hepatocellular carcinoma: An update. World J. Gastroenterol., 2016, 22(41), 9069-9095.
[http://dx.doi.org/10.3748/wjg.v22.i41.9069] [PMID: 27895396]
[25]
Han, Q.; Zhao, H.; Jiang, Y.; Yin, C.; Zhang, J. HCC-derived exosomes : Critical player and target 2019, 2(Figure 1), 1-11.
[26]
Tian, Z.; Hou, X.; Liu, W.; Han, Z.; Wei, L. Macrophages and hepatocellular carcinoma. Cell Biosci., 2019, 9, 79.
[http://dx.doi.org/10.1186/s13578-019-0342-7] [PMID: 31572568]
[27]
Lee, S.; Loecher, M.; Iyer, R. Immunomodulation in hepatocellular cancer. J. Gastrointest. Oncol., 2018, 9(1), 208-219.
[http://dx.doi.org/10.21037/jgo.2017.06.08] [PMID: 29564186]
[28]
Fang, L.; Choudhary, S.; Zhao, Y.; Edeh, C. B.; Yang, C.; Boldogh, I.; Brasier, A. R.; Ser, T. R. ATM regulates NF- Bdependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. 2014, 42(13), 8416-8432.
[29]
Weiss, T. S.; Rotheneder, H.; Haider, C.; Grubinger, M.; Rezní, E. Novel inhibitors of cyclin-dependent kinases combat hepatocellular carcinoma without inducing chemoresistance. 2013, 1947-1958.
[30]
Ham, Y-M.; Choi, K.J.; Song, S.Y.; Jin, Y.H.; Chun, M.W.; Lee, S.K. Xylocydine, a novel inhibitor of cyclin-dependent kinases, prevents the tumor necrosis factor-related apoptosis-inducing ligand-induced apoptotic cell death of SK-HEP-1 cells. J. Pharmacol. Exp. Ther., 2004, 308(3), 814-819.
[http://dx.doi.org/10.1124/jpet.103.059568] [PMID: 14617691]
[31]
Cho, S.J.; Lee, S.S.; Kim, Y.J.; Park, B.D.; Choi, J.S.; Liu, L.; Ham, Y.M.; Moon Kim, B.; Lee, S.K. Xylocydine, a novel Cdk inhibitor, is an effective inducer of apoptosis in hepatocellular carcinoma cells in vitro and in vivo. Cancer Lett., 2010, 287(2), 196-206.
[http://dx.doi.org/10.1016/j.canlet.2009.06.011] [PMID: 19616371]
[32]
Simone, C.; Bagella, L.; Bellan, C.; Giordano, A. Physical interaction between PRb and Cdk9 / CyclinT2 complex 2002, 4158-4165.
[33]
Wang, B.; Wu, J.; Wu, Y.; Chen, C.; Zou, F.; Wang, A.; Wu, H.; Hu, Z.; Jiang, Z.; Liu, Q.; Wang, W.; Zhang, Y.; Liu, F.; Zhao, M.; Hu, J.; Huang, T.; Ge, J.; Wang, L.; Ren, T.; Wang, Y.; Liu, J.; Liu, Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur. J. Med. Chem., 2018, 158, 896-916.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.025] [PMID: 30253346]
[34]
Lin, C.P.; Liu, C.R.; Lee, C.N.; Chan, T.S.; Liu, H.E. Targeting c-Myc as a novel approach for hepatocellular carcinoma. World J. Hepatol., 2010, 2(1), 16-20.
[http://dx.doi.org/10.4254/wjh.v2.i1.16] [PMID: 21160952]
[35]
Cho, S.J.; Kim, Y.J.; Surh, Y.J.; Kim, B.M.; Lee, S.K. Ibulocydine is a novel prodrug Cdk inhibitor that effectively induces apoptosis in hepatocellular carcinoma cells. J. Biol. Chem., 2011, 286(22), 19662-19671.
[http://dx.doi.org/10.1074/jbc.M110.209551] [PMID: 21478145]
[36]
Lohitesh, K.; Chowdhury, R.; Mukherjee, S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int., 2018, 18, 44.
[http://dx.doi.org/10.1186/s12935-018-0538-7] [PMID: 29568237]
[37]
Kim, N. G.; Nguyen, P. P.; Dang, H.; Kumari, R.; Garcia, G. temporal trends in disease presentation and survival of patients with hepatocellular carcinoma : A real-world experience from 1998 to 2015 2018, 1-11.
[38]
Shah, C.; Mramba, L.K.; Bishnoi, R.; Bejjanki, H.; Chhatrala, H.S.; Chandana, S.R. Survival differences among patients with hepatocellular carcinoma based on the stage of disease and therapy received: pre and post sorafenib era. J. Gastrointest. Oncol., 2017, 8(5), 789-798.
[http://dx.doi.org/10.21037/jgo.2017.06.16] [PMID: 29184682]
[39]
Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.; Meyer, T.; Nault, J.C.; Neumann, U.; Ricke, J.; Sangro, B.; Schirmacher, P.; Verslype, C.; Zech, C.J.; Arnold, D.; Martinelli, E. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2018, 29(Suppl. 4), iv238-iv255.
[http://dx.doi.org/10.1093/annonc/mdy308] [PMID: 30285213]
[40]
Pang, C.; Huang, G.; Luo, K.; Dong, Y.; He, F.; Du, G.; Xiao, M.; Cai, W. miR-206 inhibits the growth of hepatocellular carcinoma cells via targeting CDK9. Cancer Med., 2017, 6(10), 2398-2409.
[http://dx.doi.org/10.1002/cam4.1188] [PMID: 28940993]
[41]
Yang, N.; Wang, L.; Liu, J.U.N.; Liu, L.I.; Huang, J.; Chen, X.; Luo, Z. MicroRNA-206 regulates the epithelial-mesenchymal transition and inhibits the invasion and metastasis of prostate cancer cells by targeting Annexin A2. Oncol. Lett., 2018, 15(6), 8295-8302.
[42]
Keklikoglou, I.; Hosaka, K.; Bender, C.; Bott, A.; Koerner, C.; Mitra, D.; Will, R.; Woerner, A.; Muenstermann, E.; Wilhelm, H. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene, 2015, 4867-4878.
[43]
Ding, W. MiR-206 suppresses the progression of coronary artery disease by modulating vascular endothelial growth factor (VEGF); Expression, 2016, pp. 5011-5020.
[44]
Liu, H.; Tuckett, A.Z.; Fennell, M.; Garippa, R.; Zakrzewski, J.L. Repurposing of the CDK inhibitor PHA-767491 as a NRF2 inhibitor drug candidate for cancer therapy via redox modulation. Invest. New Drugs, 2017, 36(4), 590-600.
[45]
Reilly, E.O.; Dhami, S.P.S.; Baev, D.V.; Ortutay, C.; Halpin-, A.; Morrell, R.; Santocanale, C.; Samali, A.; Quinn, J.; Dwyer, M.E.O. Repression of Mcl-1 Expression by the CDC7 / CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML. Sci. Rep., 8(1), 1-15.
[46]
Jitka, Š.; Martina, Č.; Urbánek, L.; Kry, V.; Hofman, J.; Strnad, M. LC-MS/MS method for determination of cyclin-dependent kinase inhibitors, BP-14 and BP-20, and its application in pharmacokinetic study in rat. J. Chromatog. B., 2018, 1089, 24-32.
[47]
Allegri, L.; Baldan, F.; Mio, C.; Puppin, C.; Russo, D.; Kryštof, V.; Damante, G. Effects of BP-14, a novel cyclin-dependent kinase inhibitor, on anaplastic thyroid cancer cells. Oncol. Rep., 2016, 35(4), 2413-2418.
[http://dx.doi.org/10.3892/or.2016.4614]
[48]
Hyun, S.; Jang, Y. p53 activates G1 checkpoint following DNA damage by doxorubicin during transient mitotic arrest. Oncotarget, 2014, 6(7), 4804.
[49]
Choi, B.Y.; Lee, C.H. Cell cycle arrest and cytochrome c-mediated apoptotic induction by MCS-5A is associated with up-regulation of p16(INK4a) in HL-60 cells. Bioorg. Med. Chem. Lett., 2010, 20(13), 3880-3884.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.037] [PMID: 20627562]
[50]
Kim, B.M.; Jung, S.K.; Lee, S.; Yeol, S. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL- induced apoptosis via calpain-mediated bax cleavage. Int. J. Biochem. Cell Biol., 2016, 4804
[http://dx.doi.org/10.1016/j.biocel.2016.12.001] [PMID: 27923747]
[51]
Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Transl. Med., 2015, 3(10), 1-12.
[http://dx.doi.org/10.2210/pdb2a4l/pdb]
[52]
Bettayeb, K.; Baunbæk, D.; Delehouze, C.; Loaëc, N.; Hole, A.J.; Baumli, S.; Endicott, J.A.; Douc-Rasy, S.; Bénard, J.; Oumata, N. CDK inhibitors roscovitine and CR8 trigger Mcl-1 down-regulation and apoptotic cell death in neuroblastoma cells. Genes Cancer, 2010, 1(4), 369-380.
[http://dx.doi.org/10.1177/1947601910369817]
[53]
Yeo, W.; Mok, T.S.; Zee, B.; Leung, T.W.T.; Lai, P.B.S.; Lau, W.Y.; Koh, J.; Mo, F.K.F.; Yu, S.C.H.; Chan, A.T.; Hui, P.; Ma, B.; Lam, K.C.; Ho, W.M.; Wong, H.T.; Tang, A.; Johnson, P.J. A randomized phase III study of doxorubicin versus cisplatin/interferon α-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl. Cancer Inst., 2005, 97(20), 1532-1538.
[http://dx.doi.org/10.1093/jnci/dji315] [PMID: 16234567]
[54]
Gish, R.G.; Porta, C.; Lazar, L.; Ruff, P.; Feld, R.; Croitoru, A.; Feun, L.; Jeziorski, K.; Leighton, J.; Gallo, J.; Kennealey, G.T. Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J. Clin. Oncol., 2007, 25(21), 3069-3075.
[http://dx.doi.org/10.1200/JCO.2006.08.4046] [PMID: 17634485]
[55]
Of, O. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J. Clin. Oncol., 31(28), 3501-3508.
[56]
Johnson, P.; Knox, J. J.; Davidenko, I.; Lacava, J.; Leung, T. Vs Doxorubicin Alone in Patients With Advanced Hepatocellular Carcinoma. 2015, 304(19)
[57]
Estfan, B.; Byrne, M.; Kim, R. Sorafenib in advanced hepatocellular carcinoma: hypertension as a potential surrogate marker for efficacy. Am. J. Clin. Oncol., 2013, 36(4), 319-324.
[http://dx.doi.org/10.1097/COC.0b013e3182468039] [PMID: 22547010]
[58]
Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[59]
Personeni, N.; Pressiani, T.; Rimassa, L. Lenvatinib for the treatment of unresectable hepatocellular carcinoma : Evidence to date; J. Hepatocel. Carcinoma, 2019, pp. 31-39.
[60]
Llovet, J.M. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. J. Hepato. cell. Carcinoma, 2002, 6(31), 429-442.
[61]
Llovet, J.M.; Real, M.I.; Montaña, X.; Planas, R.; Coll, S.; Aponte, J.; Ayuso, C. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: A randomised controlled trial. The Lancet, 2002, 359(9319), 1734-1739.
[http://dx.doi.org/10.1016/S0140-6736(02)08649-X]
[62]
Lo, C.M.; Ngan, H.; Tso, W.K.; Liu, C.L.; Lam, C.M.; Poon, R.T.P.; Fan, S.T.; Wong, J. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology, 2002, 35(5), 1164-1171.
[http://dx.doi.org/10.1053/jhep.2002.33156] [PMID: 11981766]
[63]
Elshaarawy, O.; Gomaa, A.; Omar, H.; Rewisha, E.; Waked, I. Intermediate stage hepatocellular carcinoma: A summary review. J. Hepatocell. Carcinoma, 2019, 6, 105-117.
[http://dx.doi.org/10.2147/JHC.S168682] [PMID: 31372364]
[64]
Raoul, J.L.; Forner, A.; Bolondi, L.; Cheung, T.T.; Kloeckner, R.; de Baere, T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat. Rev., 2019, 72(72), 28-36.
[http://dx.doi.org/10.1016/j.ctrv.2018.11.002] [PMID: 30447470]
[65]
Kudo, M.; Han, G.; Finn, R.S.; Poon, R.T.P.; Blanc, J.; Yan, L.; Yang, J.; Lu, L.; Tak, W.; Yu, X. Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: A randomized phase III trial. Hepatology, 60(5), 1697-1707.
[66]
Meyer, T.; Fox, R.; Ma, Y. T.; Ross, P. J.; James, M. W.; Sturgess, R.; Stubbs, C.; Stocken, D. D.; Wall, L.; Watkinson, A. Articles sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma ( TACE 2 ): A randomised placebo-controlled , double-blind , phase 3 trial. Lancet, 2017, 1253(Tace 2), 1-11.
[67]
Kudo, M.; Imanaka, K.; Chida, N.; Nakachi, K.; Tak, W.Y.; Takayama, T.; Yoon, J.H.; Hori, T.; Kumada, H.; Hayashi, N.; Kaneko, S.; Tsubouchi, H.; Suh, D.J.; Furuse, J.; Okusaka, T.; Tanaka, K.; Matsui, O.; Wada, M.; Yamaguchi, I.; Ohya, T.; Meinhardt, G.; Okita, K. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur. J. Cancer, 2011, 47(14), 2117-2127.
[http://dx.doi.org/10.1016/j.ejca.2011.05.007] [PMID: 21664811]
[68]
Hsu, C.; Lin, L.; Cheng, Y.; Feng, Z.; Shao, Y. Cyclin E1 inhibition can overcome sorafenib resistance in hepatocellular carcinoma cells through Mcl-1 suppression. Clin. Cancer Res., 2016, 2555-2565.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0499]
[69]
Outcomes, M.; Registration, T. Sorafenib plus hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin vs. sorafenib alone for hepatocellular carcinoma with portal vein invasion a randomized clinical trial. JAMA Oncol., 2019, 5(7), 953-960.
[70]
Bazarbachi, A. Inhibition for ATL therapy traffic lights for ruxolitinib. ASH Clin. News, 2017, 130(9), 2016-2018.
[http://dx.doi.org/10.1182/blood-2017-07-793356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy