[1]
Huen, S.C.; Cantley, L.G. Macrophages in renal injury and repair. Annu. Rev. Physiol., 2017, 79, 449-469.
[2]
Yang, Y.; Song, M.; Liu, Y.; Liu, H.; Sun, L.; Peng, Y.; Liu, F.; Venkatachalam, M.A.; Dong, Z. Renoprotective approaches and strategies in acute kidney injury. Pharmacol. Ther., 2016, 163, 58-73.
[3]
Thadhani, R.; Pascual, M.; Bonventre, J.V. Acute renal failure. N. Engl. J. Med., 1996, 334(22), 1448-1460.
[4]
Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol., 2005, 16(11), 3365-3370.
[5]
Coca, S.G.; Yusuf, B.; Shlipak, M.G.; Garg, A.X.; Parikh, C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis., 2009, 53(6), 961-973.
[6]
Jang, H.R.; Rabb, H. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol., 2015, 11(2), 88-101.
[7]
Bonavia, A.; Singbartl, K. A review of the role of immune cells in acute kidney injury. Pediatr. Nephrol., 2018, 33(10), 1629-1639.
[8]
Xu, H.; Chen, C.; Hu, L.; Hou, J. Gene-modified mesenchymal stem cell-based therapy in renal ischemia- reperfusion injury. Curr. Gene Ther., 2017, 17(6), 453-460.
[9]
Panah, F.; Ghorbanihaghjo, A.; Argani, H.; Asadi Zarmehri, M.; Nazari Soltan Ahmad, S. Ischemic acute kidney injury and klotho in renal transplantation. Clin. Biochem., 2018, 55, 3-8.
[10]
Rock, K.L.; Latz, E.; Ontiveros, F.; Kono, H. The sterile inflammatory response. Annu. Rev. Immunol., 2010, 28, 321-342.
[11]
Andringa, K.K.; Agarwal, A. Role of hypoxia-inducible factors in acute kidney injury. Nephron Clin. Pract., 2014, 127(1-4), 70-74.
[12]
Kelly, K.J.; Williams, W.W. Jr, Colvin, R.B.; Meehan, S.M.; Springer, T.A.; Gutierrez-Ramos, J.C.; Bonventre, J.V. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J. Clin. Invest., 1996, 97(4), 1056-1063.
[13]
Takada, M.; Nadeau, K.C.; Shaw, G.D.; Marquette, K.A.; Tilney, N.L. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J. Clin. Invest., 1997, 99(11), 2682-2690.
[14]
Araki, M.; Fahmy, N.; Zhou, L.; Kumon, H.; Krishnamurthi, V.; Goldfarb, D.; Modlin, C.; Flechner, S.; Novick, A.C.; Fairchild, R.L. Expression of IL-8 during reperfusion of renal allografts is dependent on ischemic time. Transplantation, 2006, 81(5), 783-788.
[15]
Fiorina, P.; Ansari, M.J.; Jurewicz, M.; Barry, M.; Ricchiuti, V.; Smith, R.N.; Shea, S.; Means, T.K.; Auchincloss, H. Jr, Luster, A.D.; Sayegh, M.H.; Abdi, R. Role of CXC chemokine receptor 3 pathway in renal ischemic injury. J. Am. Soc. Nephrol., 2006, 17(3), 716-723.
[16]
Thurman, J.M.; Ljubanovic, D.; Edelstein, C.L.; Gilkeson, G.S.; Holers, V.M. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J. Immunol., 2003, 170(3), 1517-1523.
[17]
Shigeoka, A.A.; Holscher, T.D.; King, A.J.; Hall, F.W.; Kiosses, W.B.; Tobias, P.S.; Mackman, N.; McKay, D.B. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J. Immunol., 2007, 178(10), 6252-6258.
[18]
Pulskens, W.P.; Teske, G.J.; Butter, L.M.; Roelofs, J.J.; van der Poll, T.; Florquin, S.; Leemans, J.C. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One, 2008, 3(10), e3596.
[19]
Brodsky, S.V.; Yamamoto, T.; Tada, T.; Kim, B.; Chen, J.; Kajiya, F.; Goligorsky, M.S. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am. J. Physiol. Renal Physiol., 2002, 282(6), F1140-F1149.
[20]
Sutton, T.A.; Mang, H.E.; Campos, S.B.; Sandoval, R.M.; Yoder, M.C.; Molitoris, B.A. Injury of the renal microvascular endothelium alters barrier function after ischemia. Am. J. Physiol. Renal Physiol., 2003, 285(2), F191-F198.
[21]
Linas, S.L.; Shanley, P.F.; Whittenburg, D.; Berger, E.; Repine, J.E. Neutrophils accentuate ischemia-reperfusion injury in isolated perfused rat kidneys. Am. J. Physiol., 1988, 255(4 Pt 2), F728-F735.
[22]
Rouschop, K.M.; Roelofs, J.J.; Claessen, N.; da Costa Martins, P.; Zwaginga, J.J.; Pals, S.T.; Weening, J.J.; Florquin, S. Protection against renal ischemia reperfusion injury by CD44 disruption. J. Am. Soc. Nephrol., 2005, 16(7), 2034-2043.
[23]
Nakazawa, D.; Kumar, S.V.; Marschner, J.; Desai, J.; Holderied, A.; Rath, L.; Kraft, F.; Lei, Y.; Fukasawa, Y.; Moeckel, G.W.; Angelotti, M.L.; Liapis, H.; Anders, H.J. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J. Am. Soc. Nephrol., 2017, 28(6), 1753-1768.
[24]
Paller, M.S. Effect of neutrophil depletion on ischemic renal injury in the rat. J. Lab. Clin. Med., 1989, 113(3), 379-386.
[25]
Melnikov, V.Y.; Faubel, S.; Siegmund, B.; Lucia, M.S.; Ljubanovic, D.; Edelstein, C.L. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J. Clin. Invest., 2002, 110(8), 1083-1091.
[26]
Li, H.; Han, S.J.; Kim, M.; Cho, A.; Choi, Y.; D’Agati, V.; Lee, H.T. Divergent roles for kidney proximal tubule and granulocyte PAD4 in ischemic AKI. Am. J. Physiol. Renal Physiol., 2018, 314(5), F809-F819.
[27]
Ferhat, M.; Robin, A.; Giraud, S.; Sena, S.; Goujon, J.M.; Touchard, G.; Hauet, T.; Girard, J.P.; Gombert, J.M.; Herbelin, A.; Thierry, A. Endogenous IL-33 contributes to kidney ischemia-reperfusion injury as an alarmin. J. Am. Soc. Nephrol., 2018, 29(4), 1272-1288.
[28]
Solez, K.; Morel-Maroger, L.; Sraer, J.D. The morphology of “acute tubular necrosis” in man: Analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore), 1979, 58(5), 362-376.
[29]
Huen, S.C.; Cantley, L.G. Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr. Nephrol., 2015, 30(2), 199-209.
[30]
Okabe, Y.; Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol., 2016, 17(1), 9-17.
[31]
Lee, S.; Huen, S.; Nishio, H.; Nishio, S.; Lee, H.K.; Choi, B.S.; Ruhrberg, C.; Cantley, L.G. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol., 2011, 22(2), 317-326.
[32]
Jo, S.K.; Sung, S.A.; Cho, W.Y.; Go, K.J.; Kim, H.K. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol. Dial. Transplant., 2006, 21(5), 1231-1239.
[33]
Wang, S.; Zhang, C.; Li, J.; Niyazi, S.; Zheng, L.; Xu, M.; Rong, R.; Yang, C.; Zhu, T. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis., 2017, 8(4), e2725.
[34]
Zhou, L.; Zhuo, H.; Ouyang, H.; Liu, Y.; Yuan, F.; Sun, L.; Liu, F.; Liu, H. Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in macrophages of acute injured kidney and promotes M2 macrophages polarization. Cell. Immunol., 2017, 316, 53-60.
[35]
Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol., 2000, 18, 767-811.
[36]
Nace, G.; Evankovich, J.; Eid, R.; Tsung, A. Dendritic cells and damage-associated molecular patterns: Endogenous danger signals linking innate and adaptive immunity. J. Innate Immun., 2012, 4(1), 6-15.
[37]
Liu, Y.J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001, 106(3), 259-262.
[38]
Snelgrove, S.L.; Lo, C.; Hall, P.; Lo, C.Y.; Alikhan, M.A.; Coates, P.T.; Holdsworth, S.R.; Hickey, M.J.; Kitching, A.R. Activated renal dendritic cells cross present intrarenal antigens after ischemia-reperfusion injury. Transplantation, 2017, 101(5), 1013-1024.
[39]
Dong, X.; Swaminathan, S.; Bachman, L.A.; Croatt, A.J.; Nath, K.A.; Griffin, M.D. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int., 2007, 71(7), 619-628.
[40]
Schlichting, C.L.; Schareck, W.D.; Weis, M. Renal ischemia-reperfusion injury: New implications of dendritic cell-endothelial cell interactions. Transplant. Proc., 2006, 38(3), 670-673.
[41]
Zhou, T.; Sun, G.Z.; Zhang, M.J.; Chen, J.L.; Zhang, D.Q.; Hu, Q.S.; Chen, Y.Y.; Chen, N. Role of adhesion molecules and dendritic cells in rat hepatic/renal ischemia-reperfusion injury and anti-adhesive intervention with anti-P-selectin lectin-EGF domain monoclonal antibody. World J. Gastroenterol., 2005, 11(7), 1005-1010.
[42]
Ozaki, K.S.; Kimura, S.; Nalesnik, M.A.; Sico, R.M.; Zhang, M.; Ueki, S.; Ross, M.A.; Stolz, D.B.; Murase, N. The loss of renal dendritic cells and activation of host adaptive immunity are long-term effects of ischemia/reperfusion injury following syngeneic kidney transplantation. Kidney Int., 2012, 81(10), 1015-1025.
[43]
Zhang, T.; Song, N.; Fang, Y.; Teng, J.; Xu, X.; Hu, J.; Zhang, P.; Chen, R.; Lu, Z.; Yu, X.; Ding, X. Delayed ischemic preconditioning attenuated renal ischemia-reperfusion injury by inhibiting dendritic cell maturation. Cell. Physiol. Biochem., 2018, 46(5), 1807-1820.
[44]
Rabb, H.; Daniels, F.; O’Donnell, M.; Haq, M.; Saba, S.R.; Keane, W.; Tang, W.W. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am. J. Physiol. Renal Physiol., 2000, 279(3), F525-F531.
[45]
Burne, M.J.; Daniels, F.; El Ghandour, A.; Mauiyyedi, S.; Colvin, R.B.; O’Donnell, M.P.; Rabb, H. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J. Clin. Invest., 2001, 108(9), 1283-1290.
[46]
Faubel, S.; Ljubanovic, D.; Poole, B.; Dursun, B.; He, Z.; Cushing, S.; Somerset, H.; Gill, R.G.; Edelstein, C.L. Peripheral CD4 T-cell depletion is not sufficient to prevent ischemic acute renal failure. Transplantation, 2005, 80(5), 643-649.
[47]
Park, P.; Haas, M.; Cunningham, P.N.; Bao, L.; Alexander, J.J.; Quigg, R.J. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am. J. Physiol. Renal Physiol., 2002, 282(2), F352-F357.
[48]
Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T cells and immune tolerance. Cell, 2008, 133(5), 775-787.
[49]
Kinsey, G.R.; Sharma, R.; Huang, L.; Li, L.; Vergis, A.L.; Ye, H.; Ju, S.T.; Okusa, M.D. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol., 2009, 20(8), 1744-1753.
[50]
Lai, L.W.; Yong, K.C.; Lien, Y.H. Pharmacologic recruitment of regulatory T cells as a therapy for ischemic acute kidney injury. Kidney Int., 2012, 81(10), 983-992.
[51]
Bai, M.; Zhang, L.; Fu, B.; Bai, J.; Zhang, Y.; Cai, G.; Bai, X.; Feng, Z.; Sun, S.; Chen, X. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int., 2018, 93(4), 814-825.
[52]
Akcay, A.; Nguyen, Q.; Edelstein, C.L. Mediators of inflammation in acute kidney injury. Mediators Inflamm., 2009, 2009, 137072.
[53]
Zhang, C.; Zheng, L.; Li, L.; Wang, L.; Li, L.; Huang, S.; Gu, C.; Zhang, L.; Yang, C.; Zhu, T.; Rong, R. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells. J. Transl. Med., 2014, 12, 224.
[54]
Arrenberg, P.; Maricic, I.; Kumar, V. Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology, 2011, 140(2), 646-655.
[55]
Hu, C.; Zhang, C.; Yang, C. The role of natural killer T cells in acute kidney injury: Angel or evil? Curr. Protein Pept. Sci., 2017, 18(12), 1200-1204.
[56]
Coquet, J.M.; Chakravarti, S.; Kyparissoudis, K.; McNab, F.W.; Pitt, L.A.; McKenzie, B.S.; Berzins, S.P.; Smyth, M.J.; Godfrey, D.I. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11287-11292.
[57]
Halder, R.C.; Aguilera, C.; Maricic, I.; Kumar, V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J. Clin. Invest., 2007, 117(8), 2302-2312.
[58]
Li, L.; Huang, L.; Sung, S.S.; Lobo, P.I.; Brown, M.G.; Gregg, R.K.; Engelhard, V.H.; Okusa, M.D. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J. Immunol., 2007, 178(9), 5899-5911.
[59]
Yang, S.H.; Lee, J.P.; Jang, H.R.; Cha, R.H.; Han, S.S.; Jeon, U.S.; Kim, D.K.; Song, J.; Lee, D.S.; Kim, Y.S. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J. Am. Soc. Nephrol., 2011, 22(7), 1305-1314.
[60]
Clatworthy, M.R. B-cell regulation and its application to transplantation. Transpl. Int., 2014, 27(2), 117-128.
[61]
Martin, F.; Kearney, J.F. B1 cells: Similarities and differences with other B cell subsets. Curr. Opin. Immunol., 2001, 13(2), 195-201.
[62]
Burne-Taney, M.J.; Ascon, D.B.; Daniels, F.; Racusen, L.; Baldwin, W.; Rabb, H. B cell deficiency confers protection from renal ischemia reperfusion injury. J. Immunol., 2003, 171(6), 3210-3215.
[63]
Jang, H.R.; Gandolfo, M.T.; Ko, G.J.; Satpute, S.R.; Racusen, L.; Rabb, H. B cells limit repair after ischemic acute kidney injury. J. Am. Soc. Nephrol., 2010, 21(4), 654-665.
[64]
Lee, H.T.; Kim, M.; Kim, M.; Kim, N.; Billings, F.T. 4th, D’Agati, V.D.; Emala, C.W. Sr. Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice. Am. J. Physiol. Renal Physiol., 2007, 293(3), F713-F722.
[65]
Jang, H.R.; Rabb, H. The innate immune response in ischemic acute kidney injury. Clin. Immunol., 2009, 130(1), 41-50.
[66]
Harmon, C.; Sanchez-Fueyo, A.; O’Farrelly, C.; Houlihan, D.D. Natural killer cells and liver transplantation: Orchestrators of rejection or tolerance? Am. J. Transplant., 2016, 16(3), 751-757.
[67]
Cooper, M.A.; Fehniger, T.A.; Caligiuri, M.A. The biology of human natural killer-cell subsets. Trends Immunol., 2001, 22(11), 633-640.
[68]
Zhang, Z.X.; Wang, S.; Huang, X.; Min, W.P.; Sun, H.; Liu, W.; Garcia, B.; Jevnikar, A.M. NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J. Immunol., 2008, 181(11), 7489-7498.
[69]
Zhang, Z.X.; Shek, K.; Wang, S.; Huang, X.; Lau, A.; Yin, Z.; Sun, H.; Liu, W.; Garcia, B.; Rittling, S.; Jevnikar, A.M. Osteopontin expressed in tubular epithelial cells regulates NK cell-mediated kidney ischemia reperfusion injury. J. Immunol., 2010, 185(2), 967-973.
[70]
Cen, C.; Aziz, M.; Yang, W.L.; Nicastro, J.M.; Coppa, G.F.; Wang, P. Osteopontin blockade attenuates renal injury after ischemia reperfusion by inhibiting NK cell infiltration. Shock, 2017, 47(1), 52-60.