Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

尿毒症毒素对阿尔茨海默病的影响

卷 19, 期 2, 2022

发表于: 08 March, 2022

页: [104 - 118] 页: 15

弟呕挨: 10.2174/1567205019666220120113305

价格: $65

conference banner
摘要

阿尔茨海默病(AD)是最常见的痴呆症的类型,它的病理学特征为老年斑和神经纤维缠结的积累。慢性肾脏疾病(CKD)在老年人口中最为常见,它与痴呆症的发生密切相关。最近流行病学和实验研究表明,CKD和AD之间有着潜在的联系,两种疾病都有着相同的风险因素组,例如:2型糖尿病和高血压。然而CKD和AD之间的联系尚不清楚。尿毒症毒素的低清除率,包括胱抑素C、胍、脂联素,这意味着CKD对AD的发病机制起作用。在这研究中,我们总结了流行病学、实验、临床研究等关于尿毒症毒素对AD的发病机制起作用的最新证据。我们阐述了突出问题和提出了尿毒症毒素与AD之间联系的发展前景。

关键词: 阿尔茨海默病,淀粉状朊,慢性肾脏疾病,炎症,tau蛋白,尿毒症毒素

Next »
[1]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[2]
Zhu Y, Liu H, Lu XL, et al. Prevalence of dementia in the People’s Republic of China from 1985 to 2015: A systematic review and meta-regression analysis. BMC Public Health 2019; 19(1): 578.
[http://dx.doi.org/10.1186/s12889-019-6840-z] [PMID: 31092218]
[3]
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020; 395(10225): 709-33.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[4]
Xue L, Lou Y, Feng X, Wang C, Ran Z, Zhang X. Prevalence of chronic kidney disease and associated factors among the Chinese population in Taian, China. BMC Nephrol 2014; 15: 205.
[http://dx.doi.org/10.1186/1471-2369-15-205] [PMID: 25528680]
[5]
Wang M, Ding D, Zhao Q, et al. Kidney function and dementia risk in community-dwelling older adults: The shanghai aging study. Alzheimers Res Ther 2021; 13(1): 21.
[http://dx.doi.org/10.1186/s13195-020-00729-9] [PMID: 33430940]
[6]
Etgen T, Chonchol M, Förstl H, Sander D. Chronic kidney disease and cognitive impairment: A systematic review and meta-analysis. Am J Nephrol 2012; 35(5): 474-82.
[http://dx.doi.org/10.1159/000338135] [PMID: 22555151]
[7]
Morris JC. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993; 43(11): 2412-4.
[http://dx.doi.org/10.1212/WNL.43.11.2412-a] [PMID: 8232972]
[8]
Wu JJ, Weng SC, Liang CK, et al. Effects of kidney function, serum albumin and hemoglobin on dementia severity in the oldest old people with newly diagnosed Alzheimer’s disease in a residential aged care facility: A cross-sectional study. BMC Geriatr 2020; 20(1): 391.
[http://dx.doi.org/10.1186/s12877-020-01789-0] [PMID: 33028210]
[9]
Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012; 23(7): 1258-70.
[http://dx.doi.org/10.1681/ASN.2011121175] [PMID: 22626821]
[10]
Meert N, Schepers E, De Smet R, et al. Inconsistency of reported uremic toxin concentrations. Artif Organs 2007; 31(8): 600-11.
[http://dx.doi.org/10.1111/j.1525-1594.2007.00434.x] [PMID: 17651115]
[11]
Dhondt A, Vanholder R, Van Biesen W, Lameire N. The removal of uremic toxins. Kidney Int Suppl 2000; 76: S47-59.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07606.x] [PMID: 10936799]
[12]
De Deyn PP, Vanholder R, Eloot S, Glorieux G. Guanidino compounds as uremic (neuro)toxins. Semin Dial 2009; 22(4): 340-5.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00577.x] [PMID: 19708978]
[13]
Seifter JL, Samuels MA. Uremic encephalopathy and other brain disorders associated with renal failure. Semin Neurol 2011; 31(2): 139-43.
[http://dx.doi.org/10.1055/s-0031-1277984] [PMID: 21590619]
[14]
Suliman ME, Johnson RJ, García-López E, et al. J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis 2006; 48(5): 761-71.
[http://dx.doi.org/10.1053/j.ajkd.2006.08.019] [PMID: 17059995]
[15]
Du N, Xu D, Hou X, et al. Inverse association between serum uric acid levels and alzheimer’s disease risk. Mol Neurobiol 2016; 53(4): 2594-9.
[http://dx.doi.org/10.1007/s12035-015-9271-6] [PMID: 26084440]
[16]
Hong JY, Lan TY, Tang GJ, Tang CH, Chen TJ, Lin HY. Gout and the risk of dementia: A nationwide population-based cohort study. Arthritis Res Ther 2015; 17: 139.
[http://dx.doi.org/10.1186/s13075-015-0642-1] [PMID: 26018424]
[17]
Kim JW, Byun MS, Yi D, et al. Serum uric acid, Alzheimer-related brain changes, and cognitive impairment. Front Aging Neurosci 2020; 12: 160.
[http://dx.doi.org/10.3389/fnagi.2020.00160] [PMID: 32581770]
[18]
Mazumder MK, Phukan BC, Bhattacharjee A, Borah A. Disturbed purine nucleotide metabolism in chronic kidney disease is a risk factor for cognitive impairment. Med Hypotheses 2018; 111: 36-9.
[http://dx.doi.org/10.1016/j.mehy.2017.12.016] [PMID: 29406992]
[19]
Keller JN, Kindy MS, Holtsberg FW, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998; 18(2): 687-97.
[http://dx.doi.org/10.1523/JNEUROSCI.18-02-00687.1998] [PMID: 9425011]
[20]
Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 2010; 69(2): 155-67.
[http://dx.doi.org/10.1097/NEN.0b013e3181cb5af4] [PMID: 20084018]
[21]
Li LL, Ma YH, Bi YL, et al. Serum uric acid may aggravate Alzheimer’s disease risk by affecting amyloidosis in cognitively intact older adults: The CABLE study. J Alzheimers Dis 2021; 81(1): 389-401.
[http://dx.doi.org/10.3233/JAD-201192] [PMID: 33814427]
[22]
Desideri G, Gentile R, Antonosante A, et al. Uric acid amplifies Aβ amyloid effects involved in the cognitive dysfunction/dementia: Evidences from an experimental model in vitro. J Cell Physiol 2017; 232(5): 1069-78.
[http://dx.doi.org/10.1002/jcp.25509] [PMID: 27474828]
[23]
Pahlich S, Zakaryan RP, Gehring H. Protein arginine methylation: Cellular functions and methods of analysis. Biochim Biophys Acta 2006; 1764(12): 1890-903.
[http://dx.doi.org/10.1016/j.bbapap.2006.08.008] [PMID: 17010682]
[24]
Oliva-Damaso E, Oliva-Damaso N, Rodriguez-Esparragon F, et al. Asymmetric (ADMA) and Symmetric (SDMA) dimethylarginines in chronic kidney disease: A Clinical Approach. Int J Mol Sci 2019; 20(15): 15.
[http://dx.doi.org/10.3390/ijms20153668] [PMID: 31357472]
[25]
Eiselt J, Rajdl D, Racek J, Vostrý M, Rulcová K, Wirth J. Asymmetric dimethylarginine and progression of chronic kidney disease: A one-year follow-up study. Kidney Blood Press Res 2014; 39(1): 50-7.
[http://dx.doi.org/10.1159/000355776] [PMID: 24923294]
[26]
Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339(8793): 572-5.
[http://dx.doi.org/10.1016/0140-6736(92)90865-Z] [PMID: 1347093]
[27]
MacAllister RJ, Rambausek MH, Vallance P, Williams D, Hoffmann KH, Ritz E. Concentration of dimethyl-L-arginine in the plasma of patients with end-stage renal failure. Nephrol Dial Transplant 1996; 11(12): 2449-52.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a027213] [PMID: 9017621]
[28]
Schepers E, Speer T, Bode-Böger SM, Fliser D, Kielstein JT. Dimethylarginines ADMA and SDMA: The real water-soluble small toxins? Semin Nephrol 2014; 34(2): 97-105.
[http://dx.doi.org/10.1016/j.semnephrol.2014.02.003] [PMID: 24780466]
[29]
Kielstein JT, Böger RH, Bode-Böger SM, et al. Low dialysance of asymmetric dimethylarginine (ADMA)--in vivo and in vitro evidence of significant protein binding. Clin Nephrol 2004; 62(4): 295-300.
[http://dx.doi.org/10.5414/CNP62295] [PMID: 15524060]
[30]
Zoccali C, Bode-Böger S, Mallamaci F, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: A prospective study. Lancet 2001; 358(9299): 2113-7.
[http://dx.doi.org/10.1016/S0140-6736(01)07217-8] [PMID: 11784625]
[31]
Selley ML. Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer’s disease. Neurobiol Aging 2003; 24(7): 903-7.
[http://dx.doi.org/10.1016/S0197-4580(03)00007-1] [PMID: 12928048]
[32]
Malden DE, Mangoni AA, Woodman RJ, et al. Circulating asymmetric dimethylarginine and cognitive decline: A 4-year follow-up study of the 1936 Aberdeen Birth Cohort. Int J Geriatr Psychiatry 2020; 35(10): 1181-8.
[http://dx.doi.org/10.1002/gps.5355] [PMID: 32452069]
[33]
Luo Y, Yue W, Quan X, Wang Y, Zhao B, Lu Z. Asymmetric dimethylarginine exacerbates Aβ-induced toxicity and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 2015; 79: 117-26.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.12.002] [PMID: 25499850]
[34]
Austin SA, Santhanam AV, Hinton DJ, Choi DS, Katusic ZS. Endothelial nitric oxide deficiency promotes Alzheimer’s disease pathology. J Neurochem 2013; 127(5): 691-700.
[http://dx.doi.org/10.1111/jnc.12334] [PMID: 23745722]
[35]
Austin SA, d’Uscio LV, Katusic ZS. Supplementation of nitric oxide attenuates AβPP and BACE1 protein in cerebral microcirculation of eNOS-deficient mice. J Alzheimers Dis 2013; 33(1): 29-33.
[http://dx.doi.org/10.3233/JAD-2012-121351] [PMID: 22886025]
[36]
Jeynes B, Provias J. Significant negative correlations between capillary expressed eNOS and Alzheimer lesion burden. Neurosci Lett 2009; 463(3): 244-8.
[http://dx.doi.org/10.1016/j.neulet.2009.07.091] [PMID: 19660523]
[37]
Provias J, Jeynes B. The role of the blood-brain barrier in the pathogenesis of senile plaques in Alzheimer’s disease. Int J Alzheimers Dis 2014; 2014: 191863.
[http://dx.doi.org/10.1155/2014/191863] [PMID: 25309772]
[38]
Pecoits-Filho R, Heimbürger O, Bárány P, et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am J Kidney Dis 2003; 41(6): 1212-8.
[http://dx.doi.org/10.1016/S0272-6386(03)00353-6] [PMID: 12776273]
[39]
Yadav AK, Sharma V, Jha V. Association between serum neopterin and inflammatory activation in chronic kidney disease. Mediators Inflamm 2012; 2012: 476979.
[http://dx.doi.org/10.1155/2012/476979] [PMID: 22969169]
[40]
Zaoui P, Hakim RM. The effects of the dialysis membrane on cytokine release. J Am Soc Nephrol 1994; 4(9): 1711-8.
[http://dx.doi.org/10.1681/ASN.V491711] [PMID: 8011981]
[41]
Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metab 2002; 3(2): 175-87.
[http://dx.doi.org/10.2174/1389200024605082] [PMID: 12003349]
[42]
Huber C, Batchelor JR, Fuchs D, et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med 1984; 160(1): 310-6.
[http://dx.doi.org/10.1084/jem.160.1.310] [PMID: 6429267]
[43]
Zouridakis E, Avanzas P, Arroyo-Espliguero R, Fredericks S, Kaski JC. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation 2004; 110(13): 1747-53.
[http://dx.doi.org/10.1161/01.CIR.0000142664.18739.92] [PMID: 15381646]
[44]
Weiss G, Fuchs D, Hausen A, et al. Neopterin modulates toxicity mediated by reactive oxygen and chloride species. FEBS Lett 1993; 321(1): 89-92.
[http://dx.doi.org/10.1016/0014-5793(93)80627-7] [PMID: 8385632]
[45]
Leblhuber F, Walli J, Demel U, Tilz GP, Widner B, Fuchs D. Increased serum neopterin concentrations in patients with Alzheimer’s disease. Clin Chem Lab Med 1999; 37(4): 429-31.
[http://dx.doi.org/10.1515/CCLM.1999.070] [PMID: 10369114]
[46]
Parker DC, Mielke MM, Yu Q, et al. Plasma neopterin level as a marker of peripheral immune activation in amnestic mild cognitive impairment and Alzheimer’s disease. Int J Geriatr Psychiatry 2013; 28(2): 149-54.
[http://dx.doi.org/10.1002/gps.3802] [PMID: 22539447]
[47]
Blasko I, Knaus G, Weiss E, et al. Cognitive deterioration in Alzheimer’s disease is accompanied by increase of plasma neopterin. J Psychiatr Res 2007; 41(8): 694-701.
[http://dx.doi.org/10.1016/j.jpsychires.2006.02.001] [PMID: 16542679]
[48]
Drüeke TB, Massy ZA. Beta2-microglobulin. Semin Dial 2009; 22(4): 378-80.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00584.x] [PMID: 19708985]
[49]
Zumrutdal A. Role of β2-microglobulin in uremic patients may be greater than originally suspected. World J Nephrol 2015; 4(1): 98-104.
[http://dx.doi.org/10.5527/wjn.v4.i1.98] [PMID: 25664251]
[50]
Lee H, Brott BK, Kirkby LA, et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 2014; 509(7499): 195-200.
[http://dx.doi.org/10.1038/nature13154] [PMID: 24695230]
[51]
Giorgetti S, Raimondi S, Cassinelli S, et al. beta2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity. Nephrol Dial Transplant 2009; 24(4): 1176-81.
[http://dx.doi.org/10.1093/ndt/gfn623] [PMID: 19008236]
[52]
Dominici R, Finazzi D, Polito L, et al. Comparison of β2-microglobulin serum level between Alzheimer’s patients, cognitive healthy and mild cognitive impaired individuals. Biomarkers 2018; 23(6): 603-8.
[http://dx.doi.org/10.1080/1354750X.2018.1468825] [PMID: 29741401]
[53]
Carrette O, Demalte I, Scherl A, et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 2003; 3(8): 1486-94.
[http://dx.doi.org/10.1002/pmic.200300470] [PMID: 12923774]
[54]
Svatoňová J, Bořecká K, Adam P, Lánská V. Beta2-microglobulin as a diagnostic marker in cerebrospinal fluid: A follow-up study. Dis Markers 2014; 2014: 495402.
[http://dx.doi.org/10.1155/2014/495402] [PMID: 24895473]
[55]
Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011; 477(7362): 90-4.
[http://dx.doi.org/10.1038/nature10357] [PMID: 21886162]
[56]
Smith LK, He Y, Park JS, et al. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med 2015; 21(8): 932-7.
[http://dx.doi.org/10.1038/nm.3898] [PMID: 26147761]
[57]
Kim M, Suzuki T, Kojima N, et al. Association between serum β2 -microglobulin levels and prevalent and incident physical frailty in community-dwelling older women. J Am Geriatr Soc 2017; 65(4): e83-8.
[http://dx.doi.org/10.1111/jgs.14733] [PMID: 28140452]
[58]
Murray AM. Cognitive impairment in the aging dialysis and chronic kidney disease populations: An occult burden. Adv Chronic Kidney Dis 2008; 15(2): 123-32.
[http://dx.doi.org/10.1053/j.ackd.2008.01.010] [PMID: 18334236]
[59]
Shimada T, Urakawa I, Yamazaki Y, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 2004; 314(2): 409-14.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.102] [PMID: 14733920]
[60]
Stubbs J, Liu S, Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial 2007; 20(4): 302-8.
[http://dx.doi.org/10.1111/j.1525-139X.2007.00308.x] [PMID: 17635819]
[61]
Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359(6): 584-92.
[http://dx.doi.org/10.1056/NEJMoa0706130] [PMID: 18687639]
[62]
McGrath ER, Himali JJ, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS One 2019; 14(3): e0213321.
[http://dx.doi.org/10.1371/journal.pone.0213321] [PMID: 30830941]
[63]
Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655): 45-51.
[http://dx.doi.org/10.1038/36285] [PMID: 9363890]
[64]
Kuro-o M. Klotho in health and disease. Curr Opin Nephrol Hypertens 2012; 21(4): 362-8.
[http://dx.doi.org/10.1097/MNH.0b013e32835422ad] [PMID: 22660551]
[65]
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75: 503-33.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183727] [PMID: 23398153]
[66]
Hu MC, Shi M, Zhang J, et al. Renal production, uptake, and handling of circulating αKlotho. J Am Soc Nephrol 2016; 27(1): 79-90.
[http://dx.doi.org/10.1681/ASN.2014101030] [PMID: 25977312]
[67]
Semba RD, Moghekar AR, Hu J, et al. Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 2014; 558: 37-40.
[http://dx.doi.org/10.1016/j.neulet.2013.10.058] [PMID: 24211693]
[68]
Kitagawa M, Sugiyama H, Morinaga H, et al. A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS One 2013; 8(2): e56695.
[http://dx.doi.org/10.1371/journal.pone.0056695] [PMID: 23431388]
[69]
Fliser D, Seiler S, Heine GH, Ketteler M. Measurement of serum soluble Klotho levels in CKD 5D patients: Useful tool or dispensable biomarker? Nephrol Dial Transplant 2012; 27(5): 1702-3.
[http://dx.doi.org/10.1093/ndt/gfs076] [PMID: 22547748]
[70]
Zeldich E, Chen CD, Colvin TA, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem 2014; 289(35): 24700-15.
[http://dx.doi.org/10.1074/jbc.M114.567321] [PMID: 25037225]
[71]
Belloy ME, Napolioni V, Han SS, Le Guen Y, Greicius MD. Association of Klotho-VS heterozygosity with risk of alzheimer disease in individuals who carry APOE4. JAMA Neurol 2020; 77(7): 849-62.
[http://dx.doi.org/10.1001/jamaneurol.2020.0414] [PMID: 32282020]
[72]
Dubal DB, Yokoyama JS. Longevity gene KLOTHO and Alzheimer disease-A better fate for individuals who Carry APOE ε4. JAMA Neurol 2020; 77(7): 798-800.
[http://dx.doi.org/10.1001/jamaneurol.2020.0112] [PMID: 32282012]
[73]
Zhao Y, Zeng CY, Li XH, Yang TT, Kuang X, Du JR. Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer’s disease. Aging Cell 2020; •••: e13239.
[http://dx.doi.org/10.1111/acel.13239] [PMID: 32964663]
[74]
Dubal DB, Yokoyama JS, Zhu L, et al. Life extension factor klotho enhances cognition. Cell Rep 2014; 7(4): 1065-76.
[http://dx.doi.org/10.1016/j.celrep.2014.03.076] [PMID: 24813892]
[75]
Dubal DB, Zhu L, Sanchez PE, et al. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 2015; 35(6): 2358-71.
[http://dx.doi.org/10.1523/JNEUROSCI.5791-12.2015] [PMID: 25673831]
[76]
Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340(6): 448-54.
[http://dx.doi.org/10.1056/NEJM199902113400607] [PMID: 9971870]
[77]
Kimmel PL, Phillips TM, Simmens SJ, et al. Immunologic function and survival in hemodialysis patients. Kidney Int 1998; 54(1): 236-44.
[http://dx.doi.org/10.1046/j.1523-1755.1998.00981.x] [PMID: 9648084]
[78]
Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol 2012; 7(12): 1938-46.
[http://dx.doi.org/10.2215/CJN.03500412] [PMID: 23024164]
[79]
Shlipak MG, Fried LF, Crump C, et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 2003; 107(1): 87-92.
[http://dx.doi.org/10.1161/01.CIR.0000042700.48769.59] [PMID: 12515748]
[80]
Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest 2017; 127(9): 3240-9.
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[81]
De Felice FG, Lourenco MV. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease. Front Aging Neurosci 2015; 7: 94.
[http://dx.doi.org/10.3389/fnagi.2015.00094] [PMID: 26042036]
[82]
Syvänen S, Eriksson J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci 2013; 4(2): 225-37.
[http://dx.doi.org/10.1021/cn3001729] [PMID: 23421673]
[83]
Banks WA. Blood-brain barrier transport of cytokines: A mechanism for neuropathology. Curr Pharm Des 2005; 11(8): 973-84.
[http://dx.doi.org/10.2174/1381612053381684] [PMID: 15777248]
[84]
Tan ZS, Beiser AS, Vasan RS, et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 2007; 68(22): 1902-8.
[http://dx.doi.org/10.1212/01.wnl.0000263217.36439.da] [PMID: 17536046]
[85]
Bermejo P, Martín-Aragón S, Benedí J, et al. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer’s disease. Immunol Lett 2008; 117(2): 198-202.
[http://dx.doi.org/10.1016/j.imlet.2008.02.002] [PMID: 18367253]
[86]
Lourenco MV, Clarke JR, Frozza RL, et al. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 2013; 18(6): 831-43.
[http://dx.doi.org/10.1016/j.cmet.2013.11.002] [PMID: 24315369]
[87]
Rizzo FR, Musella A, De Vito F, et al. Tumor necrosis factor and interleukin-1β modulate synaptic plasticity during neuroinflammation. Neural Plast 2018; 2018: 8430123.
[http://dx.doi.org/10.1155/2018/8430123] [PMID: 29861718]
[88]
Bomfim TR, Forny-Germano L, Sathler LB, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 2012; 122(4): 1339-53.
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[89]
Lee BT, Ahmed FA, Hamm LL, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol 2015; 16: 77.
[http://dx.doi.org/10.1186/s12882-015-0068-7] [PMID: 26025192]
[90]
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 2019; 27(4): 663-77.
[http://dx.doi.org/10.1007/s10787-019-00580-x] [PMID: 30874945]
[91]
Zuliani G, Ranzini M, Guerra G, et al. Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res 2007; 41(8): 686-93.
[http://dx.doi.org/10.1016/j.jpsychires.2006.02.008] [PMID: 16600299]
[92]
Hirano T. Interleukin 6 and its receptor: Ten years later. Int Rev Immunol 1998; 16(3-4): 249-84.
[http://dx.doi.org/10.3109/08830189809042997] [PMID: 9505191]
[93]
Takahashi T, Kubota M, Nakamura T, Ebihara I, Koide H. Interleukin-6 gene expression in peripheral blood mononuclear cells from patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Ren Fail 2000; 22(3): 345-54.
[http://dx.doi.org/10.1081/JDI-100100878] [PMID: 10843245]
[94]
Caglar K, Peng Y, Pupim LB, et al. Inflammatory signals associated with hemodialysis. Kidney Int 2002; 62(4): 1408-16.
[http://dx.doi.org/10.1111/j.1523-1755.2002.kid556.x] [PMID: 12234313]
[95]
Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 2016; 6(Pt A): 1218-27.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.018]
[96]
Koyama A, O’Brien J, Weuve J, Blacker D, Metti AL, Yaffe K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J Gerontol A Biol Sci Med Sci 2013; 68(4): 433-40.
[http://dx.doi.org/10.1093/gerona/gls187] [PMID: 22982688]
[97]
Androsova LV, Mikhaĭlova NM, Zozulia SA, et al. [Inflammatory markers in Alzheimer’s disease and vascular dementia]. Zh Nevrol Psikhiatr Im S S Korsakova 2013; 113(2): 49-53. [Inflammatory markers in Alzheimer's disease and vascular dementia].
[PMID: 23528583]
[98]
Uslu S, Akarkarasu ZE, Ozbabalik D, et al. Levels of amyloid beta-42, interleukin-6 and tumor necrosis factor-alpha in Alzheimer’s disease and vascular dementia. Neurochem Res 2012; 37(7): 1554-9.
[http://dx.doi.org/10.1007/s11064-012-0750-0] [PMID: 22437436]
[99]
Ng A, Tam WW, Zhang MW, et al. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci Rep 2018; 8(1): 12050.
[http://dx.doi.org/10.1038/s41598-018-30487-6] [PMID: 30104698]
[100]
Welsh P, Woodward M, Rumley A, Lowe G. Associations of plasma pro-inflammatory cytokines, fibrinogen, viscosity and C-reactive protein with cardiovascular risk factors and social deprivation: The fourth Glasgow MONICA study. Br J Haematol 2008; 141(6): 852-61.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07133.x] [PMID: 18371109]
[101]
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009; 73(10): 768-74.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[102]
Panza F, Frisardi V, Seripa D, et al. Metabolic syndrome, mild cognitive impairment, and dementia. Curr Alzheimer Res 2011; 8(5): 492-509.
[http://dx.doi.org/10.2174/156720511796391818] [PMID: 21605050]
[103]
Kamer AR, Craig RG, Pirraglia E, et al. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol 2009; 216(1-2): 92-7.
[http://dx.doi.org/10.1016/j.jneuroim.2009.08.013] [PMID: 19767111]
[104]
Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol 2014; 221(2): R49-61.
[http://dx.doi.org/10.1530/JOE-13-0578] [PMID: 24464020]
[105]
Yu Y, Bao BJ, Fan YP, Shi L, Li SQ. Changes of adiponectin and its receptors in rats following chronic renal failure. Ren Fail 2014; 36(1): 92-7.
[http://dx.doi.org/10.3109/0886022X.2013.830975] [PMID: 24028144]
[106]
D’Apolito M, Du X, Zong H, et al. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J Clin Invest 2010; 120(1): 203-13.
[http://dx.doi.org/10.1172/JCI37672] [PMID: 19955654]
[107]
Huang JW, Yen CJ, Chiang HW, Hung KY, Tsai TJ, Wu KD. Adiponectin in peritoneal dialysis patients: A comparison with hemodialysis patients and subjects with normal renal function. Am J Kidney Dis 2004; 43(6): 1047-55.
[http://dx.doi.org/10.1053/j.ajkd.2004.02.017] [PMID: 15168385]
[108]
Adamczak M, Chudek J, Wiecek A. Adiponectin in patients with chronic kidney disease. Semin Dial 2009; 22(4): 391-5.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00587.x] [PMID: 19708988]
[109]
Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol 2016; 8(2): 93-100.
[http://dx.doi.org/10.1093/jmcb/mjw011] [PMID: 26993047]
[110]
Li J, Shen X. Oxidative stress and adipokine levels were significantly correlated in diabetic patients with hyperglycemic crises. Diabetol Metab Syndr 2019; 11: 13.
[http://dx.doi.org/10.1186/s13098-019-0410-5] [PMID: 30774721]
[111]
Ouedraogo R, Wu X, Xu SQ, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: Evidence for involvement of a cAMP signaling pathway. Diabetes 2006; 55(6): 1840-6.
[http://dx.doi.org/10.2337/db05-1174] [PMID: 16731851]
[112]
Waragai M, Ho G, Takamatsu Y, et al. Dual-therapy strategy for modification of adiponectin receptor signaling in aging-associated chronic diseases. Drug Discov Today 2018; 23(6): 1305-11.
[http://dx.doi.org/10.1016/j.drudis.2018.05.009] [PMID: 29747002]
[113]
Rhee CM, Nguyen DV, Moradi H, et al. Association of adiponectin with body composition and mortality in hemodialysis patients. Am J Kidney Dis 2015; 66(2): 313-21.
[http://dx.doi.org/10.1053/j.ajkd.2015.02.325] [PMID: 25824125]
[114]
Martinez Cantarin MP, Keith SW, Waldman SA, Falkner B. Adiponectin receptor and adiponectin signaling in human tissue among patients with end-stage renal disease. Nephrol Dial Transplant 2014; 29(12): 2268-77.
[http://dx.doi.org/10.1093/ndt/gfu249] [PMID: 25049200]
[115]
Sopić M, Joksić J, Spasojević-Kalimanovska V, et al. Downregulation of AdipoR1 is associated with increased circulating adiponectin levels in serbian chronic kidney disease patients. J Med Biochem 2016; 35(4): 436-42.
[http://dx.doi.org/10.1515/jomb-2016-0007] [PMID: 28670196]
[116]
Waragai M, Adame A, Trinh I, et al. Possible involvement of adiponectin, the anti-diabetes molecule, in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2016; 52(4): 1453-9.
[http://dx.doi.org/10.3233/JAD-151116] [PMID: 27079710]
[117]
Une K, Takei YA, Tomita N, et al. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol 2011; 18(7): 1006-9.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03194.x] [PMID: 20727007]
[118]
Khemka VK, Bagchi D, Bandyopadhyay K, et al. Altered serum levels of adipokines and insulin in probable Alzheimer’s disease. J Alzheimers Dis 2014; 41(2): 525-33.
[http://dx.doi.org/10.3233/JAD-140006] [PMID: 24625795]
[119]
Ma JJ, Shang J, Wang H, Sui JR, Liu K, Du JX. Serum adiponectin levels are inversely correlated with leukemia: A meta-analysis. J Cancer Res Ther 2016; 12(2): 897-902.
[http://dx.doi.org/10.4103/0973-1482.186695] [PMID: 27461671]
[120]
Teixeira AL, Diniz BS, Campos AC, et al. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromolecular Med 2013; 15(1): 115-21.
[http://dx.doi.org/10.1007/s12017-012-8201-2] [PMID: 23055000]
[121]
Ng RC, Jian M, Ma OK, et al. Chronic oral administration of adipoRon reverses cognitive impairments and ameliorates neuropathology in an Alzheimer’s disease mouse model. Mol Psychiatry 2020.
[http://dx.doi.org/10.1038/s41380-020-0701-0] [PMID: 32132650]
[122]
Ng RC, Cheng OY, Jian M, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 2016; 11(1): 71.
[http://dx.doi.org/10.1186/s13024-016-0136-x] [PMID: 27884163]
[123]
Kim MW, Abid NB, Jo MH, Jo MG, Yoon GH, Kim MO. Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer’s disease-like pathologies. Sci Rep 2017; 7(1): 12435.
[http://dx.doi.org/10.1038/s41598-017-12632-9] [PMID: 28963462]
[124]
Pan W, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides: Obestatin, ghrelin, and adiponectin. Peptides 2006; 27(4): 911-6.
[http://dx.doi.org/10.1016/j.peptides.2005.12.014] [PMID: 16476508]
[125]
Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight. Nat Med 2004; 10(5): 524-9.
[http://dx.doi.org/10.1038/nm1029] [PMID: 15077108]
[126]
Yau SY, Li A, Hoo RL, et al. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci USA 2014; 111(44): 15810-5.
[http://dx.doi.org/10.1073/pnas.1415219111] [PMID: 25331877]
[127]
Abrahamson M, Grubb A, Olafsson I, Lundwall A. Molecular cloning and sequence analysis of cDNA coding for the precursor of the human cysteine proteinase inhibitor cystatin C. FEBS Lett 1987; 216(2): 229-33.
[http://dx.doi.org/10.1016/0014-5793(87)80695-6] [PMID: 3495457]
[128]
Otsuka T, Tanaka A, Suemaru K, et al. Evaluation of the clinical application of cystatin C, a new marker of the glomerular filtration rate, for the initial dose-setting of arbekacin. J Clin Pharm Ther 2008; 33(3): 227-35.
[http://dx.doi.org/10.1111/j.1365-2710.2008.00905.x] [PMID: 18452409]
[129]
Sundelöf J, Arnlöv J, Ingelsson E, et al. Serum cystatin C and the risk of Alzheimer disease in elderly men. Neurology 2008; 71(14): 1072-9.
[http://dx.doi.org/10.1212/01.wnl.0000326894.40353.93] [PMID: 18824671]
[130]
Yaffe K, Lindquist K, Shlipak MG, et al. Cystatin C as a marker of cognitive function in elders: Findings from the health ABC study. Ann Neurol 2008; 63(6): 798-802.
[http://dx.doi.org/10.1002/ana.21383] [PMID: 18496846]
[131]
Maruyama K, Ikeda S, Ishihara T, Allsop D, Yanagisawa N. Immunohistochemical characterization of cerebrovascular amyloid in 46 autopsied cases using antibodies to beta protein and cystatin C. Stroke 1990; 21(3): 397-403.
[http://dx.doi.org/10.1161/01.STR.21.3.397] [PMID: 2408196]
[132]
Steinhoff T, Moritz E, Wollmer MA, Mohajeri MH, Kins S, Nitsch RM. Increased cystatin C in astrocytes of transgenic mice expressing the K670N-M671L mutation of the amyloid precursor protein and deposition in brain amyloid plaques. Neurobiol Dis 2001; 8(4): 647-54.
[http://dx.doi.org/10.1006/nbdi.2001.0412] [PMID: 11493029]
[133]
Winkler DT, Bondolfi L, Herzig MC, et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 2001; 21(5): 1619-27.
[http://dx.doi.org/10.1523/JNEUROSCI.21-05-01619.2001] [PMID: 11222652]
[134]
Sastre M, Calero M, Pawlik M, et al. Binding of cystatin C to Alzheimer’s amyloid beta inhibits in vitro amyloid fibril formation. Neurobiol Aging 2004; 25(8): 1033-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.11.006] [PMID: 15212828]
[135]
Tizon B, Ribe EM, Mi W, Troy CM, Levy E. Cystatin C protects neuronal cells from amyloid-beta-induced toxicity. J Alzheimers Dis 2010; 19(3): 885-94.
[http://dx.doi.org/10.3233/JAD-2010-1291] [PMID: 20157244]
[136]
Mechanick JI, Zhao S, Garvey WT. Leptin, an adipokine with central importance in the global obesity problem. Glob Heart 2018; 13(2): 113-27.
[http://dx.doi.org/10.1016/j.gheart.2017.10.003] [PMID: 29248361]
[137]
Mak RH, Cheung W, Cone RD, Marks DL. Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int 2006; 69(5): 794-7.
[http://dx.doi.org/10.1038/sj.ki.5000182] [PMID: 16518340]
[138]
Briley LP, Szczech LA. Leptin and renal disease. Semin Dial 2006; 19(1): 54-9.
[http://dx.doi.org/10.1111/j.1525-139X.2006.00119.x] [PMID: 16423182]
[139]
Ambarkar M, Pemmaraju SV, Gouroju S, et al. Adipokines and their relation to endothelial dysfunction in patients with chronic kidney disease. J Clin Diagn Res 2016; 10(1): BC04-8.
[http://dx.doi.org/10.7860/JCDR/2016/15867.7060] [PMID: 26894055]
[140]
Ocak N, Dirican M, Ersoy A, Sarandol E. Adiponectin, leptin, nitric oxide, and C-reactive protein levels in kidney transplant recipients: Comparison with the hemodialysis and chronic renal failure. Ren Fail 2016; 38(10): 1639-46.
[http://dx.doi.org/10.1080/0886022X.2016.1229965] [PMID: 27764985]
[141]
Jiang S, Song K, Feng S, Shi YB. Association between serum leptin levels and peritoneal dialysis: A meta-analysis. Exp Ther Med 2015; 10(1): 300-8.
[http://dx.doi.org/10.3892/etm.2015.2441] [PMID: 26170953]
[142]
Alix PM, Guebre-Egziabher F, Soulage CO. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease. Biochimie 2014; 105: 12-21.
[http://dx.doi.org/10.1016/j.biochi.2014.06.024] [PMID: 25010649]
[143]
Lieb W, Beiser AS, Vasan RS, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 2009; 302(23): 2565-72.
[http://dx.doi.org/10.1001/jama.2009.1836] [PMID: 20009056]
[144]
Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N. Obesity-related leptin regulates Alzheimer’s Abeta. FASEB J 2004; 18(15): 1870-8.
[http://dx.doi.org/10.1096/fj.04-2572com] [PMID: 15576490]
[145]
Marwarha G, Dasari B, Prasanthi JR, Schommer J, Ghribi O. Leptin reduces the accumulation of Abeta and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis 2010; 19(3): 1007-19.
[http://dx.doi.org/10.3233/JAD-2010-1298] [PMID: 20157255]
[146]
Greco SJ, Bryan KJ, Sarkar S, et al. Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 2010; 19(4): 1155-67.
[http://dx.doi.org/10.3233/JAD-2010-1308] [PMID: 20308782]
[147]
Tezapsidis N, Johnston JM, Smith MA, et al. Leptin: A novel therapeutic strategy for Alzheimer’s disease. J Alzheimers Dis 2009; 16(4): 731-40.
[http://dx.doi.org/10.3233/JAD-2009-1021] [PMID: 19387109]
[148]
Friedman J. 20 years of leptin: leptin at 20: An overview. J Endocrinol 2014; 223(1): T1-8.
[http://dx.doi.org/10.1530/JOE-14-0405] [PMID: 25121999]
[149]
Platt TL, Beckett TL, Kohler K, Niedowicz DM, Murphy MP. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience 2016; 315: 162-74.
[http://dx.doi.org/10.1016/j.neuroscience.2015.12.011] [PMID: 26701291]
[150]
Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003; 26(3): 137-46.
[http://dx.doi.org/10.1016/S0166-2236(03)00032-8] [PMID: 12591216]
[151]
Manolescu BN, Oprea E, Farcasanu IC, Berteanu M, Cercasov C. Homocysteine and vitamin therapy in stroke prevention and treatment: A review. Acta Biochim Pol 2010; 57(4): 467-77.
[http://dx.doi.org/10.18388/abp.2010_2432] [PMID: 21140003]
[152]
Xie D, Yuan Y, Guo J, et al. Hyperhomocysteinemia predicts renal function decline: A prospective study in hypertensive adults. Sci Rep 2015; 5: 16268.
[http://dx.doi.org/10.1038/srep16268] [PMID: 26553372]
[153]
van Guldener C, Stehouwer CD. Homocysteine and methionine metabolism in renal failure. Semin Vasc Med 2005; 5(2): 201-8.
[http://dx.doi.org/10.1055/s-2005-872405] [PMID: 16047272]
[154]
Massy ZA. Importance of homocysteine, lipoprotein (a) and non-classical cardiovascular risk factors (fibrinogen and advanced glycation end-products) for atherogenesis in uraemic patients. Nephrol Dial Transplant 2000; 15(Suppl. 5): 81-91.
[http://dx.doi.org/10.1093/ndt/15.suppl_5.81] [PMID: 11073279]
[155]
Refsum H, Nurk E, Smith AD, et al. The Hordaland Homocysteine Study: A community-based study of homocysteine, its determinants, and associations with disease. J Nutr 2006; 136(6)(Suppl.): 1731S-40S.
[http://dx.doi.org/10.1093/jn/136.6.1731S] [PMID: 16702348]
[156]
Robinson K. Renal disease, homocysteine, and cardiovascular complications. Circulation 2004; 109(3): 294-5.
[http://dx.doi.org/10.1161/01.CIR.0000114133.99074.96] [PMID: 14744952]
[157]
Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: Impact on neurodegenerative diseases. Basic Clin Pharmacol Toxicol 2015; 117(5): 287-96.
[http://dx.doi.org/10.1111/bcpt.12424] [PMID: 26036286]
[158]
Seshadri S, Wolf PA, Beiser AS, et al. Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch Neurol 2008; 65(5): 642-9.
[http://dx.doi.org/10.1001/archneur.65.5.642] [PMID: 18474741]
[159]
Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimers Dis 2006; 9(4): 393-8.
[http://dx.doi.org/10.3233/JAD-2006-9404] [PMID: 16917147]
[160]
Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002; 346(7): 476-83.
[http://dx.doi.org/10.1056/NEJMoa011613] [PMID: 11844848]
[161]
Kitzlerová E, Fisar Z, Jirák R, et al. Plasma homocysteine in Alzheimer’s disease with or without co-morbid depressive symptoms. Neuroendocrinol Lett 2014; 35(1): 42-9.
[PMID: 24625917]
[162]
Zhang CE, Tian Q, Wei W, et al. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging 2008; 29(11): 1654-65.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.015] [PMID: 17537547]
[163]
Zeng P, Shi Y, Wang XM, et al. Emodin rescued hyperhomocysteinemia-induced dementia and Alzheimer’s disease-like features in rats. Int J Neuropsychopharmacol 2019; 22(1): 57-70.
[http://dx.doi.org/10.1093/ijnp/pyy090] [PMID: 30407508]
[164]
White AR, Huang X, Jobling MF, et al. Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 2001; 76(5): 1509-20.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00178.x] [PMID: 11238735]
[165]
Kruman II, Culmsee C, Chan SL, et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 2000; 20(18): 6920-6.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06920.2000] [PMID: 10995836]
[166]
Arvanitakis Z, Lucas JA, Younkin LH, Younkin SG, Graff-Radford NR. Serum creatinine levels correlate with plasma amyloid Beta protein. Alzheimer Dis Assoc Disord 2002; 16(3): 187-90.
[http://dx.doi.org/10.1097/00002093-200207000-00009] [PMID: 12218650]
[167]
Gronewold J, Klafki HW, Baldelli E, et al. Factors responsible for plasma β-amyloid accumulation in chronic kidney disease. Mol Neurobiol 2016; 53(5): 3136-45.
[http://dx.doi.org/10.1007/s12035-015-9218-y] [PMID: 26019016]
[168]
Liu YH, Xiang Y, Wang YR, et al. Association between serum amyloid-beta and renal functions: Implications for roles of kidney in amyloid-beta clearance. Mol Neurobiol 2015; 52(1): 115-9.
[http://dx.doi.org/10.1007/s12035-014-8854-y] [PMID: 25119777]
[169]
Lue LF, Sabbagh MN, Chiu MJ, et al. Plasma levels of aβ42 and tau identified probable Alzheimer’s dementia: Findings in two cohorts. Front Aging Neurosci 2017; 9: 226.
[http://dx.doi.org/10.3389/fnagi.2017.00226] [PMID: 28790911]
[170]
Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer’s disease: progress, problems and perspectives. Drug Discov Today 2006; 11(19-20): 931-8.
[http://dx.doi.org/10.1016/j.drudis.2006.08.004] [PMID: 16997144]
[171]
Roberts KF, Elbert DL, Kasten TP, et al. Amyloid-β efflux from the central nervous system into the plasma. Ann Neurol 2014; 76(6): 837-44.
[http://dx.doi.org/10.1002/ana.24270] [PMID: 25205593]
[172]
Liu YH, Wang YR, Xiang Y, et al. Clearance of amyloid-beta in Alzheimer’s disease: shifting the action site from center to periphery. Mol Neurobiol 2015; 51(1): 1-7.
[http://dx.doi.org/10.1007/s12035-014-8694-9] [PMID: 24733588]
[173]
Vinothkumar G, Kedharnath C, Krishnakumar S, et al. Abnormal amyloid β42 expression and increased oxidative stress in plasma of CKD patients with cognitive dysfunction: A small scale case control study comparison with Alzheimer’s disease. BBA Clin 2017; 8: 20-7.
[http://dx.doi.org/10.1016/j.bbacli.2017.06.001] [PMID: 28702365]
[174]
Hansson O. Biomarkers for neurodegenerative diseases. Nat Med 2021; 27(6): 954-63.
[http://dx.doi.org/10.1038/s41591-021-01382-x] [PMID: 34083813]
[175]
Ono M, Sahara N, Kumata K, et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain 2017; 140(3): 764-80.
[http://dx.doi.org/10.1093/brain/aww339] [PMID: 28087578]
[176]
Zhou R, Ji B, Kong Y, et al. PET Imaging of Neuroinflammation in Alzheimer’s Disease. Front Immunol 2021; 12: 739130.
[http://dx.doi.org/10.3389/fimmu.2021.739130] [PMID: 34603323]
[177]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy