Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Emerging Role of EMT-related lncRNAs in Therapy Resistance and their Applications as Biomarkers

Author(s): Zahra Abedi kichi, Mona Soltani, Mina Rezaei, Zeinab Shirvani-Farsani* and Mahbubeh Rojhannezhad

Volume 29, Issue 26, 2022

Published on: 10 May, 2022

Page: [4574 - 4601] Pages: 28

DOI: 10.2174/0929867329666220329203032

Price: $65

Abstract

Cancer is the world's second-largest cause of death. The most common cancer treatments are surgery, radiation therapy, and chemotherapy. Drug resistance, epithelial-- to-mesenchymal transition (EMT), and metastasis are pressing issues in cancer therapy today. Increasing evidence showed that drug resistance and EMT are co-related with each other. Indeed, drug-resistant cancer cells possess enhanced EMT and invasive ability. Recent research has demonstrated that lncRNAs (long non-coding RNAs) are non-coding transcripts which play an important role in the regulation of EMT, metastasis, and drug resistance in different cancers. However, the relationships among lncRNAs, EMT, and drug resistance are still unclear. These effects could be exerted via several signaling pathways, such as TGF-β, PI3K-AKT, and Wnt/β-catenin. Identifying the crucial regulatory roles of lncRNAs in these pathways and processes leads to the development of novel targeted therapies. We review the key aspects of lncRNAs associated with EMT and therapy resistance. We focus on the crosstalk between lncRNAs and molecular signaling pathways affecting EMT and drug resistance. Moreover, each of the mentioned lncRNAs could be used as a potential diagnostic, prognostic, and therapeutic therapy resistancefor cancer. However, the investigation of lncRNAs for clinical applications still has several challenges.

Keywords: Long non-coding RNA, drug resistance, EMT, Wnt/β-catenin pathway, PI3K-AKT pathway, TGF-β pathway, EMT-related lncRNAs, therapy resistance, biomarkers.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Cortes, J.; Perez-García, J.M.; Llombart-Cussac, A.; Curigliano, G.; El Saghir, N.S.; Cardoso, F.; Barrios, C.H.; Wagle, S.; Roman, J.; Harbeck, N.; Eniu, A.; Kaufman, P.A.; Tabernero, J.; García-Estévez, L.; Schmid, P.; Arribas, J. Enhancing global access to cancer medicines. CA Cancer J. Clin., 2020, 70(2), 105-124.
[http://dx.doi.org/10.3322/caac.21597] [PMID: 32068901]
[3]
Liu, K.; Gao, L.; Ma, X.; Huang, J-J.; Chen, J.; Zeng, L.; Ashby, C.R., Jr; Zou, C.; Chen, Z-S. Long non-coding RNAs regulate drug resistance in cancer. Mol. Cancer, 2020, 19(1), 54.
[http://dx.doi.org/10.1186/s12943-020-01162-0] [PMID: 32164712]
[4]
Liang, Y.; McDonnell, S.; Clynes, M. Examining the relationship between cancer invasion/metastasis and drug resistance. Curr. Cancer Drug Targets, 2002, 2(3), 257-277.
[http://dx.doi.org/10.2174/1568009023333872] [PMID: 12188911]
[5]
Norouzi, S.; Gorgi Valokala, M.; Mosaffa, F.; Zirak, M.R.; Zamani, P.; Behravan, J. Crosstalk in cancer resistance and metastasis. Crit. Rev. Oncol. Hematol., 2018, 132, 145-153.
[http://dx.doi.org/10.1016/j.critrevonc.2018.09.017] [PMID: 30447920]
[6]
Yuan, L.; Xu, Z-Y.; Ruan, S-M.; Mo, S.; Qin, J-J.; Cheng, X-D. Long non-coding RNAs towards precision medicine in gastric cancer: Early diagnosis, treatment, and drug resistance. Mol. Cancer, 2020, 19(1), 96.
[http://dx.doi.org/10.1186/s12943-020-01219-0] [PMID: 32460771]
[7]
Huang, Q.; Yan, J.; Agami, R. Long non-coding RNAs in metastasis. Cancer Metastasis Rev., 2018, 37(1), 75-81.
[http://dx.doi.org/10.1007/s10555-017-9713-x] [PMID: 29230620]
[8]
Statello, L.; Guo, C-J.; Chen, L-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2020, 1-23.
[PMID: 33353982]
[9]
Qu, Y.; Tan, H-Y.; Chan, Y-T.; Jiang, H.; Wang, N.; Wang, D. The functional role of long noncoding RNA in resistance to anticancer treatment. Ther. Adv. Med. Oncol., 2020, 12, 1758835920927850.
[http://dx.doi.org/10.1177/1758835920927850] [PMID: 32536982]
[10]
Gugnoni, M.; Ciarrocchi, A. Long noncoding RNA and epithelial mesenchymal transition in cancer. Int. J. Mol. Sci., 2019, 20(8), 1924.
[http://dx.doi.org/10.3390/ijms20081924] [PMID: 31003545]
[11]
Lin, C.-W.; Lin, P.-Y.; Yang, P.-C. Noncoding RNAs in tumor epithelial-to-mesenchymal transition. Stem Cells Int., 2016, 2016, Article ID 2732705.
[http://dx.doi.org/10.1155/2016/2732705]
[12]
Serrano-Gomez, S.J.; Maziveyi, M.; Alahari, S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer, 2016, 15(1), 18.
[http://dx.doi.org/10.1186/s12943-016-0502-x] [PMID: 26905733]
[13]
van Staalduinen, J.; Baker, D.; Ten Dijke, P.; van Dam, H. Epithelial-mesenchymal-transition-inducing transcription factors: New targets for tackling chemoresistance in cancer? Oncogene, 2018, 37(48), 6195-6211.
[http://dx.doi.org/10.1038/s41388-018-0378-x] [PMID: 30002444]
[14]
Luo, M.; Li, Z.; Wang, W.; Zeng, Y.; Liu, Z.; Qiu, J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett., 2013, 333(2), 213-221.
[http://dx.doi.org/10.1016/j.canlet.2013.01.033] [PMID: 23354591]
[15]
Liang, W-C.; Fu, W-M.; Wong, C-W.; Wang, Y.; Wang, W-M.; Hu, G-X.; Zhang, L.; Xiao, L-J.; Wan, D.C-C.; Zhang, J-F.; Waye, M.M. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget, 2015, 6(26), 22513-22525.
[http://dx.doi.org/10.18632/oncotarget.4154] [PMID: 26068968]
[16]
Dong, H.; Hu, J.; Zou, K.; Ye, M.; Chen, Y.; Wu, C.; Chen, X.; Han, M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast cancer. Mol. Cancer, 2019, 18(1), 3.
[http://dx.doi.org/10.1186/s12943-018-0931-9] [PMID: 30621694]
[17]
Li, S-P.; Xu, H-X.; Yu, Y.; He, J-D.; Wang, Z.; Xu, Y-J.; Wang, C-Y.; Zhang, H-M.; Zhang, R-X.; Zhang, J-J.; Yao, Z.; Shen, Z-Y. LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget, 2016, 7(27), 42431-42446.
[http://dx.doi.org/10.18632/oncotarget.9883] [PMID: 27285757]
[18]
Xu, J.; Lamouille, S.; Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res., 2009, 19(2), 156-172.
[http://dx.doi.org/10.1038/cr.2009.5] [PMID: 19153598]
[19]
Gajria, D.; Chandarlapaty, S. HER2-amplified breast cancer: Mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther., 2011, 11(2), 263-275.
[http://dx.doi.org/10.1586/era.10.226] [PMID: 21342044]
[20]
Xu, F.; Zhang, Z.Q.; Fang, Y.C.; Li, X.L.; Sun, Y.; Xiong, C.Z.; Yan, L.Q.; Wang, Q. Metastasis-associated lung adenocarcinoma transcript 1 promotes the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway. OncoTargets Ther., 2016, 9, 2143-2151.
[PMID: 27110130]
[21]
Kong, J.; Sun, W.; Li, C.; Wan, L.; Wang, S.; Wu, Y.; Xu, E.; Zhang, H.; Lai, M. Long non-coding RNA LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett., 2016, 380(2), 476-484.
[http://dx.doi.org/10.1016/j.canlet.2016.07.015] [PMID: 27443606]
[22]
Zhao, Y.; Qin, Z.S.; Feng, Y.; Tang, X.J.; Zhang, T.; Yang, L. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) promote cell proliferation in colorectal cancer by affecting P53. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(4), 976-984.
[PMID: 29509245]
[23]
Zhuang, J.; Shen, L.; Yang, L.; Huang, X.; Lu, Q.; Cui, Y.; Zheng, X.; Zhao, X.; Zhang, D.; Huang, R.; Guo, H.; Yan, J. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics, 2017, 7(12), 3053-3067.
[http://dx.doi.org/10.7150/thno.19542] [PMID: 28839463]
[24]
Li, C.; Zheng, H.; Hou, W.; Bao, H.; Xiong, J.; Che, W.; Gu, Y.; Sun, H.; Liang, P. Long non-coding RNA linc00645 promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-205-3p-ZEB1 axis in glioma. Cell Death Dis., 2019, 10(10), 717.
[http://dx.doi.org/10.1038/s41419-019-1948-8] [PMID: 31558707]
[25]
Yuan, J.H.; Yang, F.; Wang, F.; Ma, J.Z.; Guo, Y.J.; Tao, Q.F.; Liu, F.; Pan, W.; Wang, T.T.; Zhou, C.C.; Wang, S.B.; Wang, Y.Z.; Yang, Y.; Yang, N.; Zhou, W.P.; Yang, G.S.; Sun, S.H. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 2014, 25(5), 666-681.
[http://dx.doi.org/10.1016/j.ccr.2014.03.010] [PMID: 24768205]
[26]
Pádua Alves, C.; Fonseca, A.S.; Muys, B.R.; de Barros E Lima Bueno, R.; Bürger, M.C.; de Souza, J.E.; Valente, V.; Zago, M.A.; Silva, W.A. Jr. Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells, 2013, 31(12), 2827-2832.
[http://dx.doi.org/10.1002/stem.1547] [PMID: 24022994]
[27]
Mondal, T.; Subhash, S.; Vaid, R.; Enroth, S.; Uday, S.; Reinius, B.; Mitra, S.; Mohammed, A.; James, A.R.; Hoberg, E.; Moustakas, A.; Gyllensten, U.; Jones, S.J.M.; Gustafsson, C.M.; Sims, A.H.; Westerlund, F.; Gorab, E.; Kanduri, C. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat. Commun., 2015, 6(1), 7743.
[http://dx.doi.org/10.1038/ncomms8743] [PMID: 26205790]
[28]
Tang, R.; Zhang, G.; Wang, Y-C.; Mei, X.; Chen, S-Y. The long non-coding RNA GAS5 regulates transforming growth factor β (TGF-β)-induced smooth muscle cell differentiation via RNA Smad-binding elements. J. Biol. Chem., 2017, 292(34), 14270-14278.
[http://dx.doi.org/10.1074/jbc.M117.790030] [PMID: 28659340]
[29]
Kawasaki, N.; Miwa, T.; Hokari, S.; Sakurai, T.; Ohmori, K.; Miyauchi, K.; Miyazono, K.; Koinuma, D. Long noncoding RNA NORAD regulates transforming growth factor-β signaling and epithelial-to-mesenchymal transition-like phenotype. Cancer Sci., 2018, 109(7), 2211-2220.
[http://dx.doi.org/10.1111/cas.13626] [PMID: 29722104]
[30]
Li, C.; Wan, L.; Liu, Z.; Xu, G.; Wang, S.; Su, Z.; Zhang, Y.; Zhang, C.; Liu, X.; Lei, Z.; Zhang, H.T. Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett., 2018, 418, 185-195.
[http://dx.doi.org/10.1016/j.canlet.2018.01.036] [PMID: 29339211]
[31]
Gonzalez, D.M.; Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal., 2014, 7(344), re8-re8.
[http://dx.doi.org/10.1126/scisignal.2005189] [PMID: 25249658]
[32]
Pan, H.; Jiang, T.; Cheng, N.; Wang, Q.; Ren, S.; Li, X.; Zhao, C.; Zhang, L.; Cai, W.; Zhou, C. Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget, 2016, 7(31), 49948-49960.
[http://dx.doi.org/10.18632/oncotarget.10521] [PMID: 27409677]
[33]
Song, L.; Zhou, Z.; Gan, Y.; Li, P.; Xu, Y.; Zhang, Z.; Luo, F.; Xu, J.; Zhou, Q.; Dai, F. Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. J. Cell. Biochem., 2019, 120(6), 9656-9666.
[http://dx.doi.org/10.1002/jcb.28244] [PMID: 30548308]
[34]
Zeng, L.; Liao, Q.; Zou, Z.; Wen, Y.; Wang, J.; Liu, C.; He, Q.; Weng, N.; Zeng, J.; Tang, H.; Fang, R.; Lei, Z.; Tang, Z.; Yang, X.; Cui, S.; Long Non-Coding, R.N.A. Long non-coding RNA XLOC_006753 promotes the development of multidrug resistance in gastric cancer cells through the PI3K/AKT/mTOR signaling pathway. Cell. Physiol. Biochem., 2018, 51(3), 1221-1236.
[http://dx.doi.org/10.1159/000495499] [PMID: 30481766]
[35]
Zhou, H.; Feng, B.; Abudoureyimu, M.; Lai, Y.; Lin, X.; Tian, C.; Huang, G.; Chu, X.; Wang, R. The functional role of long non-coding RNAs and their underlying mechanisms in drug resistance of non-small cell lung cancer. Life Sci., 2020, 261, 118362.
[http://dx.doi.org/10.1016/j.lfs.2020.118362] [PMID: 32871184]
[36]
Li, W.; Dong, X.; He, C.; Tan, G.; Li, Z.; Zhai, B.; Feng, J.; Jiang, X.; Liu, C.; Jiang, H.; Sun, X. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 183.
[http://dx.doi.org/10.1186/s13046-019-1177-0] [PMID: 31053148]
[37]
Chen, Z.; Pan, T.; Jiang, D.; Jin, L.; Geng, Y.; Feng, X.; Shen, A.; Zhang, L. The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the Wnt/β-catenin signaling pathway. Mol. Ther. Nucleic Acids, 2020, 19, 1434-1448.
[http://dx.doi.org/10.1016/j.omtn.2020.01.030] [PMID: 32160712]
[38]
Gao, H.; Hao, G.; Sun, Y.; Li, L.; Wang, Y. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process. OncoTargets Ther., 2018, 11, 8001-8012.
[http://dx.doi.org/10.2147/OTT.S172379] [PMID: 30519041]
[39]
Jia, L.; Tian, Y.; Chen, Y.; Zhang, G. The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway. OncoTargets Ther., 2018, 11, 313-321.
[http://dx.doi.org/10.2147/OTT.S154339] [PMID: 29391808]
[40]
Li, J.; Yang, S.; Su, N.; Wang, Y.; Yu, J.; Qiu, H.; He, X. Overexpression of long non-coding RNA HOTAIR leads to chemoresistance by activating the Wnt/β-catenin pathway in human ovarian cancer. Tumour Biol., 2016, 37(2), 2057-2065.
[http://dx.doi.org/10.1007/s13277-015-3998-6] [PMID: 26341496]
[41]
Fan, Y.; Shen, B.; Tan, M.; Mu, X.; Qin, Y.; Zhang, F.; Liu, Y. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J., 2014, 281(7), 1750-1758.
[http://dx.doi.org/10.1111/febs.12737] [PMID: 24495014]
[42]
Liu, H.; Wang, G.; Yang, L.; Qu, J.; Yang, Z.; Zhou, X. Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/β-catenin pathway. PLoS One, 2016, 11(12), e0168406-e0168406.
[http://dx.doi.org/10.1371/journal.pone.0168406] [PMID: 27977766]
[43]
Xie, D.; Zhang, H.; Hu, X.; Shang, C. Knockdown of long non-coding RNA Taurine Up-Regulated 1 inhibited doxorubicin resistance of bladder urothelial carcinoma via Wnt/β-catenin pathway. Oncotarget, 2017, 8(51), 88689-88696.
[http://dx.doi.org/10.18632/oncotarget.20927] [PMID: 29179467]
[44]
Yang, Y.; Li, H.; Hou, S.; Hu, B.; Liu, J.; Wang, J. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One, 2013, 8(5), e65309.
[http://dx.doi.org/10.1371/journal.pone.0065309] [PMID: 23741487]
[45]
Wang, S.; Liang, K.; Hu, Q.; Li, P.; Song, J.; Yang, Y.; Yao, J.; Mangala, L.S.; Li, C.; Yang, W.; Park, P.K.; Hawke, D.H.; Zhou, J.; Zhou, Y.; Xia, W.; Hung, M-C.; Marks, J.R.; Gallick, G.E.; Lopez-Berestein, G.; Flores, E.R.; Sood, A.K.; Huang, S.; Yu, D.; Yang, L.; Lin, C. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J. Clin. Invest., 2017, 127(12), 4498-4515.
[http://dx.doi.org/10.1172/JCI91553] [PMID: 29130936]
[46]
Shi, S-J.; Wang, L-J.; Yu, B.; Li, Y-H.; Jin, Y.; Bai, X-Z. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget, 2015, 6(13), 11652-11663.
[http://dx.doi.org/10.18632/oncotarget.3457] [PMID: 25871474]
[47]
Li, C.; Wang, S.; Xing, Z.; Lin, A.; Liang, K.; Song, J.; Hu, Q.; Yao, J.; Chen, Z.; Park, P.K.; Hawke, D.H.; Zhou, J.; Zhou, Y.; Zhang, S.; Liang, H.; Hung, M-C.; Gallick, G.E.; Han, L.; Lin, C.; Yang, L. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat. Cell Biol., 2017, 19(2), 106-119.
[http://dx.doi.org/10.1038/ncb3464] [PMID: 28114269]
[48]
Liang, Y.; Li, Y.; Song, X.; Zhang, N.; Sang, Y.; Zhang, H.; Liu, Y.; Chen, B.; Zhao, W.; Wang, L.; Guo, R.; Yu, Z.; Yang, Q. Long noncoding RNA LINP1 acts as an oncogene and promotes chemoresistance in breast cancer. Cancer Biol. Ther., 2018, 19(2), 120-131.
[http://dx.doi.org/10.1080/15384047.2017.1394543] [PMID: 29293402]
[49]
Chang, L.; Hu, Z.; Zhou, Z.; Zhang, H. Linc00518 contributes to multidrug resistance through regulating the MiR-199a/MRP1 axis in breast cancer. Cell. Physiol. Biochem., 2018, 48(1), 16-28.
[50]
Li, Z.; Yu, D.; Li, H.; Lv, Y.; Li, S. Long non‑coding RNA UCA1 confers tamoxifen resistance in breast cancer endocrinotherapy through regulation of the EZH2/p21 axis and the PI3K/AKT signaling pathway. Int. J. Oncol., 2019, 54(3), 1033-1042.
[http://dx.doi.org/10.3892/ijo.2019.4679] [PMID: 30628639]
[51]
Liang, Y.; Song, X.; Li, Y.; Chen, B.; Zhao, W.; Wang, L.; Zhang, H.; Liu, Y.; Han, D.; Zhang, N.; Ma, T.; Wang, Y.; Ye, F.; Luo, D.; Li, X.; Yang, Q. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol. Cancer, 2020, 19(1), 85.
[http://dx.doi.org/10.1186/s12943-020-01206-5] [PMID: 32384893]
[52]
Han, J.; Qu, H.; Han, M.; Ding, Y.; Xie, M.; Hu, J.; Chen, Y.; Dong, H. MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene, 2021, 40(4), 833-847.
[http://dx.doi.org/10.1038/s41388-020-01574-8] [PMID: 33273726]
[53]
Dong, H.; Wang, W.; Mo, S.; Chen, R.; Zou, K.; Han, J.; Zhang, F.; Hu, J. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J. Exp. Clin. Cancer Res., 2018, 37(1), 202-202.
[http://dx.doi.org/10.1186/s13046-018-0875-3] [PMID: 30157918]
[54]
Chen, Q.; Shen, H.; Zhu, X.; Liu, Y.; Yang, H.; Chen, H.; Xiong, S.; Chi, H.; Xu, W. A nuclear lncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci., 2020, 111(9), 3279-3291.
[http://dx.doi.org/10.1111/cas.14555] [PMID: 32619088]
[55]
Zhang, N.; Zeng, X.; Sun, C.; Guo, H.; Wang, T.; Wei, L.; Zhang, Y.; Zhao, J.; Ma, X. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression. Mol. Ther. Nucleic Acids, 2019, 18, 871-881.
[http://dx.doi.org/10.1016/j.omtn.2019.09.033] [PMID: 31751910]
[56]
Zhang, H.; Wei, N.; Zhang, W.; Shen, L.; Ding, R.; Li, Q.; Li, S.; Du, Y. lncRNA SNHG3 promotes breast cancer progression by acting as a miR‑326 sponge. Oncol. Rep., 2020, 44(4), 1502-1510.
[http://dx.doi.org/10.3892/or.2020.7690] [PMID: 32945476]
[57]
Wang, R.; Zhang, T.; Yang, Z.; Jiang, C.; Seng, J. Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J. Cell. Mol. Med., 2018, 22(9), 4068-4075.
[http://dx.doi.org/10.1111/jcmm.13679] [PMID: 29971911]
[58]
Zheng, P.; Dong, L.; Zhang, B.; Dai, J.; Zhang, Y.; Wang, Y.; Qin, S. Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19. Histochem. Cell Biol., 2019, 152(4), 281-291.
[http://dx.doi.org/10.1007/s00418-019-01794-4] [PMID: 31352515]
[59]
Gooding, A.J.; Zhang, B.; Jahanbani, F.K.; Gilmore, H.L.; Chang, J.C.; Valadkhan, S.; Schiemann, W.P. The lncRNA BORG drives breast cancer metastasis and disease recurrence. Sci. Rep., 2017, 7(1), 12698.
[http://dx.doi.org/10.1038/s41598-017-12716-6] [PMID: 28983112]
[60]
Li, X.; Wang, S.; Li, Z.; Long, X.; Guo, Z.; Zhang, G.; Zu, J.; Chen, Y.; Wen, L. The lncRNA NEAT1 facilitates cell growth and invasion via the miR-211/HMGA2 axis in breast cancer. Int. J. Biol. Macromol., 2017, 105(Pt 1), 346-353.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.053] [PMID: 28720546]
[61]
Jiang, X.; Zhou, Y.; Sun, A-J.; Xue, J-L. NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J. Cell. Physiol., 2018, 233(11), 8558-8566.
[http://dx.doi.org/10.1002/jcp.26470] [PMID: 29323713]
[62]
Yao, N.; Fu, Y.; Chen, L.; Liu, Z.; He, J.; Zhu, Y.; Xia, T.; Wang, S. Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/ miR-129-5p/Twist1 axis. Oncogene, 2019, 38(47), 7216-7233.
[http://dx.doi.org/10.1038/s41388-019-0904-5] [PMID: 31444414]
[63]
Shin, V.Y.; Chen, J.; Cheuk, I.W.Y.; Siu, M-T.; Ho, C-W.; Wang, X.; Jin, H.; Kwong, A. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis., 2019, 10(4), 270.
[http://dx.doi.org/10.1038/s41419-019-1513-5] [PMID: 30894512]
[64]
Lin, L-C.; Lee, H-T.; Chien, P-J.; Huang, Y-H.; Chang, M-Y.; Lee, Y-C.; Chang, W-W. NAD(P)H: Quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1. Int. J. Med. Sci., 2020, 17(14), 2214-2224.
[http://dx.doi.org/10.7150/ijms.45706] [PMID: 32922184]
[65]
Wei, L.; Wu, T.; He, P.; Zhang, J-L.; Wu, W. LncRNA ATB promotes the proliferation and metastasis of lung cancer via activation of the p38 signaling pathway. Oncol. Lett., 2018, 16(3), 3907-3912.
[http://dx.doi.org/10.3892/ol.2018.9117] [PMID: 30128006]
[66]
Zhang, Y.; Xiang, C.; Wang, Y.; Duan, Y.; Liu, C.; Jin, Y.; Zhang, Y. lncRNA LINC00152 knockdown had effects to suppress biological activity of lung cancer via EGFR/PI3K/AKT pathway. Biomed. Pharmacother., 2017, 94, 644-651.
[http://dx.doi.org/10.1016/j.biopha.2017.07.120] [PMID: 28787699]
[67]
Chen, W.; Zhao, W.; Zhang, L.; Wang, L.; Wang, J.; Wan, Z.; Hong, Y.; Yu, L. MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget, 2017, 8(55), 94317-94329.
[http://dx.doi.org/10.18632/oncotarget.21693] [PMID: 29212230]
[68]
Liu, X.; Huang, Z.; Qian, W.; Zhang, Q.; Sun, J. Silence of lncRNA UCA1 rescues drug resistance of cisplatin to non-small-cell lung cancer cells. J. Cell. Biochem., 2019, 120(6), 9243-9249.
[http://dx.doi.org/10.1002/jcb.28200] [PMID: 30652341]
[69]
Wu, H.; Zhou, C. Long non-coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA-193a/HMGB1 axis. Biochem. Biophys. Res. Commun., 2018, 496(2), 738-745.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.097] [PMID: 29355524]
[70]
Cai, Y.; Dong, Z.Y.; Wang, J.Y. LncRNA NNT-AS1 is a major mediator of cisplatin chemoresistance in non-small cell lung cancer through MAPK/Slug pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(15), 4879-4887.
[PMID: 30070323]
[71]
Guo, F.; Cao, Z.; Guo, H.; Li, S. The action mechanism of lncRNA-HOTAIR on the drug resistance of non-small cell lung cancer by regulating Wnt signaling pathway. Exp. Ther. Med., 2018, 15(6), 4885-4889.
[http://dx.doi.org/10.3892/etm.2018.6052] [PMID: 29805510]
[72]
Liao, Y.; Cheng, S.; Xiang, J.; Luo, C. lncRNA CCHE1 increased proliferation, metastasis and invasion of non-small lung cancer cells and predicted poor survival in non-small lung cancer patients. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(6), 1686-1692.
[PMID: 29630113]
[73]
Deng, W.; Zhang, Y.; Cai, J.; Zhang, J.; Liu, X.; Yin, J.; Bai, Z.; Yao, H.; Zhang, Z. LncRNA-ANRIL promotes gastric cancer progression by enhancing NF-kB signaling. Exp. Biol. Med. (Maywood), 2019, 244(12), 953-959.
[http://dx.doi.org/10.1177/1535370219860207] [PMID: 31242038]
[74]
Yan, J.; Zhang, Y.; She, Q.; Li, X.; Peng, L.; Wang, X.; Liu, S.; Shen, X.; Zhang, W.; Dong, Y.; Lu, J.; Zhang, G.; Long Noncoding, R.N.A. Long noncoding RNA H19/miR-675 axis promotes gastric cancer via FADD/Caspase 8/Caspase 3 signaling pathway. Cell. Physiol. Biochem., 2017, 42(6), 2364-2376.
[http://dx.doi.org/10.1159/000480028] [PMID: 28848149]
[75]
Zhao, G.; Wang, S.; Liang, X.; Wang, C.; Peng, B. Oncogenic role of long non-coding RNA SNHG12 in gastric cancer cells by targeting miR-16. Exp. Ther. Med., 2019, 18(1), 199-208.
[http://dx.doi.org/10.3892/etm.2017.4512] [PMID: 31258654]
[76]
Qin, L.; Jia, Z.; Xie, D.; Liu, Z. Knockdown of long noncoding RNA urothelial carcinoma-associated 1 inhibits cell viability, migration, and invasion by regulating microRNA-182 in gastric carcinoma. J. Cell. Biochem., 2018, 119(12), 10075-10086.
[http://dx.doi.org/10.1002/jcb.27344] [PMID: 30129054]
[77]
Li, C.; Liang, G.; Yang, S.; Sui, J.; Yao, W.; Shen, X.; Zhang, Y.; Peng, H.; Hong, W.; Xu, S.; Wu, W.; Ye, Y.; Zhang, Z.; Zhang, W.; Yin, L.; Pu, Y. Dysregulated lncRNA-UCA1 contributes to the progression of gastric cancer through regulation of the PI3K-Akt-mTOR signaling pathway. Oncotarget, 2017, 8(55), 93476-93491.
[http://dx.doi.org/10.18632/oncotarget.19281] [PMID: 29212166]
[78]
Sun, L.; Liu, L.; Yang, J.; Li, H.; Zhang, C. SATB1 3′-UTR and lncRNA-UCA1 competitively bind to miR-495-3p and together regulate the proliferation and invasion of gastric cancer. J. Cell. Biochem., 2019, 120(4), 6671-6682.
[http://dx.doi.org/10.1002/jcb.27963] [PMID: 30368875]
[79]
Pan, J.; Dai, Q.; Zhang, T.; Li, C. Palmitate acid promotes gastric cancer metastasis via FABP5/SP1/UCA1 pathway. Cancer Cell Int., 2019, 19(1), 69.
[http://dx.doi.org/10.1186/s12935-019-0787-0] [PMID: 30948929]
[80]
Liu, G.; Zhao, X.; Zhou, J.; Cheng, X.; Ye, Z.; Ji, Z. LncRNA TP73-AS1 promotes cell proliferation and inhibits cell apoptosis in clear cell renal cell carcinoma through repressing KISS1 expression and inactivation of PI3K/Akt/mTOR signaling pathway. Cell. Physiol. Biochem., 2018, 48(1), 371-384.
[http://dx.doi.org/10.1159/000491767] [PMID: 30016766]
[81]
Zhang, C.; Qu, Y.; Xiao, H.; Xiao, W.; Liu, J.; Gao, Y.; Li, M.; Liu, J. LncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Exp. Cell Res., 2019, 384(1), 111595.
[http://dx.doi.org/10.1016/j.yexcr.2019.111595] [PMID: 31505165]
[82]
Song, W.; Mei, J-Z.; Zhang, M. Long noncoding RNA PlncRNA-1 promotes colorectal cancer cell progression by regulating the PI3K/Akt signaling pathway. Oncol. Res., 2018, 26(2), 261-268.
[http://dx.doi.org/10.3727/096504017X15031557924132] [PMID: 28835319]
[83]
Wang, L.; Zhao, Z.; Feng, W.; Ye, Z.; Dai, W.; Zhang, C.; Peng, J.; Wu, K. Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway. Oncotarget, 2016, 7(32), 51713-51719.
[http://dx.doi.org/10.18632/oncotarget.10563] [PMID: 27421138]
[84]
Wang, Y.; Kuang, H.; Xue, J.; Liao, L.; Yin, F.; Zhou, X. LncRNA AB073614 regulates proliferation and metastasis of colorectal cancer cells via the PI3K/AKT signaling pathway. Biomed. Pharmacother., 2017, 93, 1230-1237.
[http://dx.doi.org/10.1016/j.biopha.2017.07.024] [PMID: 28738539]
[85]
Yu, J.; Han, Z.; Sun, Z.; Wang, Y.; Zheng, M.; Song, C. LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 222-222.
[http://dx.doi.org/10.1186/s13046-018-0896-y] [PMID: 30201010]
[86]
Li, P.; Zhang, X.; Wang, L.; Du, L.; Yang, Y.; Liu, T.; Li, C.; Wang, C. lncRNA HOTAIR contributes to 5FU resistance through suppressing miR-218 and activating NF-κB/TS signaling in colorectal cancer. Mol. Ther. Nucleic Acids, 2017, 8, 356-369.
[http://dx.doi.org/10.1016/j.omtn.2017.07.007] [PMID: 28918035]
[87]
Xiao, Z.; Qu, Z.; Chen, Z.; Fang, Z.; Zhou, K.; Huang, Z.; Guo, X.; Zhang, Y. LncRNA HOTAIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via MiR-203a-3p-Mediated Wnt/ß-catenin signaling pathway. Cell. Physiol. Biochem., 2018, 46(3), 1275-1285.
[http://dx.doi.org/10.1159/000489110] [PMID: 29680837]
[88]
Yang, Z.Y.; Yang, F.; Zhang, Y.L.; Liu, B.; Wang, M.; Hong, X.; Yu, Y.; Zhou, Y.H.; Zeng, H. LncRNA-ANCR down-regulation suppresses invasion and migration of colorectal cancer cells by regulating EZH2 expression. Cancer Biomark., 2017, 18(1), 95-104.
[http://dx.doi.org/10.3233/CBM-161715] [PMID: 27983539]
[89]
Wu, X.; Xia, T.; Cao, M.; Zhang, P.; Shi, G.; Chen, L.; Zhang, J.; Yin, J.; Wu, P.; Cai, B.; Lu, Z.; Miao, Y.; Jiang, K. LncRNA BANCR promotes pancreatic cancer tumorigenesis via modulating MiR-195-5p/Wnt/β-catenin signaling pathway. Technol. Cancer Res. Treat., 2019, 18, 1533033819887962.
[http://dx.doi.org/10.1177/1533033819887962] [PMID: 31769353]
[90]
Li, X.; Deng, S.J.; Zhu, S.; Jin, Y.; Cui, S.P.; Chen, J.Y.; Xiang, C.; Li, Q.Y.; He, C.; Zhao, S.F.; Chen, H.Y.; Niu, Y.; Liu, Y.; Deng, S.C.; Wang, C.Y.; Zhao, G. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget, 2016, 7(5), 6000-6014.
[http://dx.doi.org/10.18632/oncotarget.6830] [PMID: 26755660]
[91]
Liu, Y.; Wang, J.; Dong, L.; Xia, L.; Zhu, H.; Li, Z.; Yu, X.; Long Noncoding, R.N.A. Long noncoding RNA HCP5 regulates pancreatic cancer Gemcitabine (GEM) resistance by sponging Hsa-miR-214-3p to target HDGF. OncoTargets Ther., 2019, 12, 8207-8216.
[http://dx.doi.org/10.2147/OTT.S222703] [PMID: 31632071]
[92]
Ding, K.; Liao, Y.; Gong, D.; Zhao, X.; Ji, W. Effect of long non-coding RNA H19 on oxidative stress and chemotherapy resistance of CD133+ cancer stem cells via the MAPK/ERK signaling pathway in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2018, 502(2), 194-201.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.143] [PMID: 29800569]
[93]
Wang, H.; Ke, J.; Guo, Q.; Barnabo Nampoukime, K-P.; Yang, P.; Ma, K. Long non-coding RNA CRNDE promotes the proliferation, migration and invasion of hepatocellular carcinoma cells through miR-217/MAPK1 axis. J. Cell. Mol. Med., 2018, 22(12), 5862-5876.
[http://dx.doi.org/10.1111/jcmm.13856] [PMID: 30246921]
[94]
Ji, D.; Jiang, C.; Zhang, L.; Liang, N.; Jiang, T.; Yang, B.; Liang, H. LncRNA CRNDE promotes hepatocellular carcinoma cell proliferation, invasion, and migration through regulating miR-203/ BCAT1 axis. J. Cell. Physiol., 2019, 234(5), 6548-6560.
[http://dx.doi.org/10.1002/jcp.27396] [PMID: 30230527]
[95]
Yu, J.; Zhang, B.; Zhang, H.; Qi, Y.; Wang, Y.; Wang, W.; Wang, Y.; Wang, Y. E2F1-induced upregulation of long non-coding RNA LMCD1-AS1 facilitates cholangiocarcinoma cell progression by regulating miR-345-5p/COL6A3 pathway. Biochem. Biophys. Res. Commun., 2019, 512(2), 150-155.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.054] [PMID: 30876691]
[96]
Xu, Y.; Yao, Y.; Leng, K.; Li, Z.; Qin, W.; Zhong, X.; Kang, P.; Wan, M.; Jiang, X.; Cui, Y. Long non-coding RNA UCA1 indicates an unfavorable prognosis and promotes tumorigenesis via regulating AKT/GSK-3β signaling pathway in cholangiocarcinoma. Oncotarget, 2017, 8(56), 96203-96214.
[http://dx.doi.org/10.18632/oncotarget.21884] [PMID: 29221199]
[97]
Zhang, F.; Wan, M.; Xu, Y.; Li, Z.; Leng, K.; Kang, P.; Cui, Y.; Jiang, X. Long noncoding RNA PCAT1 regulates extrahepatic cholangiocarcinoma progression via the Wnt/β-catenin-signaling pathway. Biomed. Pharmacother., 2017, 94, 55-62.
[98]
Kong, L.; Wu, Q.; Zhao, L.; Ye, J.; Li, N.; Yang, H. Upregulated lncRNA-UCA1 contributes to metastasis of bile duct carcinoma through regulation of miR-122/CLIC1 and activation of the ERK/MAPK signaling pathway. Cell Cycle, 2019, 18(11), 1212-1228.
[http://dx.doi.org/10.1080/15384101.2019.1593647] [PMID: 31106658]
[99]
Tan, J.; Qiu, K.; Li, M.; Liang, Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett., 2015, 589(20PartB), 3175-3181.
[http://dx.doi.org/10.1016/j.febslet.2015.08.020]
[100]
Zhang, X-H.; Hu, P.; Xie, Y-Q.; Kang, Y-J.; Li, M.; Long Noncoding, R.N.A. Long noncoding RNA HOTAIR promotes endometrial carcinoma cell proliferation by binding to PTEN via the activating phosphatidylinositol 3-kinase/Akt signaling pathway. Mol. Cell. Biol., 2019, 39(23), e00251-e00219.
[http://dx.doi.org/10.1128/MCB.00251-19] [PMID: 31527078]
[101]
Liu, L.; Chen, X.; Zhang, Y.; Hu, Y.; Shen, X.; Zhu, W. Long non-coding RNA TUG1 promotes endometrial cancer development via inhibiting miR-299 and miR-34a-5p. Oncotarget, 2017, 8(19), 31386-31394.
[http://dx.doi.org/10.18632/oncotarget.15607] [PMID: 28404901]
[102]
Zhao, H.; Zheng, G-H.; Li, G-C.; Xin, L.; Wang, Y-S.; Chen, Y.; Zheng, X-M. Long noncoding RNA LINC00958 regulates cell sensitivity to radiotherapy through RRM2 by binding to microRNA-5095 in cervical cancer. J. Cell. Physiol., 2019, 234(12), 23349-23359.
[http://dx.doi.org/10.1002/jcp.28902] [PMID: 31169309]
[103]
Yu, G.; Liu, G.; Yuan, D.; Dai, J.; Cui, Y.; Tang, X. Long non-coding RNA ANRIL is associated with a poor prognosis of osteosarcoma and promotes tumorigenesis via PI3K/Akt pathway. J. Bone Oncol., 2018, 11, 51-55.
[http://dx.doi.org/10.1016/j.jbo.2018.02.002] [PMID: 29520337]
[104]
Gao, F.; Feng, J.; Yao, H.; Li, Y.; Xi, J.; Yang, J. LncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 776-782.
[http://dx.doi.org/10.1080/21691401.2019.1577883] [PMID: 30856345]
[105]
Li, H.; Jia, Y.; Cheng, J.; Liu, G.; Song, F. LncRNA NCK1-AS1 promotes proliferation and induces cell cycle progression by crosstalk NCK1-AS1/miR-6857/CDK1 pathway. Cell Death Dis., 2018, 9(2), 198.
[http://dx.doi.org/10.1038/s41419-017-0249-3] [PMID: 29416014]
[106]
Wang, C.; Shao, S.; Deng, L.; Wang, S.; Zhang, Y. LncRNA SNHG12 regulates the radiosensitivity of cervical cancer through the miR-148a/CDK1 pathway. Cancer Cell Int., 2020, 20(1), 554.
[http://dx.doi.org/10.1186/s12935-020-01654-5] [PMID: 33292254]
[107]
Li, Z.; Niu, H.; Qin, Q.; Yang, S.; Wang, Q.; Yu, C.; Wei, Z.; Jin, Z.; Wang, X.; Yang, A.; Chen, X. lncRNA UCA1 mediates resistance to cisplatin by regulating the miR-143/FOSL2-signaling pathway in ovarian cancer. Mol. Ther. Nucleic Acids, 2019, 17, 92-101.
[http://dx.doi.org/10.1016/j.omtn.2019.05.007] [PMID: 31234009]
[108]
Jin, Y.; Feng, S.J.; Qiu, S.; Shao, N.; Zheng, J.H. LncRNA MALAT1 promotes proliferation and metastasis in epithelial ovarian cancer via the PI3K-AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(14), 3176-3184.
[PMID: 28770968]
[109]
Jiang, X.; Guo, S.; Zhang, Y.; Zhao, Y.; Li, X.; Jia, Y.; Xu, Y.; Ma, B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell. Signal., 2020, 65, 109422.
[http://dx.doi.org/10.1016/j.cellsig.2019.109422] [PMID: 31672604]
[110]
Luo, J.; Wang, K.; Yeh, S.; Sun, Y.; Liang, L.; Xiao, Y.; Xu, W.; Niu, Y.; Cheng, L.; Maity, S.N.; Jiang, R.; Chang, C. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat. Commun., 2019, 10(1), 2571.
[http://dx.doi.org/10.1038/s41467-019-09784-9] [PMID: 31189930]
[111]
Gu, P.; Chen, X.; Xie, R.; Han, J.; Xie, W.; Wang, B.; Dong, W.; Chen, C.; Yang, M.; Jiang, J.; Chen, Z.; Huang, J.; Lin, T. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol. Ther., 2017, 25(8), 1959-1973.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.016] [PMID: 28487115]
[112]
Shang, Z.; Yu, J.; Sun, L.; Tian, J.; Zhu, S.; Zhang, B.; Dong, Q.; Jiang, N.; Flores-Morales, A.; Chang, C.; Niu, Y. LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex. Nucleic Acids Res., 2019, 47(8), 4211-4225.
[http://dx.doi.org/10.1093/nar/gkz108] [PMID: 30773595]
[113]
Huang, S.; Zhan, Z.; Li, L.; Guo, H.; Yao, Y.; Feng, M.; Deng, J.; Xiong, J. LINC00958-MYC positive feedback loop modulates resistance of head and neck squamous cell carcinoma cells to chemo- and radiotherapy in vitro. OncoTargets Ther., 2019, 12, 5989-6000.
[http://dx.doi.org/10.2147/OTT.S208318] [PMID: 31413594]
[114]
Li, D-X.; Fei, X-R.; Dong, Y-F.; Cheng, C-D.; Yang, Y.; Deng, X-F.; Huang, H-L.; Niu, W-X.; Zhou, C-X.; Xia, C-Y.; Niu, C-S. The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2. Oncotarget, 2017, 8(50), 88163-88178.
[http://dx.doi.org/10.18632/oncotarget.21513] [PMID: 29152149]
[115]
Liao, K.; Lin, Y.; Gao, W.; Xiao, Z.; Medina, R.; Dmitriev, P.; Cui, J.; Zhuang, Z.; Zhao, X.; Qiu, Y.; Zhang, X.; Ge, J.; Guo, L. Blocking lncRNA MALAT1/miR-199a/ZHX1 axis inhibits glioblastoma proliferation and progression. Mol. Ther. Nucleic Acids, 2019, 18, 388-399.
[http://dx.doi.org/10.1016/j.omtn.2019.09.005] [PMID: 31648104]
[116]
Chen, Y.; Huang, W.; Sun, W.; Zheng, B.; Wang, C.; Luo, Z.; Wang, J.; Yan, W. LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3K-Akt signaling pathway. Cell. Physiol. Biochem., 2018, 51(3), 1313-1326.
[http://dx.doi.org/10.1159/000495550] [PMID: 30481748]
[117]
Dong, Y.; Wei, M-H.; Lu, J-G.; Bi, C-Y. Long non-coding RNA HULC interacts with miR-613 to regulate colon cancer growth and metastasis through targeting RTKN. Biomed. Pharmacother., 2019, 109, 2035-2042.
[http://dx.doi.org/10.1016/j.biopha.2018.08.017] [PMID: 30551459]
[118]
Zhao, J.; Cheng, L. Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(6), 503-512.
[http://dx.doi.org/10.1093/abbs/gmx041] [PMID: 28549102]
[119]
Wu, D-M.; Wang, S.; Wen, X.; Han, X-R.; Wang, Y-J.; Shen, M.; Fan, S-H.; Zhang, Z-F.; Shan, Q.; Li, M-Q.; Hu, B.; Lu, J.; Chen, G-Q.; Zheng, Y-L. LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma. Cell Death Dis., 2018, 9(10), 947-947.
[http://dx.doi.org/10.1038/s41419-018-0975-1] [PMID: 30237435]
[120]
Liu, H.; Li, R.; Guan, L.; Jiang, T. Knockdown of lncRNA UCA1 inhibits proliferation and invasion of papillary thyroid carcinoma through regulating miR-204/IGFBP5 axis. OncoTargets Ther., 2018, 11, 7197-7204.
[http://dx.doi.org/10.2147/OTT.S175467] [PMID: 30425512]
[121]
Dai, J.; Mu, J-W.; Mu, H. Long non-coding RNA CRNDE regulates cell proliferation, migration, invasion, epithelial-mesenchymal transition and apoptosis in oral squamous cell carcinoma. Oncol. Lett., 2019, 17(3), 3330-3340.
[http://dx.doi.org/10.3892/ol.2019.9978] [PMID: 30867767]
[122]
Fang, Z.; Zhao, J.; Xie, W.; Sun, Q.; Wang, H.; Qiao, B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med., 2017, 6(12), 2897-2908.
[http://dx.doi.org/10.1002/cam4.1253] [PMID: 29125238]
[123]
Yang, Y.; Chen, D.; Liu, H.; Yang, K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis., 2019, 10(2), 41-41.
[http://dx.doi.org/10.1038/s41419-018-1280-8] [PMID: 30674868]
[124]
Liu, F.; Tai, Y.; Ma, J. LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol. Ther., 2018, 19(6), 534-542.
[http://dx.doi.org/10.1080/15384047.2018.1450119] [PMID: 29565706]
[125]
Lian, Y.; Xiong, F.; Yang, L.; Bo, H.; Gong, Z.; Wang, Y.; Wei, F.; Tang, Y.; Li, X.; Liao, Q.; Wang, H.; Zhou, M.; Xiang, B.; Wu, X.; Li, Y.; Li, X.; Chen, X.; Li, G.; Guo, C.; Zeng, Z.; Xiong, W. Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 253-253.
[http://dx.doi.org/10.1186/s13046-018-0918-9] [PMID: 30326930]
[126]
Ma, X.; Zhou, J.; Liu, J.; Wu, G.; Yu, Y.; Zhu, H.; Liu, J. LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression. OncoTargets Ther., 2018, 11, 8399-8408.
[http://dx.doi.org/10.2147/OTT.S182573] [PMID: 30568463]
[127]
Sun, S.; Gong, C.; Yuan, K. LncRNA UCA1 promotes cell proliferation, invasion and migration of laryngeal squamous cell carcinoma cells by activating Wnt/β-catenin signaling pathway. Exp. Ther. Med., 2019, 17(2), 1182-1189.
[PMID: 30679991]
[128]
Wang, L.; Su, K.; Wu, H.; Li, J.; Song, D. LncRNA SNHG3 regulates laryngeal carcinoma proliferation and migration by modulating the miR-384/WEE1 axis. Life Sci., 2019, 232, 116597.
[http://dx.doi.org/10.1016/j.lfs.2019.116597] [PMID: 31238052]
[129]
Li, J.; Sun, S.; Chen, W.; Yuan, K. Small nucleolar RNA host gene 12 (SNHG12) promotes proliferation and invasion of laryngeal cancer cells via sponging miR-129-5p and potentiating WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) expression. Med. Sci. Monit., 2019, 25, 5552-5560.
[http://dx.doi.org/10.12659/MSM.917088] [PMID: 31348766]
[130]
Zheng, X.; Dong, S.; Sun, L.; Xu, J.; Liu, J.; Hao, R. LncRNA LINC00152 promotes laryngeal cancer progression by sponging miR-613. Open Med. (Wars.), 2020, 15(1), 240-248.
[http://dx.doi.org/10.1515/med-2020-0035] [PMID: 32266320]
[131]
Liu, Y.; Liu, X.; Zhang, X.; Deng, J.; Zhang, J.; Xing, H. lncRNA DLX6-AS1 promotes proliferation of laryngeal cancer cells by targeting the miR-26a/TRPC3 pathway. Cancer Manag. Res., 2020, 12, 2685-2695.
[http://dx.doi.org/10.2147/CMAR.S237181] [PMID: 32368147]
[132]
Zhang, T.H.; Liang, L.Z.; Liu, X.L.; Wu, J.N.; Su, K.; Chen, J.Y.; Zheng, Q.Y. LncRNA UCA1/miR-124 axis modulates TGFβ1-induced epithelial-mesenchymal transition and invasion of tongue cancer cells through JAG1/Notch signaling. J. Cell. Biochem., 2019, 120(6), 10495-10504.
[http://dx.doi.org/10.1002/jcb.28334] [PMID: 30635938]
[133]
Zhang, S.; Ma, H.; Zhang, D.; Xie, S.; Wang, W.; Li, Q.; Lin, Z.; Wang, Y. LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via miR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis., 2018, 9(7), 742.
[http://dx.doi.org/10.1038/s41419-018-0793-5] [PMID: 29970910]
[134]
Feng, B.; Wang, G.; Liang, X.; Wu, Z.; Wang, X.; Dong, Z.; Guo, Y.; Shen, S.; Liang, J.; Guo, W. LncRNA FAM83H-AS1 promotes oesophageal squamous cell carcinoma progression via miR-10a-5p/Girdin axis. J. Cell. Mol. Med., 2020, 24(16), 8962-8976.
[http://dx.doi.org/10.1111/jcmm.15530] [PMID: 32583631]
[135]
Wu, Y.; Wang, H. LncRNA NEAT1 promotes dexamethasone resistance in multiple myeloma by targeting miR-193a/MCL1 pathway. J. Biochem. Mol. Toxicol., 2018, 32(1), e22008.
[http://dx.doi.org/10.1002/jbt.22008] [PMID: 29205703]
[136]
Guan, R.; Wang, W.; Fu, B.; Pang, Y.; Lou, Y.; Li, H. Increased lncRNA HOTAIR expression promotes the chemoresistance of multiple myeloma to dexamethasone by regulating cell viability and apoptosis by mediating the JAK2/STAT3 signaling pathway. Mol. Med. Rep., 2019, 20(4), 3917-3923.
[http://dx.doi.org/10.3892/mmr.2019.10603] [PMID: 31485665]
[137]
David, A.; Zocchi, S.; Talbot, A.; Choisy, C.; Ohnona, A.; Lion, J.; Cuccuini, W.; Soulier, J.; Arnulf, B.; Bories, J-C.; Goodhardt, M.; Garrick, D. The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling. Leukemia, 2021, 35, 1710-1721.
[PMID: 32879426]
[138]
Yang, L.; Zhang, L.; Lu, L.; Wang, Y.; Long Noncoding, R.N.A. Long noncoding RNA SNHG16 sponges miR-182-5p and miR-128-3p to promote retinoblastoma cell migration and invasion by targeting LASP1. OncoTargets Ther., 2019, 12, 8653-8662.
[http://dx.doi.org/10.2147/OTT.S212352] [PMID: 31806989]
[139]
Yang, L.; Zhang, L.; Lu, L.; Wang, Y. lncRNA UCA1 increases proliferation and multidrug resistance of retinoblastoma cells through downregulating miR-513a-5p. DNA Cell Biol., 2020, 39(1), 69-77.
[http://dx.doi.org/10.1089/dna.2019.5063] [PMID: 31702387]
[140]
Yang, Y.; Peng, X-W. The silencing of long non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of retinoblastoma cells through the ATM-E2F1 signaling pathway. Biosci. Rep., 2018, 38(6), BSR20180558.
[http://dx.doi.org/10.1042/BSR20180558] [PMID: 30355646]
[141]
Li, Z.; Hou, P.; Fan, D.; Dong, M.; Ma, M.; Li, H.; Yao, R.; Li, Y.; Wang, G.; Geng, P.; Mihretab, A.; Liu, D.; Zhang, Y.; Huang, B.; Lu, J. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ., 2017, 24(1), 59-71.
[http://dx.doi.org/10.1038/cdd.2016.95] [PMID: 27716745]
[142]
Zheng, S.; Li, M.; Miao, K.; Xu, H. lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. J. Cell. Biochem., 2020, 121(3), 2225-2235.
[http://dx.doi.org/10.1002/jcb.29445] [PMID: 31692053]
[143]
Tan, B-S.; Yang, M-C.; Singh, S.; Chou, Y-C.; Chen, H-Y.; Wang, M-Y.; Wang, Y-C.; Chen, R-H. LncRNA NORAD is repressed by the YAP pathway and suppresses lung and breast cancer metastasis by sequestering S100P. Oncogene, 2019, 38(28), 5612-5626.
[http://dx.doi.org/10.1038/s41388-019-0812-8] [PMID: 30967631]
[144]
Gao, X.; Wang, N.; Wu, S.; Cui, H.; An, X.; Yang, Y. Long non‑coding RNA FER1L4 inhibits cell proliferation and metastasis through regulation of the PI3K/AKT signaling pathway in lung cancer cells. Mol. Med. Rep., 2019, 20(1), 182-190.
[http://dx.doi.org/10.3892/mmr.2019.10219] [PMID: 31115514]
[145]
Tong, L.; Wu, W. Effects of long non-coding RNA (lncRNA) cancer susceptibility candidate 2c (CASC2c) on proliferation, metastasis and drug resistance of non-small cell lung cancer (NSCLC) cells through ERK1/2 and β-catenin signaling pathways. Pathol. Res. Pract., 2019, 215(9), 152522.
[http://dx.doi.org/10.1016/j.prp.2019.152522] [PMID: 31300295]
[146]
Wang, S.; Lan, F.; Xia, Y. lncRA ANCR inhibits non-small cell lung cancer cell migration and invasion by inactivating TGF-β pathway. Med. Sci. Monit., 2018, 24, 6002-6009.
[http://dx.doi.org/10.12659/MSM.911492] [PMID: 30154397]
[147]
Wei, G.H.; Wang, X. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(17), 3850-3856.
[PMID: 28975980]
[148]
Zhai, W.; Sun, Y.; Guo, C.; Hu, G.; Wang, M.; Zheng, J.; Lin, W.; Huang, Q.; Li, G.; Zheng, J.; Chang, C. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ., 2017, 24(9), 1502-1517.
[http://dx.doi.org/10.1038/cdd.2017.74] [PMID: 28644440]
[149]
Liu, B.; Wu, S.; Ma, J.; Yan, S.; Xiao, Z.; Wan, L.; Zhang, F.; Shang, M.; Mao, A. lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic cancer. Mol. Ther. Nucleic Acids, 2018, 13, 472-482.
[http://dx.doi.org/10.1016/j.omtn.2018.09.026] [PMID: 30388621]
[150]
Pei, Z.; Du, X.; Song, Y.; Fan, L.; Li, F.; Gao, Y.; Wu, R.; Chen, Y.; Li, W.; Zhou, H.; Yang, Y.; Zeng, J. Down-regulation of lncRNA CASC2 promotes cell proliferation and metastasis of bladder cancer by activation of the Wnt/β-catenin signaling pathway. Oncotarget, 2017, 8(11), 18145-18153.
[http://dx.doi.org/10.18632/oncotarget.15210] [PMID: 28199978]
[151]
Sun, K-X.; Wu, D-D.; Chen, S.; Zhao, Y.; Zong, Z-H. LncRNA MEG3 inhibit endometrial carcinoma tumorigenesis and progression through PI3K pathway. Apoptosis, 2017, 22(12), 1543-1552.
[http://dx.doi.org/10.1007/s10495-017-1426-7] [PMID: 29094270]
[152]
Xue, D.; Zhou, C.; Lu, H.; Xu, R.; Xu, X.; He, X. LncRNA GAS5 inhibits proliferation and progression of prostate cancer by targeting miR-103 through AKT/mTOR signaling pathway. Tumour Biol., 2016, 37(12), 16187-16197.
[http://dx.doi.org/10.1007/s13277-016-5429-8] [PMID: 27743383]
[153]
Bai, T.; Liu, Y.; Li, B. LncRNA LOXL1-AS1/miR-let-7a-5p/EGFR-related pathway regulates the doxorubicin resistance of prostate cancer DU-145 cells. IUBMB Life, 2019, 71(10), 1537-1551.
[http://dx.doi.org/10.1002/iub.2075] [PMID: 31188543]
[154]
Liao, Y.; Shen, L.; Zhao, H.; Liu, Q.; Fu, J.; Guo, Y.; Peng, R.; Cheng, L. LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J. Cell. Biochem., 2017, 118(7), 1889-1899.
[http://dx.doi.org/10.1002/jcb.25910] [PMID: 28121023]
[155]
Duan, Y.; Wang, Z.; Xu, L.; Sun, L.; Song, H.; Yin, H.; He, F. lncRNA SNHG3 acts as a novel tumor suppressor and regulates tumor proliferation and metastasis via AKT/mTOR/ERK pathway in papillary thyroid carcinoma. J. Cancer, 2020, 11(12), 3492-3501.
[http://dx.doi.org/10.7150/jca.42070] [PMID: 32284745]
[156]
Wang, X.; Gao, Z.; Liao, J.; Shang, M.; Li, X.; Yin, L.; Pu, Y.; Liu, R. lncRNA UCA1 inhibits esophageal squamous-cell carcinoma growth by regulating the Wnt signaling pathway. J. Toxicol. Environ. Health A, 2016, 79(9-10), 407-418.
[http://dx.doi.org/10.1080/15287394.2016.1176617] [PMID: 27267823]
[157]
Yang, N.; Chen, J.; Zhang, H.; Wang, X.; Yao, H.; Peng, Y.; Zhang, W. LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis., 2017, 8(8), e2975.
[http://dx.doi.org/10.1038/cddis.2017.358] [PMID: 28796257]
[158]
Gao, X.; Qin, T.; Mao, J.; Zhang, J.; Fan, S.; Lu, Y.; Sun, Z.; Zhang, Q.; Song, B.; Li, L. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 256-256.
[http://dx.doi.org/10.1186/s13046-019-1260-6] [PMID: 31196157]
[159]
Luo, K.; Geng, J.; Zhang, Q.; Xu, Y.; Zhou, X.; Huang, Z.; Shi, K-Q.; Pan, C.; Wu, J. LncRNA CASC9 interacts with CPSF3 to regulate TGF-β signaling in colorectal cancer. J. Exper. Clin. Cancer Res., 2019, 38(1), 249-249.
[160]
Sakai, S.; Ohhata, T.; Kitagawa, K.; Uchida, C.; Aoshima, T.; Niida, H.; Suzuki, T.; Inoue, Y.; Miyazawa, K.; Kitagawa, M. Long noncoding RNA ELIT-1 acts as a Smad3 cofactor to facilitate TGFβ/smad signaling and promote epithelial-mesenchymal transition. Cancer Res., 2019, 79(11), 2821-2838.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3210] [PMID: 30952633]
[161]
Zhou, K.; Ou, Q.; Wang, G.; Zhang, W.; Hao, Y.; Li, W. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulating TGF-β pathway. Cancer Cell Int., 2019, 19(1), 63.
[http://dx.doi.org/10.1186/s12935-019-0781-6] [PMID: 30930692]
[162]
Wang, X.; Lai, Q.; He, J.; Li, Q.; Ding, J.; Lan, Z.; Gu, C.; Yan, Q.; Fang, Y.; Zhao, X.; Liu, S. LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int. J. Med. Sci., 2019, 16(1), 51-59.
[http://dx.doi.org/10.7150/ijms.27359] [PMID: 30662328]
[163]
Tang, J.; Yu, B.; Li, Y.; Zhang, W.; Alvarez, A.A.; Hu, B.; Cheng, S-Y.; Feng, H. TGF-β-activated lncRNA LINC00115 is a critical regulator of glioma stem-like cell tumorigenicity. EMBO Rep., 2019, 20(12), e48170.
[http://dx.doi.org/10.15252/embr.201948170] [PMID: 31599491]
[164]
Gong, X.; Liao, X.; Huang, M. LncRNA CASC7 inhibits the progression of glioma via regulating Wnt/β-catenin signaling pathway. Pathol. Res. Pract., 2019, 215(3), 564-570.
[http://dx.doi.org/10.1016/j.prp.2019.01.018] [PMID: 30661904]
[165]
Zhu, K.R.; Sun, Q.F.; Zhang, Y.Q. Long non-coding RNA LINP1 induces tumorigenesis of Wilms’ tumor by affecting Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(13), 5691-5698.
[PMID: 31298321]
[166]
Zhang, M.; Weng, W.; Zhang, Q.; Wu, Y.; Ni, S.; Tan, C.; Xu, M.; Sun, H.; Liu, C.; Wei, P.; Du, X. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol., 2018, 11(1), 113.
[http://dx.doi.org/10.1186/s13045-018-0656-7] [PMID: 30185232]
[167]
Li, T.; Zhu, J.; Wang, X.; Chen, G.; Sun, L.; Zuo, S.; Zhang, J.; Chen, S.; Ma, J.; Yao, Z.; Zheng, Y.; Chen, Z.; Liu, Y.; Wang, P. Long non-coding RNA lncTCF7 activates the Wnt/β-catenin pathway to promote metastasis and invasion in colorectal cancer. Oncol. Lett., 2017, 14(6), 7384-7390.
[http://dx.doi.org/10.3892/ol.2017.7154] [PMID: 29344178]
[168]
Li, M.; Ding, X.; Zhang, Y.; Li, X.; Zhou, H.; Yang, L.; Li, Y.; Yang, P.; Zhang, X.; Hu, J.; Nice, E.; Wu, H.; Xu, H. Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activity through Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell Death Dis., 2020, 11(8), 672.
[http://dx.doi.org/10.1038/s41419-020-02820-3] [PMID: 32826863]
[169]
Huang, Y.; Zhang, J.; Hou, L.; Wang, G.; Liu, H.; Zhang, R.; Chen, X.; Zhu, J. LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J. Exp. Clin. Cancer Res., 2017, 36(1), 194.
[http://dx.doi.org/10.1186/s13046-017-0666-2] [PMID: 29282102]
[170]
Tang, J.; Zhong, G.; Zhang, H.; Yu, B.; Wei, F.; Luo, L.; Kang, Y.; Wu, J.; Jiang, J.; Li, Y.; Wu, S.; Jia, Y.; Liang, X.; Bi, A. LncRNA DANCR upregulates PI3K/AKT signaling through activating serine phosphorylation of RXRA. Cell Death Dis., 2018, 9(12), 1167.
[http://dx.doi.org/10.1038/s41419-018-1220-7] [PMID: 30518934]
[171]
Xiong, H-G.; Li, H.; Xiao, Y.; Yang, Q-C.; Yang, L-L.; Chen, L.; Bu, L-L.; Zhang, W-F.; Zhang, J-L.; Sun, Z-J. Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 278.
[http://dx.doi.org/10.1186/s13046-019-1254-4] [PMID: 31238980]
[172]
Wang, W.; Yin, Z. Diagnostic value of long non-coding RNA H19, UCA1, and HOTAIR as promising biomarkers in human bladder cancer. Int. J. Clin. Exp. Pathol., 2017, 10(12), 11659-11665.
[PMID: 31966524]
[173]
Li, Y.; Cao, X.; Li, H. Identification and validation of novel long non-coding RNA biomarkers for early diagnosis of oral squamous cell carcinoma. Front. Bioeng. Biotechnol., 2020, 8(256), 256.
[http://dx.doi.org/10.3389/fbioe.2020.00256] [PMID: 32351944]
[174]
Li, R-H.; Chen, M.; Liu, J.; Shao, C-C.; Guo, C-P.; Wei, X-L.; Li, Y-C.; Huang, W-H.; Zhang, G-J. Long noncoding RNA ATB promotes the epithelial-mesenchymal transition by upregulating the miR-200c/Twist1 axe and predicts poor prognosis in breast cancer. Cell Death Dis., 2018, 9(12), 1171.
[http://dx.doi.org/10.1038/s41419-018-1210-9] [PMID: 30518916]
[175]
Zeng, W.; Jin, J. The correlation of serum long non-coding RNA ANRIL with risk factors, functional outcome, and prognosis in atrial fibrillation patients with ischemic stroke. J. Clin. Lab. Anal., 2020, 34(8), e23352.
[http://dx.doi.org/10.1002/jcla.23352] [PMID: 32358844]
[176]
Abildgaard, C.; Do Canto, L.M.; Steffensen, K.D.; Rogatto, S.R. Long non-coding RNAs involved in resistance to chemotherapy in ovarian cancer. Front. Oncol., 1549, 2020, 9.
[PMID: 32039022]
[177]
Mao, Z.; Wu, Y.; Zhou, J.; Xing, C. Salinomycin reduces epithelial-mesenchymal transition-mediated multidrug resistance by modifying long noncoding RNA HOTTIP expression in gastric cancer cells. Anticancer Drugs, 2019, 30(9), 892-899.
[http://dx.doi.org/10.1097/CAD.0000000000000786] [PMID: 30882398]
[178]
Chen, J.; Liu, X.; Xu, Y.; Zhang, K.; Huang, J.; Pan, B.; Chen, D.; Cui, S.; Song, H.; Wang, R.; Chu, X.; Zhu, X.; Chen, L. TFAP2C-activated MALAT1 modulates the chemoresistance of docetaxel-resistant lung adenocarcinoma cells. Mol. Ther. Nucleic Acids, 2019, 14, 567-582.
[http://dx.doi.org/10.1016/j.omtn.2019.01.005] [PMID: 30771618]
[179]
Li, P.; Zhang, X.; Wang, H.; Wang, L.; Liu, T.; Du, L.; Yang, Y.; Wang, C. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol. Cancer Ther., 2017, 16(4), 739-751.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0591] [PMID: 28069878]
[180]
An, J.; Lv, W.; Zhang, Y. LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. OncoTargets Ther., 2017, 10, 5377-5390.
[http://dx.doi.org/10.2147/OTT.S147586] [PMID: 29180871]
[181]
Xiu, D-H.; Liu, G-F.; Yu, S-N.; Li, L-Y.; Zhao, G-Q.; Liu, L.; Li, X-F. Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2. J. Exp. Clin. Cancer Res., 2019, 38(1), 94.
[http://dx.doi.org/10.1186/s13046-019-1100-8] [PMID: 30791958]
[182]
Hu, X.L.; Wang, J.; He, W.; Zhao, P.; Wu, W.Q. Down-regulation of lncRNA Linc00152 suppressed cell viability, invasion, migration, and epithelial to mesenchymal transition, and reversed chemo-resistance in breast cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3074-3084.
[PMID: 29863253]
[183]
Sun, W.; Xu, X.; Jiang, Y.; Jin, X.; Zhou, P.; Liu, Y.; Guo, Y.; Ma, D.; Zuo, W.; Huang, S.; He, X.; Shao, Z. Transcriptome analysis of luminal breast cancer reveals a role for LOL in tumor progression and tamoxifen resistance. Int. J. Cancer, 2019, 145(3), 842-856.
[http://dx.doi.org/10.1002/ijc.32185] [PMID: 30720865]
[184]
Heery, R.; Finn, S.P.; Cuffe, S.; Gray, S.G. Long non-coding RNAs: Key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel), 2017, 9(4), 38.
[http://dx.doi.org/10.3390/cancers9040038] [PMID: 28430163]
[185]
Dong, S.; Qu, X.; Li, W.; Zhong, X.; Li, P.; Yang, S.; Chen, X.; Shao, M.; Zhang, L. The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J. Hematol. Oncol., 2015, 8(1), 43.
[http://dx.doi.org/10.1186/s13045-015-0140-6] [PMID: 25925741]
[186]
Cheng, N.; Cai, W.; Ren, S.; Li, X.; Wang, Q.; Pan, H.; Zhao, M.; Li, J.; Zhang, Y.; Zhao, C.; Chen, X.; Fei, K.; Zhou, C.; Hirsch, F.R. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget, 2015, 6(27), 23582-23593.
[http://dx.doi.org/10.18632/oncotarget.4361] [PMID: 26160838]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy