Abstract
T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.
Keywords: red blood cell, t cell, cd4+, apoptosis, growth, iron
Current Pharmaceutical Design
Title: Red Blood Cells as Modulators of T Cell Growth and Survival
Volume: 10 Issue: 2
Author(s): Fernando A. Arosa, Carlos F. Pereira and Ana M. Fonseca
Affiliation:
Keywords: red blood cell, t cell, cd4+, apoptosis, growth, iron
Abstract: T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.
Export Options
About this article
Cite this article as:
Arosa A. Fernando, Pereira F. Carlos and Fonseca M. Ana, Red Blood Cells as Modulators of T Cell Growth and Survival, Current Pharmaceutical Design 2004; 10 (2) . https://dx.doi.org/10.2174/1381612043453432
DOI https://dx.doi.org/10.2174/1381612043453432 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Anti-Inflammatory Effects of C-Peptide Prevent Endothelial Dysfunction in Type 1 Diabetes
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Suppression of TLR Signaling by Targeting TIR domain-Containing Proteins
Current Protein & Peptide Science The Heme Oxygenase/Biliverdin Reductase Pathway in Drug Research and Development
Current Drug Metabolism Nesfatin-1 and the Cardiovascular System: Central and Pheripheral Actions and Cardioprotection
Current Drug Targets Simultaneous Separation, Quantitation, and Determination of the Dissociation Constant of Five Components of Ixeris sonchifolia by Microemulsion Electrokinetic Chromatography
Current Pharmaceutical Analysis The Challenges of Blood Pressure Control in Dialysis Patients
Recent Advances in Cardiovascular Drug Discovery (Discontinued) Cyclophilins in Atherosclerosis: A New Therapeutic Target?
Current Pharmaceutical Design Immunotherapy Strategies for Spinal Cord Injury
Current Pharmaceutical Biotechnology Material-Based Engineering Strategies for Cardiac Regeneration
Current Pharmaceutical Design Prospects for Caspase Inhibitors
Mini-Reviews in Medicinal Chemistry Beneficial Effects of Dietary Supplements Against Mitochondrial Dysfunction and Apoptosis in Neurodegenerative Diseases
Current Pharmacogenomics and Personalized Medicine Beneficial Effects of Herbs, Spices and Medicinal Plants on the Metabolic Syndrome, Brain and Cognitive Function
Central Nervous System Agents in Medicinal Chemistry Pexelizumab, an Anti-C5 Complement Antibody for Primary Coronary Revascularization: A New Insight from Old Versions
Cardiovascular & Hematological Disorders-Drug Targets Hepatocyte Growth Factor (HGF), an Endogenous Pulmotrophic Regulator, for the Rescue of Acute and Chronic Lung Diseases
Current Signal Transduction Therapy Drug-Induced Peripheral Neuropathy: Diagnosis and Management
Current Cancer Drug Targets Impact of Matrix Metalloproteinases on Atherosclerosis
Current Drug Targets Metabolic Imbalance of Homocysteine and Hydrogen Sulfide in Kidney Disease
Current Medicinal Chemistry Design, Synthesis, and Biological Evaluation of Novel Tetramethylpyrazine- nitrone Derivatives as Antioxidants
Letters in Drug Design & Discovery Small Molecule Antagonists of Integrin Receptors
Current Medicinal Chemistry MiR-485-5p Promotes Neuron Survival through Mediating Rac1/Notch2 Signaling Pathway after Cerebral Ischemia/Reperfusion
Current Neurovascular Research