Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Review of the Biological Activities of Heterocyclic Compounds Comprising Oxadiazole Moieties

Author(s): Ban-Feng Ruan, Qing-Lei Guo, Qing-Shan Li, Lu-Zhi Li, Girdhar Singh Deora* and Ben-Guo Zhou*

Volume 22, Issue 7, 2022

Published on: 02 March, 2022

Page: [578 - 599] Pages: 22

DOI: 10.2174/1568026622666220202123651

Price: $65

Abstract

The oxadiazole core is considered a privileged moiety in many medicinal chemistry applications. The oxadiazole class includes 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, and 1,2,5-oxadiazole. Compounds bearing an oxadiazole ring show a wide range of biological activities, such as anticancer, antibacterial, anti-inflammatory, anti-malarial, and insecticidal properties. Among oxadiazoles, the 1,3,4-oxadiazole has been the most widely explored moiety in medicinal chemistry research. This review is primarily focused on the anticancer, antibacterial, and anti-inflammatory activities of compounds containing 1,2,4-oxadiazole, 1,3,4-oxadiazole and 1,2,5-oxadiazole reported in the last five years.

Keywords: Heterocyclic compounds, Oxadiazole, Anticancer, Antibacterial, Anti-inflammatory, SAR.

Graphical Abstract

[1]
Saini, M.S.; Kumar, A.; Dwivedi, J.; Singh, R. A review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4(3), 66-77.
[2]
Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1,3,4-oxadiazole. Molecules, 2018, 23(12), 3361.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 30567416]
[3]
Eloy, F. A review of the chemistry of 1,2,4-oxadiazoles; Fortschr; Chem. Forsch, 1965, pp. 807-876.
[http://dx.doi.org/10.1007/BFb0051520]
[4]
Salahuddin; Mazumder, A.; Yar, M.S.; Mazumder, R.; Chakraborthy, G.S.; Ahsan, M.J.; Rahman, M.U. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. Synth. Commun., 2017, 47(20), 1805-1847.
[http://dx.doi.org/10.1080/00397911.2017.1360911]
[5]
Pitasse-Santos, P.; Sueth-Santiago, V.; Lima, M. 1,2,4- and 1,3,4-oxadiazoles as scaffolds in the development of antiparasitic agents. J. Braz. Chem. Soc., 2018, 29(3), 435-456.
[6]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830.
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[7]
Othman, A.A.; Kihel, M.; Amara, S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arab. J. Chem., 2019, 12(7), 1660-1675.
[http://dx.doi.org/10.1016/j.arabjc.2014.09.003]
[8]
Khan, I.; Ibrar, A.; Abbas, N. Oxadiazoles as privileged motifs for promising anticancer leads: Recent advances and future prospects. Arch. Pharm, 2014, 347(1), 1-20.
[9]
Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[10]
Mukesh, B.; Vandana, S. Antimicrobial activities of 1, 3, 4-oxadiazole: A review. Int. J. Res. Ayurveda Pharm., 2011, 2, 1738-1742.
[11]
Rubina, B.; Dharam, P.; Garima, K.; Ravi, K.; Manni, D. Recent developments on pharmacological potential of 1,3,4-oxadiazole scaffold. Indian J. Pharm. Educ. Res, 2019, 53(2s), s1-s16.
[http://dx.doi.org/10.5530/ijper.53.2s.44]
[12]
Li, Z.; Zhan, P.; Liu, X. 1,3,4-oxadiazole: A privileged structure in antiviral agents. Mini Rev. Med. Chem., 2011, 11(13), 1130-1142.
[http://dx.doi.org/10.2174/138955711797655407] [PMID: 22353222]
[13]
Bajaj, S.; Asati, V.; Singh, J.; Roy, P.P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur. J. Med. Chem., 2015, 97, 124-141.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.051] [PMID: 25965776]
[14]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[15]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[16]
Aziz-ur-Rehman, ; Siddiqa, A.; Abbasi, M.A.; Rasool, S.; Siddiqui, S.Z.; Ahmad, I.; Afzal, S. Synthesis of some new 5-substituted-2-((6-chloro-3,4-methylenedioxyphenyl)methylthio)-1,3,4-oxadiazole derivatives as suitable antibacterial inhibitors. Bull. Fac. Pharm. Cairo Univ., 2015, 53(1), 37-43.
[http://dx.doi.org/10.1016/j.bfopcu.2014.10.001]
[17]
Kavitha, S.; Kannan, K.; Gnanavel, S. Synthesis, characterization and biological evaluation of novel 2,5 substituted-1,3,4 oxadiazole derivatives. Saudi Pharm. J., 2017, 25(3), 337-345.
[http://dx.doi.org/10.1016/j.jsps.2016.07.004] [PMID: 28344487]
[18]
Nafeesa, K. Aziz-ur-Rehman; Abbasi, M.A.; Siddiqui, S.Z.; Rasool, S.; Shah, S.A.A. Synthesis, characterization and pharmacological evaluation of different 1,3,4-oxadiazole and acetamide derivatives of ethyl nipecotate. Bull. Fac. Pharm. Cairo Univ., 2017, 55(2), 333-343.
[http://dx.doi.org/10.1016/j.bfopcu.2017.06.001]
[19]
Modi, V.; Modi, P. Oxadiazole: Synthesis, characterization and biological activities. J. Saudi Chem. Soc., 2012, 16(3), 327-332.
[http://dx.doi.org/10.1016/j.jscs.2011.12.017]
[20]
Tomi, I.H.R.; Tomma, J.H.; Al-Daraji, A.H.R.; Al-Dujaili, A.H. Synthesis, characterization and comparative study the microbial activity of some heterocyclic compounds containing oxazole and benzothiazole moieties. J. Saudi Chem. Soc., 2015, 19(4), 392-398.
[http://dx.doi.org/10.1016/j.jscs.2012.04.010]
[21]
Bala, S.; Kamboj, S.; Kumar, A. Heterocyclic 1, 3, 4-oxadiazole compounds with diverse biological activities: A comprehensive review. J. Pharm. Res., 2010, 3(12), 2993-2997.
[22]
de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.; de Athayde-Filho, P.F. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: A review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231.
[http://dx.doi.org/10.3390/molecules170910192] [PMID: 22926303]
[23]
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[24]
Zhan, P.; Li, D.; Chen, X.; Liu, X.; De Clercq, E. Functional roles of azoles motif in anti-HIV agents. Curr. Med. Chem., 2011, 18(1), 29-46.
[http://dx.doi.org/10.2174/092986711793979733] [PMID: 21110816]
[25]
Mirza, A.Z. Advancement in the development of heterocyclic nucleosides for the treatment of cancer - A review. Nucleosides Nucleotides Nucleic Acids, 2019, 38(11), 836-857.
[http://dx.doi.org/10.1080/15257770.2019.1615623] [PMID: 31135268]
[26]
Cho, S.M.; Kwon, H.J. Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch. Pharm. Res., 2019, 42(3), 232-243.
[http://dx.doi.org/10.1007/s12272-019-01114-3] [PMID: 30661200]
[27]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[28]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[29]
Kukreti, S.; Cerussi, A.E.; Tanamai, W.; Hsiang, D.; Tromberg, B.J.; Gratton, E. Characterization of metabolic differences between benign and malignant tumors: High-spectral-resolution diffuse optical spectroscopy. Radiology, 2010, 254(1), 277-284.
[http://dx.doi.org/10.1148/radiol.09082134] [PMID: 20032159]
[30]
Nakashima, J.; Ueno, M.; Nakamura, K.; Tachibana, M.; Baba, S.; Deguchi, N.; Tazaki, H.; Murai, M. Differential diagnosis of primary benign and malignant retroperitoneal tumors. Int. J. Urol., 1997, 4(5), 441-446.
[http://dx.doi.org/10.1111/j.1442-2042.1997.tb00282.x] [PMID: 9354943]
[31]
Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem., 2019, 171, 310-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.025] [PMID: 30953881]
[32]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[33]
Ames, B.N.; Gold, L.S.; Willett, W.C. The causes and prevention of cancer. Proc. Natl. Acad. Sci. USA, 1995, 92(12), 5258-5265.
[http://dx.doi.org/10.1073/pnas.92.12.5258] [PMID: 7777494]
[34]
Das Gupta, T.K.; Brasfield, R.D. Benign and malignant tumors and tumor-like conditions of fibrous tissue. CA Cancer J. Clin., 1969, 19(4), 202-210.
[http://dx.doi.org/10.3322/canjclin.19.4.202] [PMID: 4979758]
[35]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for cancer therapy: Inhibitors, antibody- drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[36]
Avanzo, R.E.; Padrón, J.M.; D’Accorso, N.B.; Fascio, M.L. Synthesis and in vitro antiproliferative activities of (5-aryl-1,2,4-oxadiazole-3-yl) methyl d-ribofuranosides. Bioorg. Med. Chem. Lett., 2017, 27(16), 3674-3677.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.015] [PMID: 28716494]
[37]
Duan, Y.T.; Sangani, C.B.; Liu, W.; Soni, K.V.; Yao, Y. New promises to cure cancer and other genetic diseases/disorders: Epi-drugs through epigenetics. Curr. Top. Med. Chem., 2019, 19(12), 972-994.
[http://dx.doi.org/10.2174/1568026619666190603094439] [PMID: 31161992]
[38]
Cai, J.; Wei, H.; Hong, K.H.; Wu, X.; Cao, M.; Zong, X.; Li, L.; Sun, C.; Chen, J.; Ji, M. Discovery and preliminary evaluation of 2-aminobenzamide and hydroxamate derivatives containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors. Eur. J. Med. Chem., 2015, 96, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.002] [PMID: 25874326]
[39]
Cai, J.; Wei, H.; Hong, K.H.; Wu, X.; Zong, X.; Cao, M.; Wang, P.; Li, L.; Sun, C.; Chen, B.; Zhou, G.; Chen, J.; Ji, M. Discovery, bioactivity and docking simulation of Vorinostat analogues containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors and antitumor agents. Bioorg. Med. Chem., 2015, 23(13), 3457-3471.
[http://dx.doi.org/10.1016/j.bmc.2015.04.028] [PMID: 25953722]
[40]
Pidugu, V.R.; Yarla, N.S.; Pedada, S.R.; Kalle, A.M.; Satya, A.K. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity. Bioorg. Med. Chem., 2016, 24(21), 5611-5617.
[http://dx.doi.org/10.1016/j.bmc.2016.09.022] [PMID: 27665180]
[41]
Krasavin, M.; Shetnev, A.; Sharonova, T.; Baykov, S.; Kalinin, S.; Nocentini, A.; Sharoyko, V.; Poli, G.; Tuccinardi, T.; Presnukhina, S.; Tennikova, T.B.; Supuran, C.T. Continued exploration of 1,2,4-oxadiazole periphery for carbonic anhydrase-targeting primary arene sulfonamides: Discovery of subnanomolar inhibitors of membrane-bound hCA IX isoform that selectively kill cancer cells in hypoxic environment. Eur. J. Med. Chem., 2019, 164, 92-105.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.049] [PMID: 30594030]
[42]
Kamal, A.; Reddy, T.S.; Vishnuvardhan, M.V.P.S.; Nimbarte, V.D.; Subba Rao, A.V.; Srinivasulu, V.; Shankaraiah, N. Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem., 2015, 23(15), 4608-4623.
[http://dx.doi.org/10.1016/j.bmc.2015.05.060] [PMID: 26169762]
[43]
Subramanyam, M.; Sreenivasulu, R.; Gundla, R.; Rao, M.V.B.; Rao, K.P. Synthesis, biological evaluation and docking studies of 1,3,4-oxadiazole fused benzothiazole derivatives for anticancer drugs. Lett. Drug Des. Discov., 2018, 15(12), 1299-1307.
[http://dx.doi.org/10.2174/1570180815666180219165119]
[44]
Abdel-Aziz, M.; Metwally, A.K.; Gamal-Eldeen, A.M.; Aly, M.O. 1, 3, 4-oxadiazole-2-thione derivatives; novel approach for anticancer and tubulin polymerization inhibitory activities. Anticancer. Agents Med. Chem., 2016, 16(2), 269-277.
[http://dx.doi.org/10.2174/1871520615666150907093855] [PMID: 26343141]
[45]
Kamal, A.; Srikanth, P.S.; Vishnuvardhan, M.V.; Kumar, G.B.; Suresh Babu, K.; Hussaini, S.M.; Kapure, J.S.; Alarifi, A. Combretastatin linked 1,3,4-oxadiazole conjugates as a Potent tubulin polymerization inhibitors. Bioorg. Chem., 2016, 65, 126-136.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.007] [PMID: 26943479]
[46]
Nieddu, V.; Pinna, G.; Marchesi, I.; Sanna, L.; Asproni, B.; Pinna, G.A.; Bagella, L.; Murineddu, G. Synthesis and antineoplastic evaluation of novel unsymmetrical 1,3,4-oxadiazoles. J. Med. Chem., 2016, 59(23), 10451-10469.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00468] [PMID: 27801583]
[47]
Porta, F.; Facchetti, G.; Ferri, N.; Gelain, A.; Meneghetti, F.; Villa, S.; Barlocco, D.; Masciocchi, D.; Asai, A.; Miyoshi, N.; Marchianò, S.; Kwon, B.M.; Jin, Y.; Gandin, V.; Marzano, C.; Rimoldi, I. An in vivo active 1,2,5-oxadiazole Pt(II) complex: A promising anticancer agent endowed with STAT3 inhibitory properties. Eur. J. Med. Chem., 2017, 131, 196-206.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.017] [PMID: 28324784]
[48]
Wurz, R.P.; Pettus, L.H.; Jackson, C.; Wu, B.; Wang, H.L.; Herberich, B.; Cee, V.; Lanman, B.A.; Reed, A.B.; Chavez, F., Jr; Nixey, T.; Laszlo, J., III; Wang, P.; Nguyen, Y.; Sastri, C.; Guerrero, N.; Winston, J.; Lipford, J.R.; Lee, M.R.; Andrews, K.L.; Mohr, C.; Xu, Y.; Zhou, Y.; Reid, D.L.; Tasker, A.S. The discovery and optimization of aminooxadiazoles as potent Pim kinase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(4), 847-855.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.067] [PMID: 25599837]
[49]
Ullah, H.; Rahim, F.; Taha, M.; Uddin, I.; Wadood, A.; Shah, S.A.A.; Farooq, R.K.; Nawaz, M.; Wahab, Z.; Khan, K.M. Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorg. Chem., 2018, 78, 58-67.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.020] [PMID: 29533215]
[50]
Javid, M.T.; Rahim, F.; Taha, M.; Nawaz, M.; Wadood, A.; Ali, M.; Mosaddik, A.; Shah, S.A.A.; Farooq, R.K. Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorg. Chem., 2018, 79, 323-333.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.011] [PMID: 29803079]
[51]
Bajaj, S.; Roy, P.P.; Singh, J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput. Biol. Chem., 2018, 76, 151-160.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.013] [PMID: 30015176]
[52]
Sun, J.; Ren, S.Z.; Lu, X.Y.; Li, J.J.; Shen, F.Q.; Xu, C.; Zhu, H.L. Discovery of a series of 1,3,4-oxadiazole-2(3H)-thione derivatives containing piperazine skeleton as potential FAK inhibitors. Bioorg. Med. Chem., 2017, 25(9), 2593-2600.
[http://dx.doi.org/10.1016/j.bmc.2017.03.038] [PMID: 28363444]
[53]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur. J. Med. Chem., 2018, 155, 905-924.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.049] [PMID: 29966916]
[54]
He, X.; Li, X.Y.; Liang, J.W.; Cao, C.; Li, S.; Zhang, T.J.; Meng, F.H. Design, synthesis and anticancer activities evaluation of novel 5H-dibenzo[b,e]azepine-6,11-dione derivatives containing 1,3,4-oxadiazole units. Bioorg. Med. Chem. Lett., 2018, 28(5), 847-852.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.008] [PMID: 29456106]
[55]
Subba Rao, A.V.; Vishnu Vardhan, M.V.; Subba Reddy, N.V.; Srinivasa Reddy, T.; Shaik, S.P.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorg. Chem., 2016, 69, 7-19.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.002] [PMID: 27656775]
[56]
Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Pasha, S.; Yar, M.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur. J. Med. Chem., 2017, 126, 853-869.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.014] [PMID: 27987485]
[57]
Lakshmithendral, K.; Saravanan, K.; Elancheran, R.; Archana, K.; Manikandan, N.; Arjun, H.A.; Ramanathan, M.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur. J. Med. Chem., 2019, 168, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.033] [PMID: 30798049]
[58]
Ziedan, N.I.; Hamdy, R.; Cavaliere, A.; Kourti, M.; Prencipe, F.; Brancale, A.; Jones, A.T.; Westwell, A.D. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor. Chem. Biol. Drug Des., 2017, 90(1), 147-155.
[http://dx.doi.org/10.1111/cbdd.12936] [PMID: 28067996]
[59]
Khanam, R.; Ahmad, K.; Hejazi, I.I.; Siddique, I.A.; Kumar, V.; Bhat, A.R.; Azam, A.; Athar, F. Inhibitory growth evaluation and apoptosis induction in MCF-7 cancer cells by new 5-aryl-2-butylthio-1,3,4-oxadiazole derivatives. Cancer Chemother. Pharmacol., 2017, 80(5), 1027-1042.
[http://dx.doi.org/10.1007/s00280-017-3414-6] [PMID: 28815320]
[60]
Özdemir, A.; Sever, B.; Altıntop, M.D.; Temel, H.E.; Atlı, Ö.; Baysal, M.; Demirci, F. Synthesis and evaluation of new oxadiazole, thiadiazole, and triazole derivatives as potential anticancer agents targeting MMP-9. Molecules, 2017, 22(7), 1109.
[http://dx.doi.org/10.3390/molecules22071109] [PMID: 28677624]
[61]
Liu, X.; Song, X.; Liu, Y.; Xie, M.; Yu, W.; Yan, S.; Lin, J.; Jin, Y. Novel 5H-[1,2,4]oxadiazolo[4,5-a]pyrimidin-5-one derivatives as antibacterial and anticancer agents: Synthesis and biological evaluation. Tetrahedron Lett., 2018, 59(42), 3767-3772.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.011]
[62]
Rubino, S.; Pibiri, I.; Costantino, C.; Buscemi, S.; Girasolo, M.A.; Attanzio, A.; Tesoriere, L. Synthesis of platinum complexes with 2-(5-perfluoroalkyl-1,2,4-oxadiazol-3yl)-pyridine and 2-(3-perfluoroalkyl-1-methyl-1,2,4-triazole-5yl)-pyridine ligands and their in vitro antitumor activity. J. Inorg. Biochem., 2016, 155, 92-100.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.11.020] [PMID: 26684582]
[63]
Gamal El-Din, M.M.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C.H. Synthesis and broad-spectrum antiproliferative activity of diarylamides and diarylureas possessing 1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(8), 1692-1699.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.001] [PMID: 25801936]
[64]
Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.058] [PMID: 27156770]
[65]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[66]
Gamal El-Din, M.M.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C.H. Synthesis and in vitro antiproliferative activity of new 1,3,4-oxadiazole derivatives possessing sulfonamide moiety. Eur. J. Med. Chem., 2015, 90, 45-52.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.011] [PMID: 25461310]
[67]
Zhao, J.J.; Wang, X.F.; Li, B.L.; Zhang, R.L.; Li, B.; Liu, Y.M.; Li, C.W.; Liu, J.B.; Chen, B.Q. Synthesis and in vitro antiproliferative evaluation of novel nonsymmetrical disulfides bearing 1,3,4-oxadiazole moiety. Bioorg. Med. Chem. Lett., 2016, 26(18), 4414-4416.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.014] [PMID: 27542307]
[68]
Basoglu, A.; Dirkmann, S.; Zahedi Golpayegani, N.; Vortherms, S.; Tentrop, J.; Nowottnik, D.; Prinz, H.; Fröhlich, R.; Müller, K. Oxadiazole-substituted naphtho[2,3-b]thiophene-4,9-diones as potent inhibitors of keratinocyte hyperproliferation. Structure-activity relationships of the tricyclic quinone skeleton and the oxadiazole substituent. Eur. J. Med. Chem., 2017, 134, 119-132.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.084] [PMID: 28410493]
[69]
Caneschi, W.; Enes, K.B.; Carvalho de Mendonça, C.; de Souza Fernandes, F.; Miguel, F.B.; da Silva Martins, J.; Le Hyaric, M.; Pinho, R.R.; Duarte, L.M.; Leal de Oliveira, M.A.; Dos Santos, H.F.; Paz Lopes, M.T.; Dittz, D.; Silva, H.; Costa Couri, M.R. Synthesis and anticancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2019, 165, 18-30.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.001] [PMID: 30654237]
[70]
Santosh, R.; Prabhu, A.; Selvam, M.K.; Krishna, P.M.; Nagaraja, G.K.; Rekha, P.D. Design, synthesis, and pharmacology of some oxadiazole and hydroxypyrazoline hybrids bearing thiazoyl scaffold: Antiproliferative activity, molecular docking and DNA binding studies. Heliyon, 2019, 5(2), e01255.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01255] [PMID: 30886919]
[71]
Li, Y.B.; Yan, X.; Li, R.D.; Liu, P.; Sun, S.Q.; Wang, X.; Cui, J.R.; Zhou, D.M.; Ge, Z.M.; Li, R.T. Discovery of novel heteroarylmethylcarbamodithioates as potent anticancer agents: Synthesis, structure-activity relationship analysis and biological evaluation. Eur. J. Med. Chem., 2016, 112, 217-230.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.015] [PMID: 26900655]
[72]
Chaves, J.D.S.; Tunes, L.G. de J Franco, C.H.; Francisco, T.M.; Corrêa, C.C.; Murta, S.M.F.; Monte-Neto, R.L.; Silva, H.; Fontes, A.P.S.; de Almeida, M.V. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. Eur. J. Med. Chem., 2017, 127, 727-739.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.052] [PMID: 27823888]
[73]
El-Sayed, W.A.; El-Sofany, W.I.; Hussein, H.A.R.; Fathy, N.M. Synthesis and anticancer activity of new [(Indolyl)pyrazolyl]-1,3,4-oxadiazole thioglycosides and acyclic nucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2017, 36(7), 474-495.
[http://dx.doi.org/10.1080/15257770.2017.1327665] [PMID: 28613111]
[74]
Simner, P.J.; Miller, S.; Carroll, K.C. Understading the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin. Infect. Dis., 2018, 66(5), 778-788.
[http://dx.doi.org/10.1093/cid/cix881] [PMID: 29040428]
[75]
Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci., 2015, 16(2), 3626-3655.
[http://dx.doi.org/10.3390/ijms16023626] [PMID: 25667977]
[76]
Fan, Z.; Senapati, D.; Khan, S.A.; Singh, A.K.; Hamme, A.; Yust, B.; Sardar, D.; Ray, P.C. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chemistry, 2013, 19(8), 2839-2847.
[http://dx.doi.org/10.1002/chem.201202948] [PMID: 23296491]
[77]
Douglas, A.P.; Chen, S.C-A.; Slavin, M.A. Emerging infections caused by non-Aspergillus filamentous fungi. Clin. Microbiol. Infect., 2016, 22(8), 670-680.
[http://dx.doi.org/10.1016/j.cmi.2016.01.011] [PMID: 26812445]
[78]
Menozzi, G.; Merello, L.; Fossa, P.; Schenone, S.; Ranise, A.; Mosti, L.; Bondavalli, F.; Loddo, R.; Murgioni, C.; Mascia, V.; La Colla, P.; Tamburini, E. Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles. Bioorg. Med. Chem., 2004, 12(20), 5465-5483.
[http://dx.doi.org/10.1016/j.bmc.2004.07.029] [PMID: 15388173]
[79]
Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61.
[http://dx.doi.org/10.2147/IDR.S55778] [PMID: 25878509]
[80]
Chu, D.T.; Plattner, J.J.; Katz, L. New directions in antibacterial research. J. Med. Chem., 1996, 39(20), 3853-3874.
[http://dx.doi.org/10.1021/jm960294s] [PMID: 8831751]
[81]
Chua, T.; Moore, C.L.; Perri, M.B.; Donabedian, S.M.; Masch, W.; Vager, D.; Davis, S.L.; Lulek, K.; Zimnicki, B.; Zervos, M.J. Molecular epidemiology of methicillin-resistant Staphylococcus aureus bloodstream isolates in urban Detroit. J. Clin. Microbiol., 2008, 46(7), 2345-2352.
[http://dx.doi.org/10.1128/JCM.00154-08] [PMID: 18508934]
[82]
Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Izadi, M.; Ajami, M.; Nabavi, S.M. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci. Technol., 2016, 52, 49-56.
[http://dx.doi.org/10.1016/j.tifs.2016.03.010]
[83]
Gupta, A.; Mumtaz, S.; Li, C.H.; Hussain, I.; Rotello, V.M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev., 2019, 48(2), 415-427.
[http://dx.doi.org/10.1039/C7CS00748E] [PMID: 30462112]
[84]
Leemans, E.; Mahasenan, K.V.; Kumarasiri, M.; Spink, E.; Ding, D.; O’Daniel, P.I.; Boudreau, M.A.; Lastochkin, E.; Testero, S.A.; Yamaguchi, T.; Lee, M.; Hesek, D.; Fisher, J.F.; Chang, M.; Mobashery, S. Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials. Bioorg. Med. Chem. Lett., 2016, 26(3), 1011-1015.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.041] [PMID: 26733473]
[85]
Neeraja, P.; Srinivas, S.; Mukkanti, K.; Dubey, P.K.; Pal, S. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation. Bioorg. Med. Chem. Lett., 2016, 26(21), 5212-5217.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.059] [PMID: 27727124]
[86]
Khalilullah, H.; Khan, S.; Nomani, M.S.; Ahmed, B. Synthesis, characterization and antimicrobial activity of benzodioxane ring containing 1,3,4-oxadiazole derivatives. Arab. J. Chem., 2016, 9, S1029-S1035.
[http://dx.doi.org/10.1016/j.arabjc.2011.11.009]
[87]
Ur-Rehman, A.; Gul, S.; Abbasi, M.A.; Nafeesa, K.; Akhtar, M.N.; Khan, K.M.; Ahmad, I.; Afzal, S. Synthesis and evaluation of some new 5-substituted-1,3,4- oxadiazol-2yl-4-(morpholin-4yl sulfonyl)benzyl sulfides as antibacterial agent. Trop. J. Pharm. Res., 2015, 14(11), 2047-2053.
[http://dx.doi.org/10.4314/tjpr.v14i11.14]
[88]
Zheng, Z.; Liu, Q.; Kim, W.; Tharmalingam, N.; Fuchs, B.B.; Mylonakis, E. Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of Staphylococcus aureus. Future Med. Chem., 2018, 10(3), 283-296.
[http://dx.doi.org/10.4155/fmc-2017-0159] [PMID: 29334249]
[89]
Jakopin, Ž.; Ilaš, J.; Barančoková, M.; Brvar, M.; Tammela, P.; Sollner Dolenc, M.; Tomašič, T.; Kikelj, D. Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors. Eur. J. Med. Chem., 2017, 130, 171-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.046] [PMID: 28246042]
[90]
He, H.; Wang, W.; Zhou, Y.; Xia, Q.; Ren, Y.; Feng, J.; Peng, H.; He, H.; Feng, L. Rational design, synthesis and biological evaluation of 1,3,4-oxadiazole pyrimidine derivatives as novel pyruvate dehydrogenase complex E1 inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1879-1888.
[http://dx.doi.org/10.1016/j.bmc.2016.03.011] [PMID: 26972920]
[91]
de Almeida, A.M.; de Oliveira, B.A.; de Castro, P.P.; de Mendonça, C.C.; Furtado, R.A.; Nicolella, H.D.; da Silva, V.L.; Diniz, C.G.; Tavares, D.C.; Silva, H.; de Almeida, M.V. Lipophilic gold(I) complexes with 1,3,4-oxadiazol-2-thione or 1,3-thiazolidine-2-thione moieties: Synthesis and their cytotoxic and antimicrobial activities. Biometals, 2017, 30(6), 841-857.
[http://dx.doi.org/10.1007/s10534-017-0046-6] [PMID: 28840394]
[92]
Xie, X.; Cong, W.; Zhao, F.; Li, H.; Xin, W.; Hou, G.; Wang, C. Synthesis, physiochemical property and antimicrobial activity of novel quaternary ammonium salts. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 98-105.
[http://dx.doi.org/10.1080/14756366.2017.1396456] [PMID: 29148294]
[93]
Jain, P.P.; Degani, M.S.; Raju, A.; Anantram, A.; Seervi, M.; Sathaye, S.; Ray, M.; Rajan, M.G.R. Identification of a novel class of quinoline-oxadiazole hybrids as anti-tuberculosis agents. Bioorg. Med. Chem. Lett., 2016, 26(2), 645-649.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.057] [PMID: 26675440]
[94]
Fernandes, G.F.D.S.; de Souza, P.C.; Marino, L.B.; Chegaev, K.; Guglielmo, S.; Lazzarato, L.; Fruttero, R.; Chung, M.C.; Pavan, F.R.; Dos Santos, J.L. Synthesis and biological activity of furoxan derivatives against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2016, 123, 523-531.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.039] [PMID: 27508879]
[95]
Vosátka, R.; Krátký, M.; Švarcová, M.; Janoušek, J.; Stolaříková, J.; Madacki, J.; Huszár, S.; Mikušová, K.; Korduláková, J.; Trejtnar, F.; Vinšová, J. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. Eur. J. Med. Chem., 2018, 151, 824-835.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.017] [PMID: 29679902]
[96]
Mansoori, M.H.; Khatik, G.L.; Mishra, V. Synthesis and pharmacological evaluation of pyridinyl-1,3,4-oxadiazolyl-ethanone derivatives as antimicrobial, antifungal and antitubercular agents. Med. Chem. Res., 2017, 27(3), 744-755.
[http://dx.doi.org/10.1007/s00044-017-2098-0]
[97]
Desai, N.C.; Somani, H.; Trivedi, A.; Bhatt, K.; Nawale, L.; Khedkar, V.M.; Jha, P.C.; Sarkar, D. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(7), 1776-1783.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.043] [PMID: 26920799]
[98]
Roh, J.; Karabanovich, G.; Vlčková, H.; Carazo, A.; Němeček, J.; Sychra, P.; Valášková, L.; Pavliš, O.; Stolaříková, J.; Klimešová, V.; Vávrová, K.; Pávek, P.; Hrabálek, A. Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorg. Med. Chem., 2017, 25(20), 5468-5476.
[http://dx.doi.org/10.1016/j.bmc.2017.08.010] [PMID: 28835350]
[99]
Gholap, S.; Tambe, M.; Nawale, L.; Sarkar, D.; Sangshetti, J.; Damale, M. Design, synthesis, and pharmacological evaluation of fluorinated azoles as anti-tubercular agents. Arch. Pharm. Chem. Life Sci., 2018, 351, e1700294.
[100]
Sajja, Y.; Vanguru, S.; Vulupala, H.R.; Nagarapu, L.; Perumal, Y.; Sriram, D.; Nanubolu, J.B. Design, synthesis, and in vitro antituberculosis activity of benzo[6,7]cyclohepta[1,2-b]pyridine-1,3,4-oxadiazole derivatives. Chem. Biol. Drug Des., 2017, 90(4), 496-500.
[http://dx.doi.org/10.1111/cbdd.12969] [PMID: 28267891]
[101]
Christoff, R.M.; Murray, G.L.; Kostoulias, X.P.; Peleg, A.Y.; Abbott, B.M. Synthesis of novel 1,2,5-oxadiazoles and evaluation of action against Acinetobacter baumannii. Bioorg. Med. Chem., 2017, 25(24), 6267-6272.
[http://dx.doi.org/10.1016/j.bmc.2017.08.015] [PMID: 29032931]
[102]
Song, X.; Li, P.; Li, M.; Yang, A.; Yu, L.; Luo, L.; Hu, D.; Song, B. Synthesis and investigation of the antibacterial activity and action mechanism of 1,3,4-oxadiazole thioether derivatives. Pestic. Biochem. Physiol., 2018, 147, 11-19.
[http://dx.doi.org/10.1016/j.pestbp.2017.10.011] [PMID: 29933979]
[103]
Li, P.; Hu, D.; Xie, D.; Chen, J.; Jin, L.; Song, B. Design, synthesis, and evaluation of new sulfone derivatives containing a 1,3,4-oxadiazole moiety as active antibacterial agents. J. Agric. Food Chem., 2018, 66(12), 3093-3100.
[http://dx.doi.org/10.1021/acs.jafc.7b06061] [PMID: 29502398]
[104]
Patel, N.B.; Patel, J.N.; Purohit, A.C.; Patel, V.M.; Rajani, D.P.; Moo-Puc, R.; Lopez-Cedillo, J.C.; Nogueda-Torres, B.; Rivera, G. In vitro and in vivo assessment of newer quinoxaline-oxadiazole hybrids as antimicrobial and antiprotozoal agents. Int. J. Antimicrob. Agents, 2017, 50(3), 413-418.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.04.016] [PMID: 28687457]
[105]
Sattar, A.; Rehman, A.-R.; Abbasi, M.A.; Siddiqi, S.Z.; Nafeesa, K.; Ahmad, I.; Rehman, A.-U.-R.; Abbasi, M.A.; Siddiqi, S.Z.; Nafeesa, K.; Ahmad, I. Synthesis and antibacterial study of some s-substituted aliphatic analogues of 2-mercapto-5-(1-(4-toluenesulfonyl) piperidin-4-yl)-1,3,4-oxadiazole. Trop. J. Pharm. Res., 2016, 15(6), 1267-1274.
[http://dx.doi.org/10.4314/tjpr.v15i6.20]
[106]
Rayam, P.; Polkam, N.; Kummari, B.; Banothu, V.; Gandamalla, D.; Yellu, N.R.; Anireddy, J.S. Synthesis and biological evaluation of new ibuprofen- 1,3,4- oxadiazole- 1,2,3-triazole hybrids. J. Heterocycl. Chem., 2018, 56(1), 296-305.
[http://dx.doi.org/10.1002/jhet.3409]
[107]
Karad, S.C.; Purohit, V.B.; Thummar, R.P.; Vaghasiya, B.K.; Kamani, R.D.; Thakor, P.; Thakkar, V.R.; Thakkar, S.S.; Ray, A.; Raval, D.K. Synthesis and biological screening of novel 2-morpholinoquinoline nucleus clubbed with 1,2,4-oxadiazole motifs. Eur. J. Med. Chem., 2017, 126, 894-909.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.016] [PMID: 27988464]
[108]
Desai, N.C.; Kotadiya, G.M.; Trivedi, A.R.; Khedkar, V.M.; Jha, P.C. Synthesis, biological valuation, and QSAR studies of novel pyrazole bearing pyridyl oxadiazole analogues as potential antimicrobial agents. Med. Chem. Res., 2016, 25(4), 712-727.
[http://dx.doi.org/10.1007/s00044-016-1511-4]
[109]
Dinesha; Viveka, S.; Chandra, S.; Nagaraja, G.K. Synthesis, characterization, and pharmacological screening of new 1,3,4-oxadiazole derivatives possessing 3-fluoro-4-methoxyphenyl moiety. Monatsh. Chem., 2014, 146(1), 207-214.
[110]
Sakram, B.; Sonyanaik, B.; Ashok, K.; Rambabu, S.; Ravi, D.; Kurumanna, A.; Shyam, P. Eco-friendly synthesis of 1,8-naphthyridine 5-aryl-1,3,4-oxadiazole derivatives under solvent-free solid-state conditions and their antimicrobial activity. Res. Chem. Intermed., 2016, 43(3), 1881-1892.
[http://dx.doi.org/10.1007/s11164-016-2736-z]
[111]
Shetty, P.; Praveen, B.M.; Raghavendra, M.; Manjunath, K.; Cheruku, S. Synthesis and antimicrobial evaluation of novel 4-amino-6-(1,3,4-oxadiazolo/1,3,4-thiadiazolo)-pyrimidine derivatives. Mol. Divers., 2016, 20(2), 391-398.
[http://dx.doi.org/10.1007/s11030-015-9640-0] [PMID: 26498121]
[112]
Ramana, K.V.; Fadl, A.A.; Tammali, R.; Reddy, A.B.; Chopra, A.K.; Srivastava, S.K. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J. Biol. Chem., 2006, 281(44), 33019-33029.
[http://dx.doi.org/10.1074/jbc.M603819200] [PMID: 16956889]
[113]
Leu, T.H.; Charoenfuprasert, S.; Yen, C.K.; Fan, C.W.; Maa, M.C. Lipopolysaccharide-induced c-Src expression plays a role in nitric oxide and TNFalpha secretion in macrophages. Mol. Immunol., 2006, 43(4), 308-316.
[http://dx.doi.org/10.1016/j.molimm.2005.03.015] [PMID: 15869794]
[114]
Rui, Y.; Liu, X.; Li, N.; Jiang, Y.; Chen, G.; Cao, X.; Wang, J. PECAM-1 ligation negatively regulates TLR4 signaling in macrophages. J. Immunol., 2007, 179(11), 7344-7351.
[http://dx.doi.org/10.4049/jimmunol.179.11.7344] [PMID: 18025177]
[115]
Shen, T.; Yang, W.S.; Yi, Y.S.; Sung, G.H.; Rhee, M.H.; Poo, H.; Kim, M.Y.; Kim, K.W.; Kim, J.H.; Cho, J.Y. AP-1/IRF-3 targeted anti-inflammatory activity of andrographolide isolated from Andrographis paniculata. Evid. Based Complement. Alternat. Med., 2013, 2013, 210736.
[http://dx.doi.org/10.1155/2013/210736] [PMID: 23840248]
[116]
Lee, Y.G.; Lee, W.M.; Kim, J.Y.; Lee, J.Y.; Lee, I.K.; Yun, B.S.; Rhee, M.H.; Cho, J.Y. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells. Br. J. Pharmacol., 2008, 154(4), 852-863.
[http://dx.doi.org/10.1038/bjp.2008.136] [PMID: 18454171]
[117]
Lee, A.K.; Sung, S.H.; Kim, Y.C.; Kim, S.G. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br. J. Pharmacol., 2003, 139(1), 11-20.
[http://dx.doi.org/10.1038/sj.bjp.0705231] [PMID: 12746218]
[118]
Takimoto, Y.; Qian, H.Y.; Yoshigai, E.; Okumura, T.; Ikeya, Y.; Nishizawa, M. Gomisin N in the herbal drug gomishi (Schisandra chinensis) suppresses inducible nitric oxide synthase gene via C/EBPβ and NF-κB in rat hepatocytes. Nitric Oxide, 2013, 28, 47-56.
[http://dx.doi.org/10.1016/j.niox.2012.10.003] [PMID: 23085209]
[119]
Lewis, R.S.; Kolesnik, T.B.; Kuang, Z.; D’Cruz, A.A.; Blewitt, M.E.; Masters, S.L.; Low, A.; Willson, T.; Norton, R.S.; Nicholson, S.E. TLR regulation of SPSB1 controls inducible nitric oxide synthase induction. J. Immunol., 2011, 187(7), 3798-3805.
[http://dx.doi.org/10.4049/jimmunol.1002993] [PMID: 21876038]
[120]
Fang, Y.; Kang, Y.; Zou, H.; Cheng, X.; Xie, T.; Shi, L.; Zhang, H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia, 2018, 124, 92-102.
[http://dx.doi.org/10.1016/j.fitote.2017.10.015] [PMID: 29066299]
[121]
Yatam, S.; Gundla, R.; Jadav, S.S.; Pedavenkatagari, N.; Chimakurthy, J.; Rani, B.N.; Kedam, T. Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX-2/5-LOX inhibitors. J. Mol. Struct., 2018, 1159, 193-204.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.060]
[122]
Wei, Z.Y.; Chi, K.Q.; Wang, K.S.; Wu, J.; Liu, L.P.; Piao, H.R. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1797-1803.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.021] [PMID: 29678461]
[123]
Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.; Kaoud, T.S.; Ahmed, A.F. Novel 1,3,4-oxadiazole/oxime hybrids: Synthesis, docking studies and investigation of anti-inflammatory, ulcerogenic liability and analgesic activities. Bioorg. Chem., 2016, 69, 48-63.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.005] [PMID: 27669120]
[124]
Banerjee, A.G.; Das, N.; Shengule, S.A.; Sharma, P.A.; Srivastava, R.S.; Shrivastava, S.K. Design, synthesis, evaluation and molecular modelling studies of some novel 5,6-diphenyl-1,2,4-triazin-3(2H)-ones bearing five-member heterocyclic moieties as potential COX-2 inhibitors: A hybrid pharmacophore approach. Bioorg. Chem., 2016, 69, 102-120.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.003] [PMID: 27750057]
[125]
Rathore, A.; Sudhakar, R.; Ahsan, M.J.; Ali, A.; Subbarao, N.; Jadav, S.S.; Umar, S.; Yar, M.S. In vivo anti-inflammatory activity and docking study of newly synthesized benzimidazole derivatives bearing oxadiazole and morpholine rings. Bioorg. Chem., 2017, 70, 107-117.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.014] [PMID: 27923497]
[126]
Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.M.; Kaoud, T.; Ahmed, A.F.F. New 1,3,4-oxadiazole/oxime hybrids: Design, synthesis, anti-inflammatory, COX inhibitory activities and ulcerogenic liability. Bioorg. Chem., 2017, 74, 15-29.
[http://dx.doi.org/10.1016/j.bioorg.2017.06.003] [PMID: 28738249]
[127]
Banerjee, A.G.; Das, N.; Shengule, S.A.; Srivastava, R.S.; Shrivastava, S.K. Synthesis, characterization, evaluation and molecular dynamics studies of 5, 6-diphenyl-1,2,4-triazin-3(2H)-one derivatives bearing 5-substituted 1,3,4-oxadiazole as potential anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2015, 101, 81-95.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.020] [PMID: 26117820]
[128]
Puttaswamy, N.; Malojiao, V.H.; Mohammed, Y.H.E.; Sherapura, A.; Prabhakar, B.T.; Khanum, S.A. Synthesis and amelioration of inflammatory paw edema by novel benzophenone appended oxadiazole derivatives by exhibiting cyclooxygenase-2 antagonist activity. Biomed. Pharmacother., 2018, 103, 1446-1455.
[http://dx.doi.org/10.1016/j.biopha.2018.04.167] [PMID: 29864929]
[129]
Taha, M.; Baharudin, M.S.; Ismail, N.H.; Selvaraj, M.; Salar, U.; Alkadi, K.A.; Khan, K.M. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors. Bioorg. Chem., 2017, 71, 86-96.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.015] [PMID: 28160943]
[130]
Shah, S. Arshia; Kazmi, N.S.; Jabeen, A.; Faheem, A.; Dastagir, N.; Ahmed, T.; Khan, K.M.; Ahmed, S.; Raza, A.; Perveen, S. Diclofenac 1,3,4-oxadiazole derivatives; Biology-Oriented Drug Synthesis (BIODS) in search of better non-steroidal, non-acid antiinflammatory agents. Med. Chem., 2018, 14(7), 674-687.
[http://dx.doi.org/10.2174/1573406414666180321141555] [PMID: 29564980]
[131]
Kameshwar, V.H. R, K.J.; Priya, B.S.; Swamy, S.N. Synthesis, characterization and bioactivity studies of novel 1,3,4-oxadiazole small molecule that targets basic phospholipase A2 from Vipera russelli. Mol. Cell. Biochem., 2017, 426(1-2), 161-175.
[http://dx.doi.org/10.1007/s11010-016-2888-6] [PMID: 27928710]
[132]
Benmansour, F.; Eydoux, C.; Querat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.C.; Barral, K. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.046] [PMID: 26774922]
[133]
Dos Santos Filho, J.M. de Queiroz e Silva, D.M.A.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Challal, S.; Wolfender, J.L.; Queiroz, E.F.; Soares, M.B.P. Conjugation of N-acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorg. Med. Chem., 2016, 24(22), 5693-5701.
[http://dx.doi.org/10.1016/j.bmc.2016.09.013] [PMID: 27667552]
[134]
Dai, H.; Chen, J.; Li, G.; Ge, S.; Shi, Y.; Fang, Y.; Ling, Y. Design, synthesis, and bioactivities of novel oxadiazole-substituted pyrazole oximes. Bioorg. Med. Chem. Lett., 2017, 27(4), 950-953.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.083] [PMID: 28108247]
[135]
Wu, W.; Chen, Q.; Tai, A.; Jiang, G.; Ouyang, G. Synthesis and antiviral activity of 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(10), 2243-2246.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.069] [PMID: 25900217]
[136]
Parizadeh, N.; Alipour, E.; Soleymani, S.; Zabihollahi, R.; Aghasadeghi, M.R.; Hajimahdi, Z.; Zarghi, A. Synthesis of novel 3-(5-(alkyl/arylthio)-1,3,4-oxadiazol-2-yl)-8-phenylquinolin-4(1h)-one derivatives as anti-HIV Agents. Phosphorus Sulfur Silicon Relat. Elem., 2017, 193(4), 225-231.
[http://dx.doi.org/10.1080/10426507.2017.1394302]
[137]
Zhang, Y.; Liu, X.H.; Zhan, Y.Z.; Zhang, L.Y.; Li, Z.M.; Li, Y.H.; Zhang, X.; Wang, B.L. Synthesis and biological activities of novel 5-substituted-1,3,4-oxadiazole Mannich bases and bis-Mannich bases as ketol-acid reductoisomerase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(19), 4661-4665.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.059] [PMID: 27575481]
[138]
Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J.F.N. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem., 2015, 23(15), 4172-4180.
[http://dx.doi.org/10.1016/j.bmc.2015.06.053] [PMID: 26164624]
[139]
Çavuşoğlu, B.K.; Yurttaş, L.; Cantürk, Z. The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species. Eur. J. Med. Chem., 2018, 144, 255-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.020] [PMID: 29274492]
[140]
Zhang, Z.J.; Jiang, Z.Y.; Zhu, Q.; Zhong, G.H. Discovery of β-carboline oxadiazole derivatives as fungicidal agents against rice sheath blight. J. Agric. Food Chem., 2018, 66(37), 9598-9607.
[http://dx.doi.org/10.1021/acs.jafc.8b02124] [PMID: 30134651]
[141]
Chen, J.; Chen, Y.; Gan, X.; Song, B.; Hu, D.; Song, B. Synthesis, nematicidal evaluation, and 3D-QSAR analysis of novel 1,3,4-oxadiazole-cinnamic acid hybrids. J. Agric. Food Chem., 2018, 66(37), 9616-9623.
[http://dx.doi.org/10.1021/acs.jafc.8b03020] [PMID: 30145894]
[142]
Bagul, S.D.; Rajput, J.D.; Srivastava, C.; Bendre, R.S. Insect growth regulatory activity of carvacrol-based 1,3,4-thiadiazoles and 1,3,4-oxadiazoles. Mol. Divers., 2018, 22(3), 647-655.
[http://dx.doi.org/10.1007/s11030-018-9823-6] [PMID: 29572759]
[143]
Liao, J.; Yang, F.; Zhang, L.; Chai, X.; Zhao, Q.; Yu, S.; Zou, Y.; Meng, Q.; Wu, Q. Synthesis and biological evaluation of novel fluconazole analogues bearing 1,3,4-oxadiazole moiety as potent antifungal agents. Arch. Pharm. Res., 2015, 38(4), 470-479.
[http://dx.doi.org/10.1007/s12272-014-0378-5] [PMID: 24838380]
[144]
Zhang, Z.J.; Zhang, J.J.; Jiang, Z.Y.; Zhong, G.H. Design, synthesis and bioactivity evaluation of novel β-carboline 1,3,4-oxadiazole derivatives. Molecules, 2017, 22(11), 1811.
[http://dx.doi.org/10.3390/molecules22111811] [PMID: 29109386]
[145]
Wen, L.; Jian, W.; Shang, J.; He, D. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. Pest Manag. Sci., 2019, 75(4), 1123-1130.
[http://dx.doi.org/10.1002/ps.5229] [PMID: 30284404]
[146]
Jian, W.; He, D.; Song, S. Synthesis, biological evaluation, and molecular modeling studies of new oxadiazole-stilbene hybrids against phytopathogenic fungi. Sci. Rep., 2016, 6(1), 31045.
[http://dx.doi.org/10.1038/srep31045] [PMID: 27530962]
[147]
Wang, X.; Yan, J.; Wang, M.; Liu, M.; Zhang, J.; Chen, L.; Xue, W. Synthesis and three-dimensional quantitative structure-activity relationship study of quinazoline derivatives containing a 1,3,4-oxadiazole moiety as efficient inhibitors against Xanthomonas axonopodis pv. citri. Mol. Divers., 2018, 22(4), 791-802.
[http://dx.doi.org/10.1007/s11030-018-9837-0] [PMID: 29808346]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy