[1]
Yang, L.; Xing, G.; Wang, L.; Wu, Y.; Li, S.; Xu, G.; He, Q.; Chen, J.; Chen, M.; Liu, X.; Zhu, Z.; Yang, L.; Lian, X.; Ding, F.; Li, Y.; Wang, H.; Wang, J.; Wang, R.; Mei, C.; Xu, J.; Li, R.; Cao, J.; Zhang, L.; Wang, Y.; Xu, J.; Bao, B.; Liu, B.; Chen, H.; Li, S.; Zha, Y.; Luo, Q.; Chen, D.; Shen, Y.; Liao, Y.; Zhang, Z.; Wang, X.; Zhang, K.; Liu, L.; Maeleto, P.; Guo, C.; Li, J.; Wang, Z.; Bai, S.; Shi, S.; Wang, Y.; Wang, J.; Liu, Z.; Wang, F.; Huang, D.; Wang, S.; Ge, S.; Shen, Q.; Zhang, P.; Wu, L.; Pan, M.; Zou, X.; Zhu, P.; Zhao, J.; Zhou, M.; Yang, L.; Hu, W.; Wang, J.; Liu, B.; Zhang, T.; Han, J.; Wen, T.; Zhao, M.; Wang, H. ISN AKF 0by25 China Consortiums. Acute kidney injury in China: A cross-sectional survey. Lancet, 2015, 386(10002), 1465-1471.
[2]
Zuk, A.; Bonventre, J.V. Acute kidney injury. Annu. Rev. Med., 2016, 67, 293-307.
[3]
Remuzzi, G.; Horton, R. Acute renal failure: An unacceptable death sentence globally. Lancet, 2013, 382(9910), 2041-2042.
[4]
Bonventre, J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol., 2003, 14(Suppl. 1), S55-S61.
[5]
Jones, M. Recognising acute kidney injury. Clin. Med. (Lond.), 2012, 12(3), 287-289.
[6]
Sharfuddin, A.A.; Molitoris, B.A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol., 2011, 7(4), 189-200.
[7]
Barasch, J.; Zager, R.; Bonventre, J.V. Acute kidney injury: A problem of definition. Lancet, 2017, 389(10071), 779-781.
[8]
Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest., 2011, 121(11), 4210-4221.
[9]
Liu, B.C.; Tang, T.T.; Lv, L.L.; Lan, H.Y. Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int., 2018, 93(3), 568-579.
[10]
Dusmez, D.; Cengiz, B.; Yumrutas, O.; Demir, T.; Oztuzcu, S.; Demiryurek, S.; Tutar, E.; Bayraktar, R.; Bulut, A.; Simsek, H.; Dagli, S.N.; Kilic, T.; Bagci, C. Effect of verapamil and lidocaine on TRPM and NaV1.9 gene expressions in renal ischemia-reperfusion. Transplant. Proc., 2014, 46(1), 33-39.
[11]
Nadler, M.J.; Hermosura, M.C.; Inabe, K.; Perraud, A.L.; Zhu, Q.; Stokes, A.J.; Kurosaki, T.; Kinet, J.P.; Penner, R.; Scharenberg, A.M.; Fleig, A. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature, 2001, 411(6837), 590-595.
[12]
Asrar, S.; Aarts, M. TRPM7, the cytoskeleton and neuronal death. Channels (Austin), 2013, 7(1), 6-16.
[13]
Runnels, L.W.; Yue, L.; Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science, 2001, 291(5506), 1043-1047.
[14]
Cahalan, M.D. Cell biology. Channels as enzymes. Nature, 2001, 411(6837), 542-543.
[15]
Matsushita, M.; Kozak, J.A.; Shimizu, Y.; McLachlin, D.T.; Yamaguchi, H.; Wei, F.Y.; Tomizawa, K.; Matsui, H.; Chait, B.T.; Cahalan, M.D.; Nairn, A.C. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J. Biol. Chem., 2005, 280(21), 20793-20803.
[16]
Fleig, A.; Chubanov, V. Trpm7. Handb. Exp. Pharmacol., 2014, 222, 521-546.
[17]
Schmitz, C.; Perraud, A.L.; Johnson, C.O.; Inabe, K.; Smith, M.K.; Penner, R.; Kurosaki, T.; Fleig, A.; Scharenberg, A.M. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell, 2003, 114(2), 191-200.
[18]
Aarts, M.; Iihara, K.; Wei, W.L.; Xiong, Z.G.; Arundine, M.; Cerwinski, W.; MacDonald, J.F.; Tymianski, M. A key role for TRPM7 channels in anoxic neuronal death. Cell, 2003, 115(7), 863-877.
[19]
Nicotera, P.; Bano, D. The enemy at the gates. Ca2+ entry through TRPM7 channels and anoxic neuronal death. Cell, 2003, 115(7), 768-770.
[20]
Sun, H.S.; Jackson, M.F.; Martin, L.J.; Jansen, K.; Teves, L.; Cui, H.; Kiyonaka, S.; Mori, Y.; Jones, M.; Forder, J.P.; Golde, T.E.; Orser, B.A.; Macdonald, J.F.; Tymianski, M. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat. Neurosci., 2009, 12(10), 1300-1307.
[21]
Demir, T.; Yumrutas, O.; Cengiz, B.; Demiryurek, S.; Unverdi, H.; Kaplan, D.S.; Bayraktar, R.; Ozkul, N.; Bagci, C. Evaluation of TRPM (transient receptor potential melastatin) genes expressions in myocardial ischemia and reperfusion. Mol. Biol. Rep., 2014, 41(5), 2845-2849.
[22]
Liu, A.; Wu, J.; Yang, C.; Wu, Y.; Zhang, Y.; Zhao, F.; Wang, H.; Yuan, L.; Song, L.; Zhu, T.; Fan, Y.; Yang, B. TRPM7 in CHBP-induced renoprotection upon ischemia reperfusion-related injury. Sci. Rep., 2018, 8(1), 5510.
[23]
Meng, Z.; Wang, X.; Yang, Z.; Xiang, F. Expression of transient receptor potential melastatin 7 up-regulated in the early stage of renal ischemia-reperfusion. Transplant. Proc., 2012, 44(5), 1206-1210.
[24]
Meng, Z.; Cao, R.; Wang, Y.; Cao, H.; Liu, T.; Yang, Z.; Wang, X. Suppression of renal TRPM7 may alleviate kidney injury in the renal transplantation. World J. Urol., 2014, 32(5), 1303-1311.
[25]
Du, J.; Xie, J.; Zhang, Z.; Tsujikawa, H.; Fusco, D.; Silverman, D.; Liang, B.; Yue, L. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ. Res., 2010, 106(5), 992-1003.
[26]
Fang, L.; Huang, C.; Meng, X.; Wu, B.; Ma, T.; Liu, X.; Zhu, Q.; Zhan, S.; Li, J. TGF-beta1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-beta1/Smad pathway. Toxicol. Appl. Pharmacol., 2014, 280(2), 335-344.
[27]
Clapham, D.E.; Runnels, L.W.; Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci., 2001, 2(6), 387-396.
[28]
Fonfria, E.; Murdock, P.R.; Cusdin, F.S.; Benham, C.D.; Kelsell, R.E.; McNulty, S. Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal Transduct. Res., 2006, 26(3), 159-178.
[29]
Kunert-Keil, C.; Bisping, F.; Kruger, J.; Brinkmeier, H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics, 2006, 7, 159.
[30]
Dokuyucu, R.; Gogebakan, B.; Yumrutas, O.; Bozgeyik, I.; Gokce, H.; Demir, T. Expressions of TRPM6 and TRPM7 and histopathological evaluation of tissues in ischemia reperfusion performed rats. Ren. Fail., 2014, 36(6), 932-936.
[31]
Jang, Y.; Lee, Y.; Kim, S.M.; Yang, Y.D.; Jung, J.; Oh, U. Quantitative analysis of TRP channel genes in mouse organs. Arch. Pharm. Res., 2012, 35(10), 1823-1830.
[32]
Wang, M.; Weiss, M.; Simonovic, M.; Haertinger, G.; Schrimpf, S.P.; Hengartner, M.O.; von Mering, C. PaxDb, a database of protein abundance averages across all three domains of life. Mol. Cell. Proteomics, 2012, 11(8), 492-500.
[33]
Nikonorova, I.A.; Kornakov, N.V.; Dmitriev, S.E.; Vassilenko, K.S.; Ryazanov, A.G. Identification of a Mg2+-sensitive ORF in the 5′-leader of TRPM7 magnesium channel mRNA. Nucleic Acids Res., 2014, 42(20), 12779-12788.
[34]
Levitan, I.B.; Cibulsky, S.M. Biochemistry. TRP ion channels--two proteins in one. Science, 2001, 293(5533), 1270-1271.
[35]
Miller, B.A.; Zhang, W. TRP channels as mediators of oxidative stress. Adv. Exp. Med. Biol., 2011, 704, 531-544.
[36]
Dorovkov, M.V.; Ryazanov, A.G. Phosphorylation of annexin I by TRPM7 channel-kinase. J. Biol. Chem., 2004, 279(49), 50643-50646.
[37]
Dorovkov, M.V.; Kostyukova, A.S.; Ryazanov, A.G. Phosphorylation of annexin A1 by TRPM7 kinase: A switch regulating the induction of an alpha-helix. Biochemistry, 2011, 50(12), 2187-2193.
[38]
Clark, K.; Middelbeek, J.; Lasonder, E.; Dulyaninova, N.G.; Morrice, N.A.; Ryazanov, A.G.; Bresnick, A.R.; Figdor, C.G.; van Leeuwen, F.N. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J. Mol. Biol., 2008, 378(4), 790-803.
[39]
Perraud, A.L.; Zhao, X.; Ryazanov, A.G.; Schmitz, C. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell. Signal., 2011, 23(3), 586-593.
[40]
Ryazanova, L.V.; Dorovkov, M.V.; Ansari, A.; Ryazanov, A.G. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J. Biol. Chem., 2004, 279(5), 3708-3716.
[41]
Runnels, L.W.; Yue, L.; Clapham, D.E. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat. Cell Biol., 2002, 4(5), 329-336.
[42]
Chubanov, V.; Waldegger, S.; Mederos y Schnitzler, M.; Vitzthum, H.; Sassen, M.C.; Seyberth, H.W.; Konrad, M.; Gudermann, T. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2894-2899.
[43]
Chubanov, V.; Mittermeier, L.; Gudermann, T. Role of kinase-coupled TRP channels in mineral homeostasis. Pharmacol. Ther., 2018, 184, 159-176.
[44]
Schlingmann, K.P.; Weber, S.; Peters, M.; Niemann Nejsum, L.; Vitzthum, H.; Klingel, K.; Kratz, M.; Haddad, E.; Ristoff, E.; Dinour, D.; Syrrou, M.; Nielsen, S.; Sassen, M.; Waldegger, S.; Seyberth, H.W.; Konrad, M. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet., 2002, 31(2), 166-170.
[45]
Arjona, F.J.; de Baaij, J.H.; Schlingmann, K.P.; Lameris, A.L.; van Wijk, E.; Flik, G.; Regele, S.; Korenke, G.C.; Neophytou, B.; Rust, S.; Reintjes, N.; Konrad, M.; Bindels, R.J.; Hoenderop, J.G. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet., 2014, 10(4), e1004267.
[46]
Zhang, Z.; Yu, H.; Huang, J.; Faouzi, M.; Schmitz, C.; Penner, R.; Fleig, A. The TRPM6 kinase domain determines the Mg. ATP sensitivity of TRPM7/M6 heteromeric ion channels. J. Biol. Chem., 2014, 289(8), 5217-5227.
[47]
Bessac, B.F.; Fleig, A. TRPM7 channel is sensitive to osmotic gradients in human kidney cells. J. Physiol., 2007, 582(Pt 3), 1073-1086.
[48]
Sontia, B.; Montezano, A.C.; Paravicini, T.; Tabet, F.; Touyz, R.M. Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: Effects of magnesium. Hypertension, 2008, 51(4), 915-921.
[49]
Yogi, A.; Callera, G.E.; O’Connor, S.E.; He, Y.; Correa, J.W.; Tostes, R.C.; Mazur, A.; Touyz, R.M. Dysregulation of renal transient receptor potential melastatin 6/7 but not paracellin-1 in aldosterone-induced hypertension and kidney damage in a model of hereditary hypomagnesemia. J. Hypertens., 2011, 29(7), 1400-1410.
[50]
Elizondo, M.R.; Arduini, B.L.; Paulsen, J.; MacDonald, E.L.; Sabel, J.L.; Henion, P.D.; Cornell, R.A.; Parichy, D.M. Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr. Biol., 2005, 15(7), 667-671.
[51]
Yogi, A.; Callera, G.E.; Antunes, T.T.; Tostes, R.C.; Touyz, R.M. Transient receptor potential melastatin 7 (TRPM7) cation channels, magnesium and the vascular system in hypertension. Circ. J., 2011, 75(2), 237-245.
[52]
Schappe, M.S.; Szteyn, K.; Stremska, M.E.; Mendu, S.K.; Downs, T.K.; Seegren, P.V.; Mahoney, M.A.; Dixit, S.; Krupa, J.K.; Stipes, E.J.; Rogers, J.S.; Adamson, S.E.; Leitinger, N.; Desai, B.N. Chanzyme TRPM7 mediates the Ca2+ Influx essential for lipopolysaccharide-induced Toll-Like receptor 4 endocytosis and macrophage activation. Immunity, 2018, 48(1), 59-74.e55.
[53]
Granucci, F. The family of LPS signal transducers increases: The arrival of Chanzymes. Immunity, 2018, 48(1), 4-6.
[54]
Gluba, A.; Banach, M.; Hannam, S.; Mikhailidis, D.P.; Sakowicz, A.; Rysz, J. The role of Toll-like receptors in renal diseases. Nat. Rev. Nephrol., 2010, 6(4), 224-235.
[55]
Venereau, E.; Ceriotti, C.; Bianchi, M.E. DAMPs from cell death to new life. Front. Immunol., 2015, 6, 422.
[56]
Wu, H.; Ma, J.; Wang, P.; Corpuz, T.M.; Panchapakesan, U.; Wyburn, K.R.; Chadban, S.J. HMGB1 contributes to kidney ischemia reperfusion injury. J. Am. Soc. Nephrol., 2010, 21(11), 1878-1890.
[57]
Tang, T.T.; Lv, L.L.; Pan, M.M.; Wen, Y.; Wang, B.; Li, Z.L.; Wu, M.; Wang, F.M.; Crowley, S.D.; Liu, B.C. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis., 2018, 9(3), 351.
[58]
Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol., 2010, 11(2), 136-140.
[59]
Wang, J.; Wen, Y.; Lv, L.L.; Liu, H.; Tang, R.N.; Ma, K.L.; Liu, B.C. Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol. Sin., 2015, 36(7), 821-830.
[60]
Wen, Y.; Liu, Y.R.; Tang, T.T.; Pan, M.M.; Xu, S.C.; Ma, K.L.; Lv, L.L.; Liu, H.; Liu, B.C. mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI. Int. J. Biochem. Cell Biol., 2018, 98, 43-53.
[61]
Havasi, A.; Borkan, S.C. Apoptosis and acute kidney injury. Kidney Int., 2011, 80(1), 29-40.
[62]
Jiang, M.; Wei, Q.; Dong, G.; Komatsu, M.; Su, Y.; Dong, Z. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int., 2012, 82(12), 1271-1283.
[63]
Padanilam, B.J. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am. J. Physiol. Renal Physiol., 2003, 284(4), F608-F627.
[64]
Yang, B.; Johnson, T.S.; Thomas, G.L.; Watson, P.F.; Wagner, B.; Nahas, A.M. Apoptosis and caspase-3 in experimental anti-glomerular basement membrane nephritis. J. Am. Soc. Nephrol., 2001, 12(3), 485-495.
[65]
Yang, B.; El Nahas, A.M.; Thomas, G.L.; Haylor, J.L.; Watson, P.F.; Wagner, B.; Johnson, T.S. Caspase-3 and apoptosis in experimental chronic renal scarring. Kidney Int., 2001, 60(5), 1765-1776.
[66]
McArthur, K.; Whitehead, L.W.; Heddleston, J.M.; Li, L.; Padman, B.S.; Oorschot, V.; Geoghegan, N.D.; Chappaz, S.; Davidson, S.; San Chin, H.; Lane, R.M.; Dramicanin, M.; Saunders, T.L.; Sugiana, C.; Lessene, R.; Osellame, L.D.; Chew, T.L.; Dewson, G.; Lazarou, M.; Ramm, G.; Lessene, G.; Ryan, M.T.; Rogers, K.L.; van Delft, M.F.; Kile, B.T. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 2018, 359(6378), pii: eaao6047.
[67]
Yang, B.; Johnson, T.S.; Thomas, G.L.; Watson, P.F.; Wagner, B.; Skill, N.J.; Haylor, J.L.; El Nahas, A.M. Expression of apoptosis-related genes and proteins in experimental chronic renal scarring. J. Am. Soc. Nephrol., 2001, 12(2), 275-288.
[68]
Yang, B.; Jain, S.; Pawluczyk, I.Z.; Imtiaz, S.; Bowley, L.; Ashra, S.Y.; Nicholson, M.L. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int., 2005, 68(5), 2050-2067.
[69]
Feldenberg, L.R.; Thevananther, S.; del Rio, M.; de Leon, M.; Devarajan, P. Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am. J. Physiol., 1999, 276(6), F837-F846.
[70]
Desai, B.N.; Krapivinsky, G.; Navarro, B.; Krapivinsky, L.; Carter, B.C.; Febvay, S.; Delling, M.; Penumaka, A.; Ramsey, I.S.; Manasian, Y.; Clapham, D.E. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev. Cell, 2012, 22(6), 1149-1162.
[71]
Oltvai, Z.N.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 1993, 74(4), 609-619.
[72]
Korsmeyer, S.J.; Shutter, J.R.; Veis, D.J.; Merry, D.E.; Oltvai, Z.N. Bcl-2/Bax: A rheostat that regulates an anti-oxidant pathway and cell death. Semin. Cancer Biol., 1993, 4(6), 327-332.
[73]
Yang, B.; Johnson, T.S.; Thomas, G.L.; Watson, P.F.; Wagner, B.; Furness, P.N.; El Nahas, A.M. A shift in the Bax/Bcl-2 balance may activate caspase-3 and modulate apoptosis in experimental glomerulonephritis. Kidney Int., 2002, 62(4), 1301-1313.
[74]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[75]
Yang, B.; Jain, S.; Ashra, S.Y.; Furness, P.N.; Nicholson, M.L. Apoptosis and caspase-3 in long-term renal ischemia/reperfusion injury in rats and divergent effects of immunosuppressants. Transplantation, 2006, 81(10), 1442-1450.
[76]
Waller, H.L.; Harper, S.J.; Hosgood, S.A.; Bagul, A.; Kay, M.D.; Kaushik, M.; Yang, B.; Bicknell, G.R.; Nicholson, M.L. Differential expression of cytoprotective and apoptotic genes in an ischaemia-reperfusion isolated organ perfusion model of the transplanted kidney. Transpl. Int., 2007, 20(7), 625-631.
[77]
Wu, Y.; Zhang, J.; Liu, F.; Yang, C.; Zhang, Y.; Liu, A.; Shi, L.; Wu, Y.; Zhu, T.; Nicholson, M.L.; Fan, Y.; Yang, B. Protective effects of HBSP on ischemia reperfusion and cyclosporine a induced renal injury. Clin. Dev. Immunol., 2013, 2013, 758159.
[78]
Yang, C.; Hosgood, S.A.; Meeta, P.; Long, Y.; Zhu, T.; Nicholson, M.L.; Yang, B. Cyclic helix B peptide in preservation solution and autologous blood perfusate ameliorates ischemia-reperfusion injury in isolated porcine kidneys. Transplant. Direct, 2015, 1(2), e6.
[79]
Yang, B.; Harris, K.P.; Jain, S.; Nicholson, M.L. Caspase-7, Fas and FasL in long-term renal ischaemia/reperfusion and immunosuppressive injuries in rats. Am. J. Nephrol., 2007, 27(4), 397-408.
[80]
Chatterjee, P.K.; Todorovic, Z.; Sivarajah, A.; Mota-Filipe, H.; Brown, P.A.; Stewart, K.N.; Cuzzocrea, S.; Thiemermann, C. Differential effects of caspase inhibitors on the renal dysfunction and injury caused by ischemia-reperfusion of the rat kidney. Eur. J. Pharmacol., 2004, 503(1-3), 173-183.
[81]
Yang, B.; Elias, J.E.; Bloxham, M.; Nicholson, M.L. Synthetic small interfering RNA down-regulates caspase-3 and affects apoptosis, IL-1 beta, and viability of porcine proximal tubular cells. J. Cell. Biochem., 2011, 112(5), 1337-1347.
[82]
Yang, B.; Hosgood, S.A.; Nicholson, M.L. Naked small interfering RNA of caspase-3 in preservation solution and autologous blood perfusate protects isolated ischemic porcine kidneys. Transplantation, 2011, 91(5), 501-507.
[83]
Yang, C.; Li, L.; Xue, Y.; Zhao, Z.; Zhao, T.; Jia, Y.; Rong, R.; Xu, M.; Nicholson, M.L.; Zhu, T.; Yang, B. Innate immunity activation involved in unprotected porcine auto-transplant kidneys preserved by naked caspase-3 siRNA. J. Transl. Med., 2013, 11, 210.
[84]
Yang, C.; Zhao, T.; Zhao, Z.; Jia, Y.; Li, L.; Zhang, Y.; Song, M.; Rong, R.; Xu, M.; Nicholson, M.L.; Zhu, T.; Yang, B. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol. Ther., 2014, 22(10), 1817-1828.
[85]
Yang, B.; Lan, S.; Dieude, M.; Sabo-Vatasescu, J.P.; Karakeussian-Rimbaud, A.; Turgeon, J.; Qi, S.; Gunaratnam, L.; Patey, N.; Hebert, M.J. Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury. J. Am. Soc. Nephrol., 2018, 29(7), 1900-1916.
[86]
Lin, C.M.; Ma, J.M.; Zhang, L.; Hao, Z.Y.; Zhou, J.; Zhou, Z.Y.; Shi, H.Q.; Zhang, Y.F.; Shao, E.M.; Liang, C.Z. Inhibition of transient receptor potential melastain 7 enhances apoptosis induced by TRAIL in PC-3 cells. Asian Pac. J. Cancer Prev., 2015, 16(10), 4469-4475.
[87]
Li, X.; Wang, X.; Wang, Y.; Li, X.; Huang, C.; Li, J. Inhibition of transient receptor potential melastatin 7 (TRPM7) channel induces RA FLSs apoptosis through endoplasmic reticulum (ER) stress. Clin. Rheumatol., 2014, 33(11), 1565-1574.
[88]
Zong, W.X.; Thompson, C.B. Necrotic death as a cell fate. Genes Dev., 2006, 20(1), 1-15.
[89]
Cho, Y.S.; Challa, S.; Moquin, D.; Genga, R.; Ray, T.D.; Guildford, M.; Chan, F.K. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 2009, 137(6), 1112-1123.
[90]
He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 2009, 137(6), 1100-1111.
[91]
Galluzzi, L.; Kepp, O.; Kroemer, G. MLKL regulates necrotic plasma membrane permeabilization. Cell Res., 2014, 24(2), 139-140.
[92]
Cai, Z.; Jitkaew, S.; Zhao, J.; Chiang, H.C.; Choksi, S.; Liu, J.; Ward, Y.; Wu, L.G.; Liu, Z.G. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol., 2014, 16(1), 55-65.
[93]
Dannappel, M.; Vlantis, K.; Kumari, S.; Polykratis, A.; Kim, C.; Wachsmuth, L.; Eftychi, C.; Lin, J.; Corona, T.; Hermance, N.; Zelic, M.; Kirsch, P.; Basic, M.; Bleich, A.; Kelliher, M.; Pasparakis, M. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature, 2014, 513(7516), 90-94.
[94]
Liang, X.; Chen, Y.; Zhang, L.; Jiang, F.; Wang, W.; Ye, Z.; Liu, S.; Yu, C.; Shi, W. Necroptosis, a novel form of caspase-independent cell death, contributes to renal epithelial cell damage in an ATP-depleted renal ischemia model. Mol. Med. Rep., 2014, 10(2), 719-724.
[95]
Ryazanova, L.V.; Rondon, L.J.; Zierler, S.; Hu, Z.; Galli, J.; Yamaguchi, T.P.; Mazur, A.; Fleig, A.; Ryazanov, A.G. TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat. Commun., 2010, 1, 109.
[96]
Su, L.T.; Agapito, M.A.; Li, M.; Simonson, W.T.; Huttenlocher, A.; Habas, R.; Yue, L.; Runnels, L.W. TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J. Biol. Chem., 2006, 281(16), 11260-11270.
[97]
Jin, J.; Wu, L.J.; Jun, J.; Cheng, X.; Xu, H.; Andrews, N.C.; Clapham, D.E. The channel kinase, TRPM7, is required for early embryonic development. Proc. Natl. Acad. Sci. USA, 2012, 109(5), E225-E233.
[98]
Jin, J.; Desai, B.N.; Navarro, B.; Donovan, A.; Andrews, N.C.; Clapham, D.E. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science, 2008, 322(5902), 756-760.
[99]
Dietrich, A.; Chubanov, V.; Kalwa, H.; Rost, B.R.; Gudermann, T. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol. Ther., 2006, 112(3), 744-760.
[100]
He, Y.; Yao, G.; Savoia, C.; Touyz, R.M. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: Role of angiotensin II. Circ. Res., 2005, 96(2), 207-215.
[101]
Oancea, E.; Wolfe, J.T.; Clapham, D.E. Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ. Res., 2006, 98(2), 245-253.
[102]
Gurney, A.M. Going with the flow: Smooth muscle TRPM7 channels and the vascular response to blood flow. Circ. Res., 2006, 98(2), 163-164.
[103]
Gunther, T. Concentration, compartmentation and metabolic function of intracellular free Mg2+. Magnes. Res., 2006, 19(4), 225-236.
[104]
Romani, A.M. Cellular magnesium homeostasis. Arch. Biochem. Biophys., 2011, 512(1), 1-23.
[105]
Ferre, S.; Hoenderop, J.G.; Bindels, R.J. Insight into renal Mg2+ transporters. Curr. Opin. Nephrol. Hypertens., 2011, 20(2), 169-176.
[106]
Walder, R.Y.; Landau, D.; Meyer, P.; Shalev, H.; Tsolia, M.; Borochowitz, Z.; Boettger, M.B.; Beck, G.E.; Englehardt, R.K.; Carmi, R.; Sheffield, V.C. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet., 2002, 31(2), 171-174.
[107]
Zhang, Z.; Wang, M.; Fan, X.H.; Chen, J.H.; Guan, Y.Y.; Tang, Y.B. Upregulation of TRPM7 channels by angiotensin II triggers phenotypic switching of vascular smooth muscle cells of ascending aorta. Circ. Res., 2012, 111(9), 1137-1146.
[108]
Brooks, D.P. Role of endothelin in renal function and dysfunction. Clin. Exp. Pharmacol. Physiol., 1996, 23(4), 345-348.
[109]
Baldoli, E.; Castiglioni, S.; Maier, J.A. Regulation and function of TRPM7 in human endothelial cells: TRPM7 as a potential novel regulator of endothelial function. PLoS One, 2013, 8(3), e59891.
[110]
Inoue, K.; Xiong, Z.G. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc. Res., 2009, 83(3), 547-557.
[111]
MacDonald, J.F.; Xiong, Z.G.; Jackson, M.F. Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci., 2006, 29(2), 75-81.