Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

A Narrative Review of Recent Studies on the Role of Vitamin D in the Prevention of Cardiac and Renal Risk and Additional Considerations for COVID-19 Vulnerability

Author(s): Aikaterini E. Panteli, Panagiotis Theofilis, Aikaterini Vordoni, Georgios Vlachopanos, Maria Koukoulaki and Rigas G. Kalaitzidis*

Volume 20, Issue 2, 2022

Published on: 08 December, 2021

Page: [168 - 177] Pages: 10

DOI: 10.2174/1570161119666211119142746

Price: $65

Abstract

The role of vitamin D in maintaining a healthy cardiovascular (CV) and the renal system has received increasing attention. Low vitamin D levels are associated with the incidence of hypertension, cardiac remodeling, and chronic congestive heart failure. Low vitamin D levels also influence renal disease progression and albuminuria deterioration. Moreover, recent research indicates that vitamin D deficiency can be a potential risk factor for coronavirus disease-19 (COVID-19) infection and poorer outcomes. Data are inconclusive as to whether supplementation with vitamin D agents reduces CV disease risk or COVID-19 severity. Conversely, in patients with kidney disease, vitamin D supplementation is associated with an improvement in kidney function and albuminuria. This narrative review considers recent data on the effects of vitamin D on the CV and renal system, as well as its possible role regarding COVID-19 complications.

Keywords: Vitamin D deficiency, cardiovascular risk, heart failure, renal function, albuminuria, COVID-19.

Graphical Abstract

[1]
Lee JH, O’Keefe JH, Bell D, Hensrud DD, Holick MF. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol 2008; 52(24): 1949-56.
[http://dx.doi.org/10.1016/j.jacc.2008.08.050] [PMID: 19055985]
[2]
Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357(3): 266-81.
[http://dx.doi.org/10.1056/NEJMra070553] [PMID: 17634462]
[3]
Cashman KD, Dowling KG, Škrabáková Z, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr 2016; 103(4): 1033-44.
[http://dx.doi.org/10.3945/ajcn.115.120873] [PMID: 26864360]
[4]
Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc 2011; 86(1): 50-60.
[http://dx.doi.org/10.4065/mcp.2010.0567] [PMID: 21193656]
[5]
Reijven PLM, Soeters PB. Vitamin D: a magic bullet or a myth? Clin Nutr 2020; 39(9): 2663-74.
[http://dx.doi.org/10.1016/j.clnu.2019.12.028] [PMID: 31959477]
[6]
Tebben PJ, Singh RJ, Kumar R. Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev 2016; 37(5): 521-47.
[http://dx.doi.org/10.1210/er.2016-1070] [PMID: 27588937]
[7]
Razzaque MS. The dualistic role of vitamin D in vascular calcifications. Kidney Int 2011; 79(7): 708-14.
[http://dx.doi.org/10.1038/ki.2010.432] [PMID: 20962746]
[8]
Verdoia M, Nardin M, Rolla R, et al. Prognostic impact of Vitamin D deficiency in patients with coronary artery disease undergoing percutaneous coronary intervention. Eur J Intern Med 2021; 83: 62-7.
[http://dx.doi.org/10.1016/j.ejim.2020.08.016] [PMID: 32830035]
[9]
Verdoia M, Schaffer A, Sartori C, et al. Vitamin D deficiency is independently associated with the extent of coronary artery disease. Eur J Clin Invest 2014; 44(7): 634-42.
[http://dx.doi.org/10.1111/eci.12281] [PMID: 24829065]
[10]
Rejnmark L, Avenell A, Masud T, et al. Vitamin D with calcium reduces mortality: patient level pooled analysis of 70,528 patients from eight major vitamin D trials. J Clin Endocrinol Metab 2012; 97(8): 2670-81.
[http://dx.doi.org/10.1210/jc.2011-3328] [PMID: 22605432]
[11]
Verdoia M, Pergolini P, Rolla R, et al. Impact of high-dose statins on vitamin D levels and platelet function in patients with coronary artery disease. Thromb Res 2017; 150: 90-5.
[http://dx.doi.org/10.1016/j.thromres.2016.12.019] [PMID: 28068529]
[12]
Wu Z, Camargo CA Jr, Khaw KT, et al. Effects of vitamin D supplementation on adherence to and persistence with long-term statin therapy: Secondary analysis from the randomized, double-blind, placebo-controlled ViDA study. Atherosclerosis 2018; 273: 59-66.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.04.009] [PMID: 29684661]
[13]
Palamaner Subash Shantha G, Ramos J, Thomas-Hemak L, Pancholy SB. Association of vitamin D and incident statin induced myalgia--a retrospective cohort study. PLoS One 2014; 9(2): e88877.
[http://dx.doi.org/10.1371/journal.pone.0088877] [PMID: 24586424]
[14]
Riche KD, Arnall J, Rieser K, East HE, Riche DM. Impact of vitamin D status on statin-induced myopathy. J Clin Transl Endocrinol 2016; 6: 56-9.
[http://dx.doi.org/10.1016/j.jcte.2016.11.002] [PMID: 29067242]
[15]
Pennisi M, Di Bartolo G, Malaguarnera G, Bella R, Lanza G, Malaguarnera M. Vitamin D serum levels in patients with statin-induced musculoskeletal pain. Dis Markers 2019; 2019: 3549402.
[http://dx.doi.org/10.1155/2019/3549402] [PMID: 31019583]
[16]
Kaur H, Singh J, Kashyap JR, et al. Relationship between statin-associated muscle symptoms, serum vitamin D and low-density lipoprotein cholesterol - a cross-sectional study. Eur Endocrinol 2020; 16(2): 137-42.
[http://dx.doi.org/10.17925/EE.2020.16.2.137] [PMID: 33117445]
[17]
Michalska-Kasiczak M, Sahebkar A, Mikhailidis DP, et al. Analysis of vitamin D levels in patients with and without statin-associated myalgia - a systematic review and meta-analysis of 7 studies with 2420 patients. Int J Cardiol 2015; 178: 111-6.
[http://dx.doi.org/10.1016/j.ijcard.2014.10.118] [PMID: 25464233]
[18]
Dal Canto E, Beulens JWJ, Elders P, et al. The association of vitamin D and vitamin K status with subclinical measures of cardiovascular health and all-cause mortality in older adults: the hoorn study. J Nutr 2020; 150(12): 3171-9.
[http://dx.doi.org/10.1093/jn/nxaa293] [PMID: 33119768]
[19]
Masson S, Barlera S, Colotta F, et al. A low plasma 1,25(OH)2 vitamin D/PTH (1-84) ratio predicts worsening of renal function in patients with chronic heart failure. Int J Cardiol 2016; 224: 220-5.
[http://dx.doi.org/10.1016/j.ijcard.2016.09.014] [PMID: 27657477]
[20]
Jeon YJ, Jung SJ, Kim HC. Does serum vitamin D level affect the association between cardiovascular health and cognition? Results of the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) study. Eur J Neurol 2021; 28(1): 48-55.
[http://dx.doi.org/10.1111/ene.14496] [PMID: 32876965]
[21]
Tang Z, Huang S, Ma R, Zheng H, Zhu Y. Low vitamin D status is associated with obesity but no other cardiovascular risk factors in Chinese children and adolescents. Nutr Metab Cardiovasc Dis 2020; 30(9): 1573-81.
[http://dx.doi.org/10.1016/j.numecd.2020.05.019] [PMID: 32605882]
[22]
Latic N, Erben RG. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int J Mol Sci 2020; 21(18): 21.
[http://dx.doi.org/10.3390/ijms21186483] [PMID: 32899880]
[23]
Yin K, You Y, Swier V, et al. Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler Thromb Vasc Biol 2015; 35(11): 2432-42.
[http://dx.doi.org/10.1161/ATVBAHA.115.306132] [PMID: 26381871]
[24]
Koyama T, Shibakura M, Ohsawa M, Kamiyama R, Hirosawa S. Anticoagulant effects of 1alpha,25-dihydroxyvitamin D3 on human myelogenous leukemia cells and monocytes. Blood 1998; 92(1): 160-7.
[http://dx.doi.org/10.1182/blood.V92.1.160.413k16_160_167] [PMID: 9639512]
[25]
Velimirović M, Jevtić Dožudić G, Selaković V, et al. Effects of vitamin D3 on the NADPH oxidase and matrix metalloproteinase 9 in an animal model of global cerebral ischemia. Oxid Med Cell Longev 2018; 2018: 3273654.
[http://dx.doi.org/10.1155/2018/3273654] [PMID: 29849881]
[26]
Oh J, Weng S, Felton SK, et al. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 2009; 120(8): 687-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.856070] [PMID: 19667238]
[27]
Scragg R, Stewart AW, Waayer D, et al. Effect of monthly high-dose vitamin D supplementation on cardiovascular disease in the vitamin D assessment study: a randomized clinical trial. JAMA Cardiol 2017; 2(6): 608-16.
[http://dx.doi.org/10.1001/jamacardio.2017.0175] [PMID: 28384800]
[28]
Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 2019; 380(1): 33-44.
[http://dx.doi.org/10.1056/NEJMoa1809944] [PMID: 30415629]
[29]
Dalmeijer GW, van der Schouw YT, Magdeleyns EJ, et al. Matrix Gla protein species and risk of cardiovascular events in type 2 diabetic patients. Diabetes Care 2013; 36(11): 3766-71.
[http://dx.doi.org/10.2337/dc13-0065] [PMID: 23877986]
[30]
Nargesi AA, Heidari B, Esteghamati S, et al. Contribution of vitamin D deficiency to the risk of coronary heart disease in subjects with essential hypertension. Atherosclerosis 2016; 244: 165-71.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.020] [PMID: 26647372]
[31]
Chen S, Sun Y, Agrawal DK. Vitamin D deficiency and essential hypertension. J Am Soc Hypertens 2015; 9(11): 885-901.
[http://dx.doi.org/10.1016/j.jash.2015.08.009] [PMID: 26419755]
[32]
Forman JP, Bischoff-Ferrari HA, Willett WC, Stampfer MJ, Curhan GC. Vitamin D intake and risk of incident hypertension: results from three large prospective cohort studies. Hypertension 2005; 46(4): 676-82.
[http://dx.doi.org/10.1161/01.HYP.0000182662.82666.37] [PMID: 16144983]
[33]
Cuffee YL, Wang M, Geyer NR, et al. Vitamin D and family history of hypertension in relation to hypertension status among college students. J. Hum. Hypertens.
[PMID: 34285353]
[34]
Assalin HB, Rafacho BP, dos Santos PP, et al. Impact of the length of vitamin D deficiency on cardiac remodeling. Circ Heart Fail 2013; 6(4): 809-16.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000298] [PMID: 23709660]
[35]
Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Körfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol 2003; 41(1): 105-12.
[http://dx.doi.org/10.1016/S0735-1097(02)02624-4] [PMID: 12570952]
[36]
Zittermann A, Fuchs U, Kuhn J, et al. Parameters of mineral metabolism predict midterm clinical outcome in end-stage heart failure patients. Scand Cardiovasc J 2011; 45(6): 342-8.
[http://dx.doi.org/10.3109/14017431.2011.611250] [PMID: 21905973]
[37]
Zittermann A, Ernst JB. Calciotropic and phosphaturic hormones in heart failure. Nutr Metab Cardiovasc Dis 2016; 26(11): 971-9.
[http://dx.doi.org/10.1016/j.numecd.2016.06.007] [PMID: 27493144]
[38]
Wimalawansa SJ. Vitamin D and cardiovascular diseases: causality. J Steroid Biochem Mol Biol 2018; 175: 29-43.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.016] [PMID: 28027913]
[39]
Hii CS, Ferrante A. The non-genomic actions of vitamin D. Nutrients 2016; 8(3): 135.
[http://dx.doi.org/10.3390/nu8030135] [PMID: 26950144]
[40]
Kong J, Kim GH, Wei M, et al. Therapeutic effects of vitamin D analogs on cardiac hypertrophy in spontaneously hypertensive rats. Am J Pathol 2010; 177(2): 622-31.
[http://dx.doi.org/10.2353/ajpath.2010.091292] [PMID: 20616348]
[41]
Fitzpatrick LA, Bilezikian JP, Silverberg SJ. Parathyroid hormone and the cardiovascular system. Curr Osteoporos Rep 2008; 6(2): 77-83.
[http://dx.doi.org/10.1007/s11914-008-0014-8] [PMID: 18778568]
[42]
Rutledge MR, Farah V, Adeboye AA, Seawell MR, Bhattacharya SK, Weber KT. Parathyroid hormone, a crucial mediator of pathologic cardiac remodeling in aldosteronism. Cardiovasc Drugs Ther 2013; 27(2): 161-70.
[http://dx.doi.org/10.1007/s10557-012-6378-0] [PMID: 22373564]
[43]
Yuan W, Pan W, Kong J, et al. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem 2007; 282(41): 29821-30.
[http://dx.doi.org/10.1074/jbc.M705495200] [PMID: 17690094]
[44]
Mathieu C. Vitamin D and diabetes: where do we stand? Diabetes Res Clin Pract 2015; 108(2): 201-9.
[http://dx.doi.org/10.1016/j.diabres.2015.01.036] [PMID: 25700626]
[45]
Pilz S, Kienreich K, Rutters F, et al. Role of vitamin D in the development of insulin resistance and type 2 diabetes. Curr Diab Rep 2013; 13(2): 261-70.
[http://dx.doi.org/10.1007/s11892-012-0358-4] [PMID: 23264189]
[46]
Archontogeorgis K, Papanas N, Rizos EC, et al. Reduced serum vitamin D levels are associated with insulin resistance in patients with obstructive sleep apnea syndrome. Medicina (Kaunas) 2019; 55(5): 55.
[http://dx.doi.org/10.3390/medicina55050174] [PMID: 31137600]
[47]
Mutt SJ, Raza GS, Mäkinen MJ, Keinänen-Kiukaanniemi S, Järvelin MR, Herzig KH. Vitamin D deficiency induces insulin resistance and re-supplementation attenuates hepatic glucose output via the PI3K-AKT-FOXO1 mediated pathway. Mol Nutr Food Res 2020; 64(1): e1900728.
[http://dx.doi.org/10.1002/mnfr.201900728] [PMID: 31797544]
[48]
Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 2012; 188(5): 2127-35.
[http://dx.doi.org/10.4049/jimmunol.1102412] [PMID: 22301548]
[49]
Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res 2012; 95(2): 233-40.
[http://dx.doi.org/10.1093/cvr/cvs141] [PMID: 22492675]
[50]
Schmidt N, Brandsch C, Kühne H, Thiele A, Hirche F, Stangl GI. Vitamin D receptor deficiency and low vitamin D diet stimulate aortic calcification and osteogenic key factor expression in mice. PLoS One 2012; 7(4): e35316.
[http://dx.doi.org/10.1371/journal.pone.0035316] [PMID: 22536373]
[51]
Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 2001; 167(9): 4974-80.
[http://dx.doi.org/10.4049/jimmunol.167.9.4974] [PMID: 11673504]
[52]
Pilz S, Tomaschitz A, Drechsler C, Dekker JM, März W. Vitamin D deficiency and myocardial diseases. Mol Nutr Food Res 2010; 54(8): 1103-13.
[PMID: 20352623]
[53]
Helming L, Böse J, Ehrchen J, et al. 1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 2005; 106(13): 4351-8.
[http://dx.doi.org/10.1182/blood-2005-03-1029] [PMID: 16118315]
[54]
Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF. Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford) 2010; 49(8): 1466-71.
[http://dx.doi.org/10.1093/rheumatology/keq124] [PMID: 20435648]
[55]
Ilinčić B, Stokić E, Stošić Z, et al. Vitamin D status and circulating biomarkers of endothelial dysfunction and inflammation in non-diabetic obese individuals: A pilot study. Arch Med Sci 2017; 13(1): 53-60.
[http://dx.doi.org/10.5114/aoms.2016.61812] [PMID: 28144255]
[56]
Bhutia SK. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J Nutr Biochem 2021; 99: 108841.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108841] [PMID: 34403722]
[57]
Silvagno F, De Vivo E, Attanasio A, Gallo V, Mazzucco G, Pescarmona G. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes. PLoS One 2010; 5(1): e8670.
[http://dx.doi.org/10.1371/journal.pone.0008670] [PMID: 20107497]
[58]
Verdoia M, Pergolini P, Rolla R, et al. Vitamin D levels and high-residual platelet reactivity in patients receiving dual antiplatelet therapy with clopidogrel or ticagrelor. Platelets 2016; 27(6): 576-82.
[http://dx.doi.org/10.3109/09537104.2016.1149159] [PMID: 27540959]
[59]
Li XH, Huang XP, Pan L, et al. Vitamin D deficiency may predict a poorer outcome of IgA nephropathy. BMC Nephrol 2016; 17(1): 164.
[http://dx.doi.org/10.1186/s12882-016-0378-4] [PMID: 27806690]
[60]
Sonneveld R, Hoenderop JG, Stavenuiter AW, et al. 1,25-vitamin D3 deficiency induces albuminuria. Am J Pathol 2016; 186(4): 794-804.
[http://dx.doi.org/10.1016/j.ajpath.2015.11.015] [PMID: 26851346]
[61]
Jiang S, Huang L, Zhang W, Zhang H. Vitamin D/VDR in acute kidney injury: A potential therapeutic target. Curr Med Chem 2021; 28(19): 3865-76.
[http://dx.doi.org/10.2174/0929867327666201118155625] [PMID: 33213307]
[62]
Vendramini LC, Dalboni MA, de Carvalho JTG Jr, Batista MC, Nishiura JL, Heilberg IP. Association of vitamin D levels with kidney volume in autosomal dominant polycystic kidney disease (ADPKD). Front Med (Lausanne) 2019; 6: 112.
[http://dx.doi.org/10.3389/fmed.2019.00112] [PMID: 31179282]
[63]
Docs J, Banyai D, Flasko T, Szanto A, Kovacs G. Impaired vitamin D signaling is associated with frequent development of renal cell tumor in end-stage kidney disease. Anticancer Res 2020; 40(11): 6525-30.
[http://dx.doi.org/10.21873/anticanres.14676] [PMID: 33109593]
[64]
Agarwal R, Acharya M, Tian J, et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int 2005; 68(6): 2823-8.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00755.x] [PMID: 16316359]
[65]
Lemire JM, Ince A, Takashima M. 1,25-Dihydroxyvitamin D3 attenuates the expression of experimental murine lupus of MRL/l mice. Autoimmunity 1992; 12(2): 143-8.
[http://dx.doi.org/10.3109/08916939209150321] [PMID: 1617111]
[66]
Wu CC, Liao MT, Hsiao PJ, et al. Antiproteinuria effect of calcitriol in patients with chronic kidney disease and vitamin D deficiency: a randomized controlled study. J Ren Nutr 2020; 30(3): 200-7.
[http://dx.doi.org/10.1053/j.jrn.2019.09.001] [PMID: 31704188]
[67]
Chitalia N, Ismail T, Tooth L, et al. Impact of vitamin D supplementation on arterial vasomotion, stiffness and endothelial biomarkers in chronic kidney disease patients. PLoS One 2014; 9(3): e91363.
[http://dx.doi.org/10.1371/journal.pone.0091363] [PMID: 24646518]
[68]
Dou D, Yang B, Gan H, Xie D, Lei H, Ye N. Vitamin D supplementation for the improvement of vascular function in patients with chronic kidney disease: a meta-analysis of randomized controlled trials. Int Urol Nephrol 2019; 51(5): 851-8.
[http://dx.doi.org/10.1007/s11255-019-02088-3] [PMID: 30737643]
[69]
Hu C, Wu X. Effect of vitamin D supplementation on vascular function and inflammation in patients with chronic kidney disease: a controversial issue. Ther Apher Dial 2020; 24(3): 265-74.
[http://dx.doi.org/10.1111/1744-9987.13428] [PMID: 31400089]
[70]
Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 2002; 39(5): 930-6.
[http://dx.doi.org/10.1053/ajkd.2002.32766] [PMID: 11979336]
[71]
Sahin I, Gungor B, Can MM, et al. Lower blood vitamin D levels are associated with an increased incidence of contrast-induced nephropathy in patients undergoing coronary angiography. Can J Cardiol 2014; 30(4): 428-33.
[http://dx.doi.org/10.1016/j.cjca.2013.12.029] [PMID: 24680172]
[72]
Luchi WM, Shimizu MH, Canale D, et al. Vitamin D deficiency is a potential risk factor for contrast-induced nephropathy. Am J Physiol Regul Integr Comp Physiol 2015; 309(3): R215-22.
[http://dx.doi.org/10.1152/ajpregu.00526.2014] [PMID: 26041113]
[73]
Ari E, Kedrah AE, Alahdab Y, et al. Antioxidant and renoprotective effects of paricalcitol on experimental contrast-induced nephropathy model. Br J Radiol 2012; 85(1016): 1038-43.
[http://dx.doi.org/10.1259/bjr/16327485] [PMID: 22815410]
[74]
Bae E, Kim JH, Jung MH, et al. Paricalcitol attenuates contrast-induced acute kidney injury by regulating mitophagy and senescence. Oxid Med Cell Longev 2020; 2020: 7627934.
[http://dx.doi.org/10.1155/2020/7627934] [PMID: 33299530]
[75]
Schwarz U, Amann K, Orth SR, Simonaviciene A, Wessels S, Ritz E. Effect of 1,25 (OH)2 vitamin D3 on glomerulosclerosis in subtotally nephrectomized rats. Kidney Int 1998; 53(6): 1696-705.
[http://dx.doi.org/10.1046/j.1523-1755.1998.00951.x] [PMID: 9607202]
[76]
Yang S, Li A, Wang J, et al. Vitamin D receptor: a novel therapeutic target for kidney diseases. Curr Med Chem 2018; 25(27): 3256-71.
[http://dx.doi.org/10.2174/0929867325666180214122352] [PMID: 29446731]
[77]
Fakhoury M, Levy R, Melamed ML. Vitamin D deficiency and kidney hyperfiltration: a mechanism of kidney injury? Ann Transl Med 2019; 7(Suppl. 6): S207.
[http://dx.doi.org/10.21037/atm.2019.06.64] [PMID: 31656786]
[78]
Lucisano S, Buemi M, Passantino A, Aloisi C, Cernaro V, Santoro D. New insights on the role of vitamin D in the progression of renal damage. Kidney Blood Press Res 2013; 37(6): 667-78.
[http://dx.doi.org/10.1159/000355747] [PMID: 24356557]
[79]
Chen L, Zhu H, Harshfield GA, Huang Y, Dong Y. Association between serum 25-hydroxyvitamin D and the effects of Angiotensin II receptor blocker on renal function among African Americans: a post hoc analysis of a randomized placebo-controlled trial. J Clin Hypertens (Greenwich) 2020; 22(10): 1874-83.
[http://dx.doi.org/10.1111/jch.13997] [PMID: 32810358]
[80]
Garsen M, Sonneveld R, Rops AL, et al. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J Pathol 2015; 237(4): 472-81.
[http://dx.doi.org/10.1002/path.4593] [PMID: 26202309]
[81]
Arfian N, Budiharjo S, Wibisono DP, et al. Vitamin D ameliorates kidney ischemia reperfusion injury via reduction of inflammation and myofibroblast expansion. Kobe J Med Sci 2020; 65(4): E138-43.
[PMID: 32201429]
[82]
Tan X, Li Y, Liu Y. Therapeutic role and potential mechanisms of active Vitamin D in renal interstitial fibrosis. J Steroid Biochem Mol Biol 2007; 103(3-5): 491-6.
[http://dx.doi.org/10.1016/j.jsbmb.2006.11.011] [PMID: 17207995]
[83]
Sanchez-Niño MD, Bozic M, Córdoba-Lanús E, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Renal Physiol 2012; 302(6): F647-57.
[http://dx.doi.org/10.1152/ajprenal.00090.2011] [PMID: 22169009]
[84]
Tan X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol 2008; 19(9): 1741-52.
[http://dx.doi.org/10.1681/ASN.2007060666] [PMID: 18525004]
[85]
Park JW, Bae EH, Kim IJ, et al. Renoprotective effects of paricalcitol on gentamicin-induced kidney injury in rats. Am J Physiol Renal Physiol 2010; 298(2): F301-13.
[http://dx.doi.org/10.1152/ajprenal.00471.2009] [PMID: 19940033]
[86]
Zhang ZH, Luo B, Xu S, et al. Long-term vitamin D deficiency promotes renal fibrosis and functional impairment in middle-aged male mice. Br J Nutr 2021; 125(8): 841-50.
[http://dx.doi.org/10.1017/S0007114520003232] [PMID: 32812524]
[87]
Du J, Jiang S, Hu Z, et al. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am J Physiol Renal Physiol 2019; 316(5): F1068-77.
[http://dx.doi.org/10.1152/ajprenal.00332.2018] [PMID: 30864841]
[88]
Annamalai C, Ganesh RN, Viswanathan P. Ferrotoxicity and its amelioration by endogenous vitamin D in experimental acute kidney injury. Exp Biol Med (Maywood) 2020; 245(16): 1474-89.
[http://dx.doi.org/10.1177/1535370220946271] [PMID: 32741217]
[89]
Cheung WW, Ding W, Hoffman HM, et al. Vitamin D ameliorates adipose browning in chronic kidney disease cachexia. Sci Rep 2020; 10(1): 14175.
[http://dx.doi.org/10.1038/s41598-020-70190-z] [PMID: 32843714]
[90]
Salehpour A, Shidfar F, Hedayati M, Farshad AA, Tehrani AN, Mohammadi S. Molecular mechanisms of vitamin D plus Bisphenol A effects on adipogenesis in human adipose-derived mesenchymal stem cells. Diabetol Metab Syndr 2021; 13(1): 41.
[http://dx.doi.org/10.1186/s13098-021-00661-4] [PMID: 33836827]
[91]
Seiler S, Heine GH, Fliser D. Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int Suppl 2009; (114): S34-42.
[http://dx.doi.org/10.1038/ki.2009.405] [PMID: 19946326]
[92]
Xie J, Yoon J, An SW, Kuro-o M, Huang CL. Soluble klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J Am Soc Nephrol 2015; 26(5): 1150-60.
[http://dx.doi.org/10.1681/ASN.2014040325] [PMID: 25475745]
[93]
Ky B, Shults J, Keane MG, et al. FGF23 modifies the relationship between vitamin D and cardiac remodeling. Circ Heart Fail 2013; 6(4): 817-24.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000105] [PMID: 23748358]
[94]
Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011; 121(11): 4393-408.
[http://dx.doi.org/10.1172/JCI46122] [PMID: 21985788]
[95]
Andrukhova O, Slavic S, Smorodchenko A, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 2014; 6(6): 744-59.
[http://dx.doi.org/10.1002/emmm.201303716] [PMID: 24797667]
[96]
Seiler S, Cremers B, Rebling NM, et al. The phosphatonin fibroblast growth factor 23 links calcium-phosphate metabolism with left-ventricular dysfunction and atrial fibrillation. Eur Heart J 2011; 32(21): 2688-96.
[http://dx.doi.org/10.1093/eurheartj/ehr215] [PMID: 21733911]
[97]
Shibata K, Fujita S, Morita H, et al. Association between circulating fibroblast growth factor 23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS One 2013; 8(9): e73184.
[http://dx.doi.org/10.1371/journal.pone.0073184] [PMID: 24039882]
[98]
Siasos G, Theofilis P, Oikonomou E, Tousoulis D. Vitamin D: a cardiovascular risk biomarker or a treatment target? Hellenic J Cardiol 2019; 60(2): 114-6.
[http://dx.doi.org/10.1016/j.hjc.2019.03.011] [PMID: 31271779]
[99]
Kim HA, Perrelli A, Ragni A, et al. Vitamin D deficiency and the risk of cerebrovascular disease. Antioxidants 2020; 9(4): 9.
[http://dx.doi.org/10.3390/antiox9040327] [PMID: 32316584]
[100]
Boucher BJ, Grant WB. Difficulties in designing randomised controlled trials of vitamin D supplementation for reducing acute cardiovascular events and in the analysis of their outcomes. Int J Cardiol Heart Vasc 2020; 29: 100564.
[http://dx.doi.org/10.1016/j.ijcha.2020.100564] [PMID: 32617386]
[101]
Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583.
[http://dx.doi.org/10.1136/bmj.i6583] [PMID: 28202713]
[102]
Panarese A, Shahini E. Letter: Covid-19, and vitamin D. Aliment Pharmacol Ther 2020; 51(10): 993-5.
[http://dx.doi.org/10.1111/apt.15752] [PMID: 32281109]
[103]
Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health 2020; 13(10): 1373-80.
[http://dx.doi.org/10.1016/j.jiph.2020.06.021] [PMID: 32605780]
[104]
Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75(18): 2352-71.
[http://dx.doi.org/10.1016/j.jacc.2020.03.031] [PMID: 32201335]
[105]
Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-Up: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75(23): 2950-73.
[http://dx.doi.org/10.1016/j.jacc.2020.04.031] [PMID: 32311448]
[106]
Bilezikian JP, Bikle D, Hewison M, et al. Mechanisms in endocrinology: vitamin D and COVID-19. Eur J Endocrinol 2020; 183(5): R133-47.
[http://dx.doi.org/10.1530/EJE-20-0665] [PMID: 32755992]
[107]
Carter SJ, Baranauskas MN, Fly AD. Considerations for obesity, vitamin D, and physical activity amid the COVID-19 pandemic. Obesity (Silver Spring) 2020; 28(7): 1176-7.
[http://dx.doi.org/10.1002/oby.22838] [PMID: 32299148]
[108]
Mohan M, Cherian JJ, Sharma A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog 2020; 16(9): e1008874.
[http://dx.doi.org/10.1371/journal.ppat.1008874] [PMID: 32946517]
[109]
Hanff TC, Harhay MO, Brown TS, Cohen JB, Mohareb AM. Is there an association between COVID-19 mortality and the renin-angiotensin system? A Call for Epidemiologic Investigations. Clin Infect Dis 2020; 71(15): 870-4.
[http://dx.doi.org/10.1093/cid/ciaa329] [PMID: 32215613]
[110]
Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep 2017; 16(5): 7432-8.
[http://dx.doi.org/10.3892/mmr.2017.7546] [PMID: 28944831]
[111]
Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12.
[http://dx.doi.org/10.3390/nu12040988]
[112]
Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet Diabetes Endocrinol 2020; 8(7): 570.
[http://dx.doi.org/10.1016/S2213-8587(20)30183-2] [PMID: 32445630]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy