Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

The Impact of Uremic Toxins on Alzheimer's Disease

Author(s): Yuqi Zheng, Bin Ji, Sijun Chen, Rong Zhou* and Ruiqing Ni*

Volume 19, Issue 2, 2022

Published on: 08 March, 2022

Page: [104 - 118] Pages: 15

DOI: 10.2174/1567205019666220120113305

Price: $65

Abstract

Alzheimer's disease (AD) is the most common type of dementia, pathologically characterized by the accumulation of senile plaques and neurofibrillary tangles. Chronic kidney disease (CKD) is highly prevalent in the elderly population closely associated with the occurrence of dementia. Recent epidemiological and experimental studies suggest a potential association of CKD with AD. Both diseases share a panel of identical risk factors, such as type 2 diabetes and hypertension. However, the relationship between CKD and AD is unclear. Lower clearance of a panel of uremic toxin including cystatin- C, guanidine, and adiponectin due to CKD is implied to contribute to AD pathogenesis. In this review, we summarize the current evidence from epidemiological, experimental, and clinical studies on the potential contribution of uremic toxins to AD pathogenesis. We describe outstanding questions and propose an outlook on the link between uremic toxins and AD.

Keywords: Alzheimer’s disease, amyloid, chronic kidney disease, inflammation, tau, uremic toxins.

Next »
[1]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[2]
Zhu Y, Liu H, Lu XL, et al. Prevalence of dementia in the People’s Republic of China from 1985 to 2015: A systematic review and meta-regression analysis. BMC Public Health 2019; 19(1): 578.
[http://dx.doi.org/10.1186/s12889-019-6840-z] [PMID: 31092218]
[3]
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020; 395(10225): 709-33.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[4]
Xue L, Lou Y, Feng X, Wang C, Ran Z, Zhang X. Prevalence of chronic kidney disease and associated factors among the Chinese population in Taian, China. BMC Nephrol 2014; 15: 205.
[http://dx.doi.org/10.1186/1471-2369-15-205] [PMID: 25528680]
[5]
Wang M, Ding D, Zhao Q, et al. Kidney function and dementia risk in community-dwelling older adults: The shanghai aging study. Alzheimers Res Ther 2021; 13(1): 21.
[http://dx.doi.org/10.1186/s13195-020-00729-9] [PMID: 33430940]
[6]
Etgen T, Chonchol M, Förstl H, Sander D. Chronic kidney disease and cognitive impairment: A systematic review and meta-analysis. Am J Nephrol 2012; 35(5): 474-82.
[http://dx.doi.org/10.1159/000338135] [PMID: 22555151]
[7]
Morris JC. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993; 43(11): 2412-4.
[http://dx.doi.org/10.1212/WNL.43.11.2412-a] [PMID: 8232972]
[8]
Wu JJ, Weng SC, Liang CK, et al. Effects of kidney function, serum albumin and hemoglobin on dementia severity in the oldest old people with newly diagnosed Alzheimer’s disease in a residential aged care facility: A cross-sectional study. BMC Geriatr 2020; 20(1): 391.
[http://dx.doi.org/10.1186/s12877-020-01789-0] [PMID: 33028210]
[9]
Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012; 23(7): 1258-70.
[http://dx.doi.org/10.1681/ASN.2011121175] [PMID: 22626821]
[10]
Meert N, Schepers E, De Smet R, et al. Inconsistency of reported uremic toxin concentrations. Artif Organs 2007; 31(8): 600-11.
[http://dx.doi.org/10.1111/j.1525-1594.2007.00434.x] [PMID: 17651115]
[11]
Dhondt A, Vanholder R, Van Biesen W, Lameire N. The removal of uremic toxins. Kidney Int Suppl 2000; 76: S47-59.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07606.x] [PMID: 10936799]
[12]
De Deyn PP, Vanholder R, Eloot S, Glorieux G. Guanidino compounds as uremic (neuro)toxins. Semin Dial 2009; 22(4): 340-5.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00577.x] [PMID: 19708978]
[13]
Seifter JL, Samuels MA. Uremic encephalopathy and other brain disorders associated with renal failure. Semin Neurol 2011; 31(2): 139-43.
[http://dx.doi.org/10.1055/s-0031-1277984] [PMID: 21590619]
[14]
Suliman ME, Johnson RJ, García-López E, et al. J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis 2006; 48(5): 761-71.
[http://dx.doi.org/10.1053/j.ajkd.2006.08.019] [PMID: 17059995]
[15]
Du N, Xu D, Hou X, et al. Inverse association between serum uric acid levels and alzheimer’s disease risk. Mol Neurobiol 2016; 53(4): 2594-9.
[http://dx.doi.org/10.1007/s12035-015-9271-6] [PMID: 26084440]
[16]
Hong JY, Lan TY, Tang GJ, Tang CH, Chen TJ, Lin HY. Gout and the risk of dementia: A nationwide population-based cohort study. Arthritis Res Ther 2015; 17: 139.
[http://dx.doi.org/10.1186/s13075-015-0642-1] [PMID: 26018424]
[17]
Kim JW, Byun MS, Yi D, et al. Serum uric acid, Alzheimer-related brain changes, and cognitive impairment. Front Aging Neurosci 2020; 12: 160.
[http://dx.doi.org/10.3389/fnagi.2020.00160] [PMID: 32581770]
[18]
Mazumder MK, Phukan BC, Bhattacharjee A, Borah A. Disturbed purine nucleotide metabolism in chronic kidney disease is a risk factor for cognitive impairment. Med Hypotheses 2018; 111: 36-9.
[http://dx.doi.org/10.1016/j.mehy.2017.12.016] [PMID: 29406992]
[19]
Keller JN, Kindy MS, Holtsberg FW, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998; 18(2): 687-97.
[http://dx.doi.org/10.1523/JNEUROSCI.18-02-00687.1998] [PMID: 9425011]
[20]
Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 2010; 69(2): 155-67.
[http://dx.doi.org/10.1097/NEN.0b013e3181cb5af4] [PMID: 20084018]
[21]
Li LL, Ma YH, Bi YL, et al. Serum uric acid may aggravate Alzheimer’s disease risk by affecting amyloidosis in cognitively intact older adults: The CABLE study. J Alzheimers Dis 2021; 81(1): 389-401.
[http://dx.doi.org/10.3233/JAD-201192] [PMID: 33814427]
[22]
Desideri G, Gentile R, Antonosante A, et al. Uric acid amplifies Aβ amyloid effects involved in the cognitive dysfunction/dementia: Evidences from an experimental model in vitro. J Cell Physiol 2017; 232(5): 1069-78.
[http://dx.doi.org/10.1002/jcp.25509] [PMID: 27474828]
[23]
Pahlich S, Zakaryan RP, Gehring H. Protein arginine methylation: Cellular functions and methods of analysis. Biochim Biophys Acta 2006; 1764(12): 1890-903.
[http://dx.doi.org/10.1016/j.bbapap.2006.08.008] [PMID: 17010682]
[24]
Oliva-Damaso E, Oliva-Damaso N, Rodriguez-Esparragon F, et al. Asymmetric (ADMA) and Symmetric (SDMA) dimethylarginines in chronic kidney disease: A Clinical Approach. Int J Mol Sci 2019; 20(15): 15.
[http://dx.doi.org/10.3390/ijms20153668] [PMID: 31357472]
[25]
Eiselt J, Rajdl D, Racek J, Vostrý M, Rulcová K, Wirth J. Asymmetric dimethylarginine and progression of chronic kidney disease: A one-year follow-up study. Kidney Blood Press Res 2014; 39(1): 50-7.
[http://dx.doi.org/10.1159/000355776] [PMID: 24923294]
[26]
Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339(8793): 572-5.
[http://dx.doi.org/10.1016/0140-6736(92)90865-Z] [PMID: 1347093]
[27]
MacAllister RJ, Rambausek MH, Vallance P, Williams D, Hoffmann KH, Ritz E. Concentration of dimethyl-L-arginine in the plasma of patients with end-stage renal failure. Nephrol Dial Transplant 1996; 11(12): 2449-52.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a027213] [PMID: 9017621]
[28]
Schepers E, Speer T, Bode-Böger SM, Fliser D, Kielstein JT. Dimethylarginines ADMA and SDMA: The real water-soluble small toxins? Semin Nephrol 2014; 34(2): 97-105.
[http://dx.doi.org/10.1016/j.semnephrol.2014.02.003] [PMID: 24780466]
[29]
Kielstein JT, Böger RH, Bode-Böger SM, et al. Low dialysance of asymmetric dimethylarginine (ADMA)--in vivo and in vitro evidence of significant protein binding. Clin Nephrol 2004; 62(4): 295-300.
[http://dx.doi.org/10.5414/CNP62295] [PMID: 15524060]
[30]
Zoccali C, Bode-Böger S, Mallamaci F, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: A prospective study. Lancet 2001; 358(9299): 2113-7.
[http://dx.doi.org/10.1016/S0140-6736(01)07217-8] [PMID: 11784625]
[31]
Selley ML. Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer’s disease. Neurobiol Aging 2003; 24(7): 903-7.
[http://dx.doi.org/10.1016/S0197-4580(03)00007-1] [PMID: 12928048]
[32]
Malden DE, Mangoni AA, Woodman RJ, et al. Circulating asymmetric dimethylarginine and cognitive decline: A 4-year follow-up study of the 1936 Aberdeen Birth Cohort. Int J Geriatr Psychiatry 2020; 35(10): 1181-8.
[http://dx.doi.org/10.1002/gps.5355] [PMID: 32452069]
[33]
Luo Y, Yue W, Quan X, Wang Y, Zhao B, Lu Z. Asymmetric dimethylarginine exacerbates Aβ-induced toxicity and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 2015; 79: 117-26.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.12.002] [PMID: 25499850]
[34]
Austin SA, Santhanam AV, Hinton DJ, Choi DS, Katusic ZS. Endothelial nitric oxide deficiency promotes Alzheimer’s disease pathology. J Neurochem 2013; 127(5): 691-700.
[http://dx.doi.org/10.1111/jnc.12334] [PMID: 23745722]
[35]
Austin SA, d’Uscio LV, Katusic ZS. Supplementation of nitric oxide attenuates AβPP and BACE1 protein in cerebral microcirculation of eNOS-deficient mice. J Alzheimers Dis 2013; 33(1): 29-33.
[http://dx.doi.org/10.3233/JAD-2012-121351] [PMID: 22886025]
[36]
Jeynes B, Provias J. Significant negative correlations between capillary expressed eNOS and Alzheimer lesion burden. Neurosci Lett 2009; 463(3): 244-8.
[http://dx.doi.org/10.1016/j.neulet.2009.07.091] [PMID: 19660523]
[37]
Provias J, Jeynes B. The role of the blood-brain barrier in the pathogenesis of senile plaques in Alzheimer’s disease. Int J Alzheimers Dis 2014; 2014: 191863.
[http://dx.doi.org/10.1155/2014/191863] [PMID: 25309772]
[38]
Pecoits-Filho R, Heimbürger O, Bárány P, et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am J Kidney Dis 2003; 41(6): 1212-8.
[http://dx.doi.org/10.1016/S0272-6386(03)00353-6] [PMID: 12776273]
[39]
Yadav AK, Sharma V, Jha V. Association between serum neopterin and inflammatory activation in chronic kidney disease. Mediators Inflamm 2012; 2012: 476979.
[http://dx.doi.org/10.1155/2012/476979] [PMID: 22969169]
[40]
Zaoui P, Hakim RM. The effects of the dialysis membrane on cytokine release. J Am Soc Nephrol 1994; 4(9): 1711-8.
[http://dx.doi.org/10.1681/ASN.V491711] [PMID: 8011981]
[41]
Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metab 2002; 3(2): 175-87.
[http://dx.doi.org/10.2174/1389200024605082] [PMID: 12003349]
[42]
Huber C, Batchelor JR, Fuchs D, et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med 1984; 160(1): 310-6.
[http://dx.doi.org/10.1084/jem.160.1.310] [PMID: 6429267]
[43]
Zouridakis E, Avanzas P, Arroyo-Espliguero R, Fredericks S, Kaski JC. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation 2004; 110(13): 1747-53.
[http://dx.doi.org/10.1161/01.CIR.0000142664.18739.92] [PMID: 15381646]
[44]
Weiss G, Fuchs D, Hausen A, et al. Neopterin modulates toxicity mediated by reactive oxygen and chloride species. FEBS Lett 1993; 321(1): 89-92.
[http://dx.doi.org/10.1016/0014-5793(93)80627-7] [PMID: 8385632]
[45]
Leblhuber F, Walli J, Demel U, Tilz GP, Widner B, Fuchs D. Increased serum neopterin concentrations in patients with Alzheimer’s disease. Clin Chem Lab Med 1999; 37(4): 429-31.
[http://dx.doi.org/10.1515/CCLM.1999.070] [PMID: 10369114]
[46]
Parker DC, Mielke MM, Yu Q, et al. Plasma neopterin level as a marker of peripheral immune activation in amnestic mild cognitive impairment and Alzheimer’s disease. Int J Geriatr Psychiatry 2013; 28(2): 149-54.
[http://dx.doi.org/10.1002/gps.3802] [PMID: 22539447]
[47]
Blasko I, Knaus G, Weiss E, et al. Cognitive deterioration in Alzheimer’s disease is accompanied by increase of plasma neopterin. J Psychiatr Res 2007; 41(8): 694-701.
[http://dx.doi.org/10.1016/j.jpsychires.2006.02.001] [PMID: 16542679]
[48]
Drüeke TB, Massy ZA. Beta2-microglobulin. Semin Dial 2009; 22(4): 378-80.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00584.x] [PMID: 19708985]
[49]
Zumrutdal A. Role of β2-microglobulin in uremic patients may be greater than originally suspected. World J Nephrol 2015; 4(1): 98-104.
[http://dx.doi.org/10.5527/wjn.v4.i1.98] [PMID: 25664251]
[50]
Lee H, Brott BK, Kirkby LA, et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 2014; 509(7499): 195-200.
[http://dx.doi.org/10.1038/nature13154] [PMID: 24695230]
[51]
Giorgetti S, Raimondi S, Cassinelli S, et al. beta2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity. Nephrol Dial Transplant 2009; 24(4): 1176-81.
[http://dx.doi.org/10.1093/ndt/gfn623] [PMID: 19008236]
[52]
Dominici R, Finazzi D, Polito L, et al. Comparison of β2-microglobulin serum level between Alzheimer’s patients, cognitive healthy and mild cognitive impaired individuals. Biomarkers 2018; 23(6): 603-8.
[http://dx.doi.org/10.1080/1354750X.2018.1468825] [PMID: 29741401]
[53]
Carrette O, Demalte I, Scherl A, et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 2003; 3(8): 1486-94.
[http://dx.doi.org/10.1002/pmic.200300470] [PMID: 12923774]
[54]
Svatoňová J, Bořecká K, Adam P, Lánská V. Beta2-microglobulin as a diagnostic marker in cerebrospinal fluid: A follow-up study. Dis Markers 2014; 2014: 495402.
[http://dx.doi.org/10.1155/2014/495402] [PMID: 24895473]
[55]
Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011; 477(7362): 90-4.
[http://dx.doi.org/10.1038/nature10357] [PMID: 21886162]
[56]
Smith LK, He Y, Park JS, et al. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med 2015; 21(8): 932-7.
[http://dx.doi.org/10.1038/nm.3898] [PMID: 26147761]
[57]
Kim M, Suzuki T, Kojima N, et al. Association between serum β2 -microglobulin levels and prevalent and incident physical frailty in community-dwelling older women. J Am Geriatr Soc 2017; 65(4): e83-8.
[http://dx.doi.org/10.1111/jgs.14733] [PMID: 28140452]
[58]
Murray AM. Cognitive impairment in the aging dialysis and chronic kidney disease populations: An occult burden. Adv Chronic Kidney Dis 2008; 15(2): 123-32.
[http://dx.doi.org/10.1053/j.ackd.2008.01.010] [PMID: 18334236]
[59]
Shimada T, Urakawa I, Yamazaki Y, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 2004; 314(2): 409-14.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.102] [PMID: 14733920]
[60]
Stubbs J, Liu S, Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial 2007; 20(4): 302-8.
[http://dx.doi.org/10.1111/j.1525-139X.2007.00308.x] [PMID: 17635819]
[61]
Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359(6): 584-92.
[http://dx.doi.org/10.1056/NEJMoa0706130] [PMID: 18687639]
[62]
McGrath ER, Himali JJ, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS One 2019; 14(3): e0213321.
[http://dx.doi.org/10.1371/journal.pone.0213321] [PMID: 30830941]
[63]
Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655): 45-51.
[http://dx.doi.org/10.1038/36285] [PMID: 9363890]
[64]
Kuro-o M. Klotho in health and disease. Curr Opin Nephrol Hypertens 2012; 21(4): 362-8.
[http://dx.doi.org/10.1097/MNH.0b013e32835422ad] [PMID: 22660551]
[65]
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75: 503-33.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183727] [PMID: 23398153]
[66]
Hu MC, Shi M, Zhang J, et al. Renal production, uptake, and handling of circulating αKlotho. J Am Soc Nephrol 2016; 27(1): 79-90.
[http://dx.doi.org/10.1681/ASN.2014101030] [PMID: 25977312]
[67]
Semba RD, Moghekar AR, Hu J, et al. Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 2014; 558: 37-40.
[http://dx.doi.org/10.1016/j.neulet.2013.10.058] [PMID: 24211693]
[68]
Kitagawa M, Sugiyama H, Morinaga H, et al. A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS One 2013; 8(2): e56695.
[http://dx.doi.org/10.1371/journal.pone.0056695] [PMID: 23431388]
[69]
Fliser D, Seiler S, Heine GH, Ketteler M. Measurement of serum soluble Klotho levels in CKD 5D patients: Useful tool or dispensable biomarker? Nephrol Dial Transplant 2012; 27(5): 1702-3.
[http://dx.doi.org/10.1093/ndt/gfs076] [PMID: 22547748]
[70]
Zeldich E, Chen CD, Colvin TA, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem 2014; 289(35): 24700-15.
[http://dx.doi.org/10.1074/jbc.M114.567321] [PMID: 25037225]
[71]
Belloy ME, Napolioni V, Han SS, Le Guen Y, Greicius MD. Association of Klotho-VS heterozygosity with risk of alzheimer disease in individuals who carry APOE4. JAMA Neurol 2020; 77(7): 849-62.
[http://dx.doi.org/10.1001/jamaneurol.2020.0414] [PMID: 32282020]
[72]
Dubal DB, Yokoyama JS. Longevity gene KLOTHO and Alzheimer disease-A better fate for individuals who Carry APOE ε4. JAMA Neurol 2020; 77(7): 798-800.
[http://dx.doi.org/10.1001/jamaneurol.2020.0112] [PMID: 32282012]
[73]
Zhao Y, Zeng CY, Li XH, Yang TT, Kuang X, Du JR. Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer’s disease. Aging Cell 2020; •••: e13239.
[http://dx.doi.org/10.1111/acel.13239] [PMID: 32964663]
[74]
Dubal DB, Yokoyama JS, Zhu L, et al. Life extension factor klotho enhances cognition. Cell Rep 2014; 7(4): 1065-76.
[http://dx.doi.org/10.1016/j.celrep.2014.03.076] [PMID: 24813892]
[75]
Dubal DB, Zhu L, Sanchez PE, et al. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 2015; 35(6): 2358-71.
[http://dx.doi.org/10.1523/JNEUROSCI.5791-12.2015] [PMID: 25673831]
[76]
Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340(6): 448-54.
[http://dx.doi.org/10.1056/NEJM199902113400607] [PMID: 9971870]
[77]
Kimmel PL, Phillips TM, Simmens SJ, et al. Immunologic function and survival in hemodialysis patients. Kidney Int 1998; 54(1): 236-44.
[http://dx.doi.org/10.1046/j.1523-1755.1998.00981.x] [PMID: 9648084]
[78]
Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol 2012; 7(12): 1938-46.
[http://dx.doi.org/10.2215/CJN.03500412] [PMID: 23024164]
[79]
Shlipak MG, Fried LF, Crump C, et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 2003; 107(1): 87-92.
[http://dx.doi.org/10.1161/01.CIR.0000042700.48769.59] [PMID: 12515748]
[80]
Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest 2017; 127(9): 3240-9.
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[81]
De Felice FG, Lourenco MV. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease. Front Aging Neurosci 2015; 7: 94.
[http://dx.doi.org/10.3389/fnagi.2015.00094] [PMID: 26042036]
[82]
Syvänen S, Eriksson J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci 2013; 4(2): 225-37.
[http://dx.doi.org/10.1021/cn3001729] [PMID: 23421673]
[83]
Banks WA. Blood-brain barrier transport of cytokines: A mechanism for neuropathology. Curr Pharm Des 2005; 11(8): 973-84.
[http://dx.doi.org/10.2174/1381612053381684] [PMID: 15777248]
[84]
Tan ZS, Beiser AS, Vasan RS, et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 2007; 68(22): 1902-8.
[http://dx.doi.org/10.1212/01.wnl.0000263217.36439.da] [PMID: 17536046]
[85]
Bermejo P, Martín-Aragón S, Benedí J, et al. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer’s disease. Immunol Lett 2008; 117(2): 198-202.
[http://dx.doi.org/10.1016/j.imlet.2008.02.002] [PMID: 18367253]
[86]
Lourenco MV, Clarke JR, Frozza RL, et al. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 2013; 18(6): 831-43.
[http://dx.doi.org/10.1016/j.cmet.2013.11.002] [PMID: 24315369]
[87]
Rizzo FR, Musella A, De Vito F, et al. Tumor necrosis factor and interleukin-1β modulate synaptic plasticity during neuroinflammation. Neural Plast 2018; 2018: 8430123.
[http://dx.doi.org/10.1155/2018/8430123] [PMID: 29861718]
[88]
Bomfim TR, Forny-Germano L, Sathler LB, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 2012; 122(4): 1339-53.
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[89]
Lee BT, Ahmed FA, Hamm LL, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol 2015; 16: 77.
[http://dx.doi.org/10.1186/s12882-015-0068-7] [PMID: 26025192]
[90]
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 2019; 27(4): 663-77.
[http://dx.doi.org/10.1007/s10787-019-00580-x] [PMID: 30874945]
[91]
Zuliani G, Ranzini M, Guerra G, et al. Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res 2007; 41(8): 686-93.
[http://dx.doi.org/10.1016/j.jpsychires.2006.02.008] [PMID: 16600299]
[92]
Hirano T. Interleukin 6 and its receptor: Ten years later. Int Rev Immunol 1998; 16(3-4): 249-84.
[http://dx.doi.org/10.3109/08830189809042997] [PMID: 9505191]
[93]
Takahashi T, Kubota M, Nakamura T, Ebihara I, Koide H. Interleukin-6 gene expression in peripheral blood mononuclear cells from patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Ren Fail 2000; 22(3): 345-54.
[http://dx.doi.org/10.1081/JDI-100100878] [PMID: 10843245]
[94]
Caglar K, Peng Y, Pupim LB, et al. Inflammatory signals associated with hemodialysis. Kidney Int 2002; 62(4): 1408-16.
[http://dx.doi.org/10.1111/j.1523-1755.2002.kid556.x] [PMID: 12234313]
[95]
Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 2016; 6(Pt A): 1218-27.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.018]
[96]
Koyama A, O’Brien J, Weuve J, Blacker D, Metti AL, Yaffe K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J Gerontol A Biol Sci Med Sci 2013; 68(4): 433-40.
[http://dx.doi.org/10.1093/gerona/gls187] [PMID: 22982688]
[97]
Androsova LV, Mikhaĭlova NM, Zozulia SA, et al. [Inflammatory markers in Alzheimer’s disease and vascular dementia]. Zh Nevrol Psikhiatr Im S S Korsakova 2013; 113(2): 49-53. [Inflammatory markers in Alzheimer's disease and vascular dementia].
[PMID: 23528583]
[98]
Uslu S, Akarkarasu ZE, Ozbabalik D, et al. Levels of amyloid beta-42, interleukin-6 and tumor necrosis factor-alpha in Alzheimer’s disease and vascular dementia. Neurochem Res 2012; 37(7): 1554-9.
[http://dx.doi.org/10.1007/s11064-012-0750-0] [PMID: 22437436]
[99]
Ng A, Tam WW, Zhang MW, et al. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci Rep 2018; 8(1): 12050.
[http://dx.doi.org/10.1038/s41598-018-30487-6] [PMID: 30104698]
[100]
Welsh P, Woodward M, Rumley A, Lowe G. Associations of plasma pro-inflammatory cytokines, fibrinogen, viscosity and C-reactive protein with cardiovascular risk factors and social deprivation: The fourth Glasgow MONICA study. Br J Haematol 2008; 141(6): 852-61.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07133.x] [PMID: 18371109]
[101]
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009; 73(10): 768-74.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[102]
Panza F, Frisardi V, Seripa D, et al. Metabolic syndrome, mild cognitive impairment, and dementia. Curr Alzheimer Res 2011; 8(5): 492-509.
[http://dx.doi.org/10.2174/156720511796391818] [PMID: 21605050]
[103]
Kamer AR, Craig RG, Pirraglia E, et al. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol 2009; 216(1-2): 92-7.
[http://dx.doi.org/10.1016/j.jneuroim.2009.08.013] [PMID: 19767111]
[104]
Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol 2014; 221(2): R49-61.
[http://dx.doi.org/10.1530/JOE-13-0578] [PMID: 24464020]
[105]
Yu Y, Bao BJ, Fan YP, Shi L, Li SQ. Changes of adiponectin and its receptors in rats following chronic renal failure. Ren Fail 2014; 36(1): 92-7.
[http://dx.doi.org/10.3109/0886022X.2013.830975] [PMID: 24028144]
[106]
D’Apolito M, Du X, Zong H, et al. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J Clin Invest 2010; 120(1): 203-13.
[http://dx.doi.org/10.1172/JCI37672] [PMID: 19955654]
[107]
Huang JW, Yen CJ, Chiang HW, Hung KY, Tsai TJ, Wu KD. Adiponectin in peritoneal dialysis patients: A comparison with hemodialysis patients and subjects with normal renal function. Am J Kidney Dis 2004; 43(6): 1047-55.
[http://dx.doi.org/10.1053/j.ajkd.2004.02.017] [PMID: 15168385]
[108]
Adamczak M, Chudek J, Wiecek A. Adiponectin in patients with chronic kidney disease. Semin Dial 2009; 22(4): 391-5.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00587.x] [PMID: 19708988]
[109]
Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol 2016; 8(2): 93-100.
[http://dx.doi.org/10.1093/jmcb/mjw011] [PMID: 26993047]
[110]
Li J, Shen X. Oxidative stress and adipokine levels were significantly correlated in diabetic patients with hyperglycemic crises. Diabetol Metab Syndr 2019; 11: 13.
[http://dx.doi.org/10.1186/s13098-019-0410-5] [PMID: 30774721]
[111]
Ouedraogo R, Wu X, Xu SQ, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: Evidence for involvement of a cAMP signaling pathway. Diabetes 2006; 55(6): 1840-6.
[http://dx.doi.org/10.2337/db05-1174] [PMID: 16731851]
[112]
Waragai M, Ho G, Takamatsu Y, et al. Dual-therapy strategy for modification of adiponectin receptor signaling in aging-associated chronic diseases. Drug Discov Today 2018; 23(6): 1305-11.
[http://dx.doi.org/10.1016/j.drudis.2018.05.009] [PMID: 29747002]
[113]
Rhee CM, Nguyen DV, Moradi H, et al. Association of adiponectin with body composition and mortality in hemodialysis patients. Am J Kidney Dis 2015; 66(2): 313-21.
[http://dx.doi.org/10.1053/j.ajkd.2015.02.325] [PMID: 25824125]
[114]
Martinez Cantarin MP, Keith SW, Waldman SA, Falkner B. Adiponectin receptor and adiponectin signaling in human tissue among patients with end-stage renal disease. Nephrol Dial Transplant 2014; 29(12): 2268-77.
[http://dx.doi.org/10.1093/ndt/gfu249] [PMID: 25049200]
[115]
Sopić M, Joksić J, Spasojević-Kalimanovska V, et al. Downregulation of AdipoR1 is associated with increased circulating adiponectin levels in serbian chronic kidney disease patients. J Med Biochem 2016; 35(4): 436-42.
[http://dx.doi.org/10.1515/jomb-2016-0007] [PMID: 28670196]
[116]
Waragai M, Adame A, Trinh I, et al. Possible involvement of adiponectin, the anti-diabetes molecule, in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2016; 52(4): 1453-9.
[http://dx.doi.org/10.3233/JAD-151116] [PMID: 27079710]
[117]
Une K, Takei YA, Tomita N, et al. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol 2011; 18(7): 1006-9.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03194.x] [PMID: 20727007]
[118]
Khemka VK, Bagchi D, Bandyopadhyay K, et al. Altered serum levels of adipokines and insulin in probable Alzheimer’s disease. J Alzheimers Dis 2014; 41(2): 525-33.
[http://dx.doi.org/10.3233/JAD-140006] [PMID: 24625795]
[119]
Ma JJ, Shang J, Wang H, Sui JR, Liu K, Du JX. Serum adiponectin levels are inversely correlated with leukemia: A meta-analysis. J Cancer Res Ther 2016; 12(2): 897-902.
[http://dx.doi.org/10.4103/0973-1482.186695] [PMID: 27461671]
[120]
Teixeira AL, Diniz BS, Campos AC, et al. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromolecular Med 2013; 15(1): 115-21.
[http://dx.doi.org/10.1007/s12017-012-8201-2] [PMID: 23055000]
[121]
Ng RC, Jian M, Ma OK, et al. Chronic oral administration of adipoRon reverses cognitive impairments and ameliorates neuropathology in an Alzheimer’s disease mouse model. Mol Psychiatry 2020.
[http://dx.doi.org/10.1038/s41380-020-0701-0] [PMID: 32132650]
[122]
Ng RC, Cheng OY, Jian M, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 2016; 11(1): 71.
[http://dx.doi.org/10.1186/s13024-016-0136-x] [PMID: 27884163]
[123]
Kim MW, Abid NB, Jo MH, Jo MG, Yoon GH, Kim MO. Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer’s disease-like pathologies. Sci Rep 2017; 7(1): 12435.
[http://dx.doi.org/10.1038/s41598-017-12632-9] [PMID: 28963462]
[124]
Pan W, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides: Obestatin, ghrelin, and adiponectin. Peptides 2006; 27(4): 911-6.
[http://dx.doi.org/10.1016/j.peptides.2005.12.014] [PMID: 16476508]
[125]
Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight. Nat Med 2004; 10(5): 524-9.
[http://dx.doi.org/10.1038/nm1029] [PMID: 15077108]
[126]
Yau SY, Li A, Hoo RL, et al. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci USA 2014; 111(44): 15810-5.
[http://dx.doi.org/10.1073/pnas.1415219111] [PMID: 25331877]
[127]
Abrahamson M, Grubb A, Olafsson I, Lundwall A. Molecular cloning and sequence analysis of cDNA coding for the precursor of the human cysteine proteinase inhibitor cystatin C. FEBS Lett 1987; 216(2): 229-33.
[http://dx.doi.org/10.1016/0014-5793(87)80695-6] [PMID: 3495457]
[128]
Otsuka T, Tanaka A, Suemaru K, et al. Evaluation of the clinical application of cystatin C, a new marker of the glomerular filtration rate, for the initial dose-setting of arbekacin. J Clin Pharm Ther 2008; 33(3): 227-35.
[http://dx.doi.org/10.1111/j.1365-2710.2008.00905.x] [PMID: 18452409]
[129]
Sundelöf J, Arnlöv J, Ingelsson E, et al. Serum cystatin C and the risk of Alzheimer disease in elderly men. Neurology 2008; 71(14): 1072-9.
[http://dx.doi.org/10.1212/01.wnl.0000326894.40353.93] [PMID: 18824671]
[130]
Yaffe K, Lindquist K, Shlipak MG, et al. Cystatin C as a marker of cognitive function in elders: Findings from the health ABC study. Ann Neurol 2008; 63(6): 798-802.
[http://dx.doi.org/10.1002/ana.21383] [PMID: 18496846]
[131]
Maruyama K, Ikeda S, Ishihara T, Allsop D, Yanagisawa N. Immunohistochemical characterization of cerebrovascular amyloid in 46 autopsied cases using antibodies to beta protein and cystatin C. Stroke 1990; 21(3): 397-403.
[http://dx.doi.org/10.1161/01.STR.21.3.397] [PMID: 2408196]
[132]
Steinhoff T, Moritz E, Wollmer MA, Mohajeri MH, Kins S, Nitsch RM. Increased cystatin C in astrocytes of transgenic mice expressing the K670N-M671L mutation of the amyloid precursor protein and deposition in brain amyloid plaques. Neurobiol Dis 2001; 8(4): 647-54.
[http://dx.doi.org/10.1006/nbdi.2001.0412] [PMID: 11493029]
[133]
Winkler DT, Bondolfi L, Herzig MC, et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 2001; 21(5): 1619-27.
[http://dx.doi.org/10.1523/JNEUROSCI.21-05-01619.2001] [PMID: 11222652]
[134]
Sastre M, Calero M, Pawlik M, et al. Binding of cystatin C to Alzheimer’s amyloid beta inhibits in vitro amyloid fibril formation. Neurobiol Aging 2004; 25(8): 1033-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.11.006] [PMID: 15212828]
[135]
Tizon B, Ribe EM, Mi W, Troy CM, Levy E. Cystatin C protects neuronal cells from amyloid-beta-induced toxicity. J Alzheimers Dis 2010; 19(3): 885-94.
[http://dx.doi.org/10.3233/JAD-2010-1291] [PMID: 20157244]
[136]
Mechanick JI, Zhao S, Garvey WT. Leptin, an adipokine with central importance in the global obesity problem. Glob Heart 2018; 13(2): 113-27.
[http://dx.doi.org/10.1016/j.gheart.2017.10.003] [PMID: 29248361]
[137]
Mak RH, Cheung W, Cone RD, Marks DL. Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int 2006; 69(5): 794-7.
[http://dx.doi.org/10.1038/sj.ki.5000182] [PMID: 16518340]
[138]
Briley LP, Szczech LA. Leptin and renal disease. Semin Dial 2006; 19(1): 54-9.
[http://dx.doi.org/10.1111/j.1525-139X.2006.00119.x] [PMID: 16423182]
[139]
Ambarkar M, Pemmaraju SV, Gouroju S, et al. Adipokines and their relation to endothelial dysfunction in patients with chronic kidney disease. J Clin Diagn Res 2016; 10(1): BC04-8.
[http://dx.doi.org/10.7860/JCDR/2016/15867.7060] [PMID: 26894055]
[140]
Ocak N, Dirican M, Ersoy A, Sarandol E. Adiponectin, leptin, nitric oxide, and C-reactive protein levels in kidney transplant recipients: Comparison with the hemodialysis and chronic renal failure. Ren Fail 2016; 38(10): 1639-46.
[http://dx.doi.org/10.1080/0886022X.2016.1229965] [PMID: 27764985]
[141]
Jiang S, Song K, Feng S, Shi YB. Association between serum leptin levels and peritoneal dialysis: A meta-analysis. Exp Ther Med 2015; 10(1): 300-8.
[http://dx.doi.org/10.3892/etm.2015.2441] [PMID: 26170953]
[142]
Alix PM, Guebre-Egziabher F, Soulage CO. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease. Biochimie 2014; 105: 12-21.
[http://dx.doi.org/10.1016/j.biochi.2014.06.024] [PMID: 25010649]
[143]
Lieb W, Beiser AS, Vasan RS, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 2009; 302(23): 2565-72.
[http://dx.doi.org/10.1001/jama.2009.1836] [PMID: 20009056]
[144]
Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N. Obesity-related leptin regulates Alzheimer’s Abeta. FASEB J 2004; 18(15): 1870-8.
[http://dx.doi.org/10.1096/fj.04-2572com] [PMID: 15576490]
[145]
Marwarha G, Dasari B, Prasanthi JR, Schommer J, Ghribi O. Leptin reduces the accumulation of Abeta and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis 2010; 19(3): 1007-19.
[http://dx.doi.org/10.3233/JAD-2010-1298] [PMID: 20157255]
[146]
Greco SJ, Bryan KJ, Sarkar S, et al. Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 2010; 19(4): 1155-67.
[http://dx.doi.org/10.3233/JAD-2010-1308] [PMID: 20308782]
[147]
Tezapsidis N, Johnston JM, Smith MA, et al. Leptin: A novel therapeutic strategy for Alzheimer’s disease. J Alzheimers Dis 2009; 16(4): 731-40.
[http://dx.doi.org/10.3233/JAD-2009-1021] [PMID: 19387109]
[148]
Friedman J. 20 years of leptin: leptin at 20: An overview. J Endocrinol 2014; 223(1): T1-8.
[http://dx.doi.org/10.1530/JOE-14-0405] [PMID: 25121999]
[149]
Platt TL, Beckett TL, Kohler K, Niedowicz DM, Murphy MP. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience 2016; 315: 162-74.
[http://dx.doi.org/10.1016/j.neuroscience.2015.12.011] [PMID: 26701291]
[150]
Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003; 26(3): 137-46.
[http://dx.doi.org/10.1016/S0166-2236(03)00032-8] [PMID: 12591216]
[151]
Manolescu BN, Oprea E, Farcasanu IC, Berteanu M, Cercasov C. Homocysteine and vitamin therapy in stroke prevention and treatment: A review. Acta Biochim Pol 2010; 57(4): 467-77.
[http://dx.doi.org/10.18388/abp.2010_2432] [PMID: 21140003]
[152]
Xie D, Yuan Y, Guo J, et al. Hyperhomocysteinemia predicts renal function decline: A prospective study in hypertensive adults. Sci Rep 2015; 5: 16268.
[http://dx.doi.org/10.1038/srep16268] [PMID: 26553372]
[153]
van Guldener C, Stehouwer CD. Homocysteine and methionine metabolism in renal failure. Semin Vasc Med 2005; 5(2): 201-8.
[http://dx.doi.org/10.1055/s-2005-872405] [PMID: 16047272]
[154]
Massy ZA. Importance of homocysteine, lipoprotein (a) and non-classical cardiovascular risk factors (fibrinogen and advanced glycation end-products) for atherogenesis in uraemic patients. Nephrol Dial Transplant 2000; 15(Suppl. 5): 81-91.
[http://dx.doi.org/10.1093/ndt/15.suppl_5.81] [PMID: 11073279]
[155]
Refsum H, Nurk E, Smith AD, et al. The Hordaland Homocysteine Study: A community-based study of homocysteine, its determinants, and associations with disease. J Nutr 2006; 136(6)(Suppl.): 1731S-40S.
[http://dx.doi.org/10.1093/jn/136.6.1731S] [PMID: 16702348]
[156]
Robinson K. Renal disease, homocysteine, and cardiovascular complications. Circulation 2004; 109(3): 294-5.
[http://dx.doi.org/10.1161/01.CIR.0000114133.99074.96] [PMID: 14744952]
[157]
Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: Impact on neurodegenerative diseases. Basic Clin Pharmacol Toxicol 2015; 117(5): 287-96.
[http://dx.doi.org/10.1111/bcpt.12424] [PMID: 26036286]
[158]
Seshadri S, Wolf PA, Beiser AS, et al. Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch Neurol 2008; 65(5): 642-9.
[http://dx.doi.org/10.1001/archneur.65.5.642] [PMID: 18474741]
[159]
Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimers Dis 2006; 9(4): 393-8.
[http://dx.doi.org/10.3233/JAD-2006-9404] [PMID: 16917147]
[160]
Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002; 346(7): 476-83.
[http://dx.doi.org/10.1056/NEJMoa011613] [PMID: 11844848]
[161]
Kitzlerová E, Fisar Z, Jirák R, et al. Plasma homocysteine in Alzheimer’s disease with or without co-morbid depressive symptoms. Neuroendocrinol Lett 2014; 35(1): 42-9.
[PMID: 24625917]
[162]
Zhang CE, Tian Q, Wei W, et al. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging 2008; 29(11): 1654-65.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.015] [PMID: 17537547]
[163]
Zeng P, Shi Y, Wang XM, et al. Emodin rescued hyperhomocysteinemia-induced dementia and Alzheimer’s disease-like features in rats. Int J Neuropsychopharmacol 2019; 22(1): 57-70.
[http://dx.doi.org/10.1093/ijnp/pyy090] [PMID: 30407508]
[164]
White AR, Huang X, Jobling MF, et al. Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 2001; 76(5): 1509-20.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00178.x] [PMID: 11238735]
[165]
Kruman II, Culmsee C, Chan SL, et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 2000; 20(18): 6920-6.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06920.2000] [PMID: 10995836]
[166]
Arvanitakis Z, Lucas JA, Younkin LH, Younkin SG, Graff-Radford NR. Serum creatinine levels correlate with plasma amyloid Beta protein. Alzheimer Dis Assoc Disord 2002; 16(3): 187-90.
[http://dx.doi.org/10.1097/00002093-200207000-00009] [PMID: 12218650]
[167]
Gronewold J, Klafki HW, Baldelli E, et al. Factors responsible for plasma β-amyloid accumulation in chronic kidney disease. Mol Neurobiol 2016; 53(5): 3136-45.
[http://dx.doi.org/10.1007/s12035-015-9218-y] [PMID: 26019016]
[168]
Liu YH, Xiang Y, Wang YR, et al. Association between serum amyloid-beta and renal functions: Implications for roles of kidney in amyloid-beta clearance. Mol Neurobiol 2015; 52(1): 115-9.
[http://dx.doi.org/10.1007/s12035-014-8854-y] [PMID: 25119777]
[169]
Lue LF, Sabbagh MN, Chiu MJ, et al. Plasma levels of aβ42 and tau identified probable Alzheimer’s dementia: Findings in two cohorts. Front Aging Neurosci 2017; 9: 226.
[http://dx.doi.org/10.3389/fnagi.2017.00226] [PMID: 28790911]
[170]
Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer’s disease: progress, problems and perspectives. Drug Discov Today 2006; 11(19-20): 931-8.
[http://dx.doi.org/10.1016/j.drudis.2006.08.004] [PMID: 16997144]
[171]
Roberts KF, Elbert DL, Kasten TP, et al. Amyloid-β efflux from the central nervous system into the plasma. Ann Neurol 2014; 76(6): 837-44.
[http://dx.doi.org/10.1002/ana.24270] [PMID: 25205593]
[172]
Liu YH, Wang YR, Xiang Y, et al. Clearance of amyloid-beta in Alzheimer’s disease: shifting the action site from center to periphery. Mol Neurobiol 2015; 51(1): 1-7.
[http://dx.doi.org/10.1007/s12035-014-8694-9] [PMID: 24733588]
[173]
Vinothkumar G, Kedharnath C, Krishnakumar S, et al. Abnormal amyloid β42 expression and increased oxidative stress in plasma of CKD patients with cognitive dysfunction: A small scale case control study comparison with Alzheimer’s disease. BBA Clin 2017; 8: 20-7.
[http://dx.doi.org/10.1016/j.bbacli.2017.06.001] [PMID: 28702365]
[174]
Hansson O. Biomarkers for neurodegenerative diseases. Nat Med 2021; 27(6): 954-63.
[http://dx.doi.org/10.1038/s41591-021-01382-x] [PMID: 34083813]
[175]
Ono M, Sahara N, Kumata K, et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain 2017; 140(3): 764-80.
[http://dx.doi.org/10.1093/brain/aww339] [PMID: 28087578]
[176]
Zhou R, Ji B, Kong Y, et al. PET Imaging of Neuroinflammation in Alzheimer’s Disease. Front Immunol 2021; 12: 739130.
[http://dx.doi.org/10.3389/fimmu.2021.739130] [PMID: 34603323]
[177]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy