Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Effects of Flavonoids in Experimental Models of Arterial Hypertension

Author(s): Noemi M. Atucha*, Paola Romecín, Felix Vargas and Joaquin García-Estañ*

Volume 22, Issue 9, 2022

Published on: 08 December, 2021

Page: [735 - 745] Pages: 11

DOI: 10.2174/1568026621666211105100800

Price: $65

Abstract

Flavonoids are a class of substances of a vegetal origin with many interesting actions from the point of view of human disease. Interest in flavonoids in the diet has increased in recent years due to the publication of basic, clinical and epidemiological studies that have shown a whole array of salutary effects related to intake of flavonols and flavones as well as a lower morbility and mortality of cardiovascular diseases. Since arterial hypertension is the most common modifiable risk factor for cardiovascular diseases, this review will focus mainly on the effects of flavonoids on the cardiovascular system with relation to the elevation of blood pressure. Its antihypertensive effects as well as the many investigations performed in experimental models of arterial hypertension, are reviewed in this mini-review.

Keywords: Endothelium, Oxidative stress, Hypertension, Renal, Nitric Oxide, Quercetin, Apigenin, Hesperidin.

Graphical Abstract

[1]
Chun, O.K.; Chung, S.J.; Song, W.O. Estimated dietary flavonoid intake and major food sources of U.S. adults. J. Nutr., 2007, 137(5), 1244-1252.
[http://dx.doi.org/10.1093/jn/137.5.1244] [PMID: 17449588]
[2]
Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Spencer, J.P.E.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G.C. Flavonoid intake in European adults (18 to 64 years). PLoS One, 2015, 10(5), e0128132.
[http://dx.doi.org/10.1371/journal.pone.0128132] [PMID: 26010916]
[3]
Pounis, G.; Di Castelnuovo, A.; Bonaccio, M.; Costanzo, S.; Persichillo, M.; Krogh, V.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Flavonoid and lignan intake in a Mediterranean population: proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study. Eur. J. Clin. Nutr., 2016, 70(3), 338-345.
[http://dx.doi.org/10.1038/ejcn.2015.178] [PMID: 26530928]
[4]
WHO. Cardiovascular Diseases (CVDs). Available online: http://www.who.int/mediacentre/factsheets/fs317/ en/ (accessed on December 21 2020).
[5]
Coffman, T.M.; Coffman, T.M. The inextricable role of the kidney in hypertension. J. Clin. Invest., 2014, 124(6), 2341-2347.
[http://dx.doi.org/10.1172/JCI72274] [PMID: 24892708]
[6]
Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; MacLaughlin, E.J.; Muntner, P.; Ovbiagele, B.; Smith, S.C., Jr; Spencer, C.C.; Stafford, R.S.; Taler, S.J.; Thomas, R.J.; Williams, K.A., Sr; Williamson, J.D.; Wright, J.T., Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol., 2018, 71(19), e127-e248.
[http://dx.doi.org/10.1016/j.jacc.2017.11.006] [PMID: 29146535]
[7]
Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr; Roccella, E.J. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 2003, 42(6), 1206-1252.
[http://dx.doi.org/10.1161/01.HYP.0000107251.49515.c2] [PMID: 14656957]
[8]
Yoon, S.S.; Fryar, C.D.; Carroll, M.D. Hypertension prevalence and control among adults: United States, 2011-2014. NCHS Data Brief, No. 220. Hyattsville, MD: National Center for Health Statistics; November 2015. Available from: https://www.cdc.gov/nchs/data/databriefs/db220.pdf [Accessed: November 7, 2020].
[9]
Oparil, S.; Schmieder, R.E. New approaches in the treatment of hypertension. Circ. Res., 2015, 116(6), 1074-1095.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303603] [PMID: 25767291]
[10]
Adegbola, P.; Aderibigbe, I.; Hammed, W.; Omotayo, T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. Am. J. Cardiovasc. Dis., 2017, 7(2), 19-32.
[PMID: 28533927]
[11]
Clark, J.L.; Zahradka, P.; Taylor, C.G. Efficacy of flavonoids in the management of high blood pressure. Nutr. Rev., 2015, 73(12), 799-822.
[http://dx.doi.org/10.1093/nutrit/nuv048] [PMID: 26491142]
[12]
Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 2008, 88(1), 38-50.
[http://dx.doi.org/10.1093/ajcn/88.1.38] [PMID: 18614722]
[13]
Ried, K.; Sullivan, T.R.; Fakler, P.; Frank, O.R.; Stocks, N.P. Effect of cocoa on blood pressure. Cochrane Database Syst. Rev., 2012, 15(8), CD008893.
[http://dx.doi.org/10.1002/14651858.CD008893.pub2]
[14]
Liu, X.M.; Liu, Y.J.; Huang, Y.; Yu, H.J.; Yuan, S.; Tang, B.W.; Wang, P.G.; He, Q.Q. Dietary total flavonoids intake and risk of mortality from all causes and cardiovascular disease in the general population: a systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res., 2017, 61(6), 6.
[http://dx.doi.org/10.1002/mnfr.201601003] [PMID: 28054441]
[15]
Sebastian, R.S.; Wilkinson, E.C.; Goldman, J.D.; Moshfegh, A.J. Dietary favonoid intake is inversely associated with cardiovascular disease risk as assessed by body mass index and waist circumference among adults in the United States. Nutrients, 2017, 9(8), 827.
[16]
Richter, C.K.; Skulas-Ray, A.C.; Fleming, J.A.; Link, C.J.; Mukherjea, R.; Krul, E.S.; Kris-Etherton, P.M. Effects of isoflavone-containing soya protein on ex vivo cholesterol efflux, vascular function and blood markers of CVD risk in adults with moderately elevated blood pressure: a dose-response randomised controlled trial. Br. J. Nutr., 2017, 117(10), 1403-1413.
[http://dx.doi.org/10.1017/S000711451700143X] [PMID: 28661316]
[17]
Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: systematic review and dose-response meta-analysis. Am. J. Epidemiol., 2017, 185(12), 1304-1316.
[http://dx.doi.org/10.1093/aje/kww207] [PMID: 28472215]
[18]
Gao, J.; Chen, G.; He, H.; Liu, C.; Xiong, X.; Li, J.; Wang, J. Therapeutic effects of breviscapine in cardiovascular diseases: A review. Front. Pharmacol., 2017, 23(8), 289.
[http://dx.doi.org/10.3389/fphar.2017.00289]
[19]
Liberale, L.; Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of red wine consumption on cardiovascular health. Curr. Med. Chem., 2019, 26(19), 3542-3566.
[PMID: 28521683]
[20]
Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 2017, 9(5), E502.
[http://dx.doi.org/10.3390/nu9050502]
[21]
Ried, K.; Fakler, P.; Stocks, N.P. Effect of cocoa on blood pressure. Cochrane Database Syst. Rev., 2017, 4, CD008893.
[PMID: 28439881]
[22]
Rasines-Perea, Z.; Teissedre, P.L. Grape polyphenols' effects in human cardiovascular diseases and diabetes. Molecules, 2017, 22(1), E68.
[23]
Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I.M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; Nonas, C.A.; Sacks, F.M.; Smith, S.C., Jr; Svetkey, L.P.; Wadden, T.A.; Yanovski, S.Z.; Kendall, K.A.; Morgan, L.C.; Trisolini, M.G.; Velasco, G.; Wnek, J.; Anderson, J.L.; Halperin, J.L.; Albert, N.M.; Bozkurt, B.; Brindis, R.G.; Curtis, L.H.; DeMets, D.; Hochman, J.S.; Kovacs, R.J.; Ohman, E.M.; Pressler, S.J.; Sellke, F.W.; Shen, W.K.; Smith, S.C., Jr; Tomaselli, G.F. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014, 129(25)(Suppl. 2), S76-S99.
[http://dx.doi.org/10.1161/01.cir.0000437740.48606.d1] [PMID: 24222015]
[24]
Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002, 360(9349), 1903-1913.
[http://dx.doi.org/10.1016/S0140-6736(02)11911-8] [PMID: 12493255]
[25]
Soltani, S.; Shirani, F.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Obes. Rev., 2016, 17(5), 442-454.
[http://dx.doi.org/10.1111/obr.12391] [PMID: 26990451]
[26]
Sosnowska, B.; Penson, P.; Banach, M. The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc. Diagn. Ther., 2017, 7(Suppl. 1), S21-S31.
[http://dx.doi.org/10.21037/cdt.2017.03.20] [PMID: 28529919]
[27]
Cicero, A.F.G.; Fogacci, F.; Colletti, A. Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach. Food Funct., 2017, 8(6), 2076-2088.
[http://dx.doi.org/10.1039/C7FO00178A] [PMID: 28541356]
[28]
Guasch-Ferré, M.; Merino, J.; Sun, Q.; Fitó, M.; Salas-Salvadó, J. Dietary polyphenols, mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxid. Med. Cell. Longev., 2017, 2017, 6723931.
[http://dx.doi.org/10.1155/2017/6723931] [PMID: 28883903]
[29]
Davinelli, S.; Scapagnini, G. Polyphenols: a promising nutritional approach to prevent or reduce the progression of prehypertension. High Blood Press. Cardiovasc. Prev., 2016, 23(3), 197-202.
[http://dx.doi.org/10.1007/s40292-016-0149-0] [PMID: 27115149]
[30]
Zhu, Y.; Bo, Y.; Wang, X.; Lu, W.; Wang, X.; Han, Z.; Qiu, C. The effect of anthocyanins on blood pressure: a PRISMA-compliant meta-analysis of randomized clinical trials. Medicine (Baltimore), 2016, 95, 15-e3380.
[http://dx.doi.org/10.1097/MD.0000000000003380] [PMID: 27082604]
[31]
Fernández-Arroyo, S.; Camps, J.; Menendez, J.A.; Joven, J. Managing hypertension by polyphenols. Planta Med., 2015, 81(8), 624-629.
[http://dx.doi.org/10.1055/s-0034-1396310] [PMID: 25714729]
[32]
Sirtori, C.R.; Arnoldi, A.; Cicero, A.F. Nutraceuticals for blood pressure control. Ann. Med., 2015, 47(6), 447-456.
[http://dx.doi.org/10.3109/07853890.2015.1078905] [PMID: 26362125]
[33]
Hügel, H.M.; Jackson, N.; May, B.; Zhang, A.L.; Xue, C.C. Polyphenol protection and treatment of hypertension. Phytomedicine, 2016, 23(2), 220-231.
[http://dx.doi.org/10.1016/j.phymed.2015.12.012] [PMID: 26926184]
[34]
Borghi, C.; Cicero, A.F. Nutraceuticals with a clinically detectable blood pressure-lowering effect: a review of available randomized clinical trials and their meta-analyses. Br. J. Clin. Pharmacol., 2017, 83(1), 163-171.
[http://dx.doi.org/10.1111/bcp.12902] [PMID: 26852373]
[35]
Jiménez, R.; Duarte, J.; Pérez-Vizcaíno, F. Epicatechin: endothelial function and blood pressure. J. Agric. Food Chem., 2012, 60(36), 8823-8830.
[http://dx.doi.org/10.1021/jf205370q] [PMID: 22440087]
[36]
Sureda, A.; Sanches Silva, A.; Sánchez-Machado, D.I.; López-Cervantes, J.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Hypotensive effects of genistein: from chemistry to medicine. Chem. Biol. Interact., 2017, 268, 37-46.
[http://dx.doi.org/10.1016/j.cbi.2017.02.012] [PMID: 28242380]
[37]
Galleano, M.; Pechanova, O.; Fraga, C.G. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol., 2010, 11(8), 837-848.
[http://dx.doi.org/10.2174/138920110793262114] [PMID: 20874688]
[38]
Ribeiro, M.O.; Antunes, E.; de Nucci, G.; Lovisolo, S.M.; Zatz, R. Chronic inhibition of nitric oxide synthesis. a new model of arterial hypertension. Hypertension, 1992, 20(3), 298-303.
[http://dx.doi.org/10.1161/01.HYP.20.3.298] [PMID: 1516948]
[39]
Fortepiani, L.A.; Rodrigo, E.; Ortíz, M.C.; Cachofeiro, V.; Atucha, N.M.; Ruilope, L.M.; Lahera, V.; García-Estañ, J. Pressure natriuresis in nitric oxide-deficient hypertensive rats: effect of antihypertensive treatments. J. Am. Soc. Nephrol., 1999, 10(1), 21-27.
[http://dx.doi.org/10.1681/ASN.V10121] [PMID: 9890305]
[40]
Ruiz-Marcos, F.M.; Ortíz, M.C.; Fortepiani, L.A.; Nadal, F.J.; Atucha, N.M.; García-Estañ, J. Mechanisms of the increased pressor response to vasopressors in the mesenteric bed of nitric oxide-deficient hypertensive rats. Eur. J. Pharmacol., 2001, 412(3), 273-279.
[http://dx.doi.org/10.1016/S0014-2999(00)00795-0] [PMID: 11166291]
[41]
Cachofeiro, V.; Fortepiani, L.A.; Navarro-Cid, J.; Lahera, V.; García-Estañ, J. Renal dysfunction after chronic blockade of nitric oxide synthesis. Antioxid. Redox Signal., 2002, 4(6), 885-891.
[http://dx.doi.org/10.1089/152308602762197425] [PMID: 12573137]
[42]
Duarte, J.; Jiménez, R.; O’Valle, F.; Galisteo, M.; Pérez-Palencia, R.; Vargas, F.; Pérez-Vizcaíno, F.; Zarzuelo, A.; Tamargo, J. Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats. J. Hypertens., 2002, 20(9), 1843-1854.
[http://dx.doi.org/10.1097/00004872-200209000-00031] [PMID: 12195128]
[43]
Diebolt, M.; Bucher, B.; Andriantsitohaina, R. Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension, 2001, 38(2), 159-165.
[http://dx.doi.org/10.1161/01.HYP.38.2.159] [PMID: 11509469]
[44]
Aremu, O.O.; Oyedeji, A.O.; Oyedeji, O.O.; Nkeh-Chungag, B.N.; Rusike, C.R.S. In vitro and in vivo antioxidant properties of Taraxacum officinale in Nω-nitro-l-arginine methyl ester (L-NAME)-induced hypertensive rats. Antioxidants, 2019, 8, 309.
[http://dx.doi.org/10.3390/antiox8080309]
[45]
Duarte, J.; Pérez-Palencia, R.; Vargas, F.; Ocete, M.A.; Pérez-Vizcaino, F.; Zarzuelo, A.; Tamargo, J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol., 2001, 133(1), 117-124.
[http://dx.doi.org/10.1038/sj.bjp.0704064] [PMID: 11325801]
[46]
Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I.C.; Zarzuelo, A.; Tamargo, J.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens., 2006, 24(1), 75-84.
[http://dx.doi.org/10.1097/01.hjh.0000198029.22472.d9] [PMID: 16331104]
[47]
Galisteo, M.; García-Saura, M.F.; Jiménez, R.; Villar, I.C.; Wangensteen, R.; Zarzuelo, A.; Vargas, F.; Duarte, J. Effects of quercetin treatment on vascular function in deoxycorticosterone acetate-salt hypertensive rats. Comparative study with verapamil. Planta Med., 2004, 70(4), 334-341.
[http://dx.doi.org/10.1055/s-2004-818945] [PMID: 15095149]
[48]
García-Saura, M.F.; Galisteo, M.; Villar, I.C.; Bermejo, A.; Zarzuelo, A.; Vargas, F.; Duarte, J. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol. Cell. Biochem., 2005, 270(1-2), 147-155.
[http://dx.doi.org/10.1007/s11010-005-4503-0] [PMID: 15792364]
[49]
García-Estañ, J.; Ortiz, M.C.; O’Valle, F.; Alcaraz, A.; Navarro, E.G.; Vargas, F.; Evangelista, S.; Atucha, N.M. Effects of angiotensin-converting-enzyme inhibitors in combination with diuretics on blood pressure and renal injury in nitric oxide-deficiency-induced hypertension in rats. Clin. Sci. (Lond.), 2006, 110(2), 227-233.
[http://dx.doi.org/10.1042/CS20050165] [PMID: 16197366]
[50]
Syed, A.A.; Lahiri, S.; Mohan, D.; Valicherla, G.R.; Gupta, A.P.; Riyazuddin, M.; Kumar, S.; Maurya, R.; Hanif, K.; Gayen, J.R. Evaluation of anti-hypertensive activity of Ulmus wallichiana extract and fraction in SHR, DOCA-salt- and L-NAME-induced hypertensive rats. J. Ethnopharmacol., 2016, 193, 555-565.
[http://dx.doi.org/10.1016/j.jep.2016.10.008] [PMID: 27720848]
[51]
Bernátová, I.; Pechánová, O.; Babál, P.; Kyselá, S.; Stvrtina, S.; Andriantsitohaina, R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(3), H942-H948.
[http://dx.doi.org/10.1152/ajpheart.00724.2001] [PMID: 11834490]
[52]
Pechánová, O.; Bernátová, I.; Babál, P.; Martínez, M.C.; Kyselá, S.; Štvrtina, S.; Andriantsitohaina, R. Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J. Hypertens., 2004, 22(8), 1551-1559.
[http://dx.doi.org/10.1097/01.hjh.0000133734.32125.c7] [PMID: 15257179]
[53]
Pechánová, O.; Dobesová, Z.; Čejka, J.; Kuneš, J.; Zicha, J. Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase. J. Hypertens., 2004, 22(1), 167-173.
[http://dx.doi.org/10.1097/00004872-200401000-00026] [PMID: 15106808]
[54]
Pecháňová, O.; Zicha, J.; Kojšová, S.; Jendeková, L.; Sládková, M.; Paulis, L.; Janega, P.; Csizmádiová, Z.; Bernátová, I.; Dobešová, Z.; Šimko, F.; Babál, P.; Andriantsitohaina, R.; Kuneš, J. Significance of antioxidants in experimental hypertension. Physiol. Res., 2006, 55, 3P.
[55]
Pechánová, O.; Zicha, J.; Kojsová, S.; Dobesová, Z.; Jendeková, L.; Kuneš, J. Effect of chronic N-acetylcysteine treatment on the development of spontaneous hypertension. Clin. Sci. (Lond.), 2006, 110(2), 235-242.
[http://dx.doi.org/10.1042/CS20050227] [PMID: 16238546]
[56]
Berkban, T.; Boonprom, P.; Bunbupha, S.; Welbat, J.U.; Kukongviriyapan, U.; Kukongviriyapan, V.; Pakdeechote, P.; Prachaney, P. Ellagic Acid prevents L-NAME-induced hypertension via restoration of eNOS and p47phox expression in rats. Nutrients, 2015, 7(7), 5265-5280.
[http://dx.doi.org/10.3390/nu7075222] [PMID: 26133972]
[57]
Piotrkowski, B.; Calabró, V.; Galleano, M.; Fraga, C.G. (-)-Epicatechin prevents alterations in the metabolism of superoxide anion and nitric oxide in the hearts of L-NAME-treated rats. Food Funct., 2015, 6(1), 155-161.
[http://dx.doi.org/10.1039/C4FO00554F] [PMID: 25361437]
[58]
Dib, I.; Tits, M.; Angenot, L.; Wauters, J.N.; Assaidi, A.; Mekhfi, H.; Aziz, M.; Bnouham, M.; Legssyer, A.; Frederich, M.; Ziyyat, A. Antihypertensive and vasorelaxant effects of aqueous extract of Artemisia campestris L. from Eastern Morocco. J. Ethnopharmacol., 2017, 206, 224-235.
[http://dx.doi.org/10.1016/j.jep.2017.05.036] [PMID: 28578165]
[59]
Zhang, X.; Mao, A.; Xiao, W.; Zhang, P.; Han, X.; Zhou, T.; Chen, Y.; Jin, J.; Ma, X. Morin induces endothelium-dependent relaxation by activating TRPV4 channels in rat mesenteric arteries. Eur. J. Pharmacol., 2019, 859, 172561.
[http://dx.doi.org/10.1016/j.ejphar.2019.172561] [PMID: 31326379]
[60]
Tew, W.Y.; Tan, C.S.; Asmawi, M.Z.; Yam, M.F. Underlying mechanism of vasorelaxant effect exerted by 3,5,7,2′,4′-pentahydroxyflavone in rats aortic ring. Eur. J. Pharmacol., 2020, 880, 173123.
[http://dx.doi.org/10.1016/j.ejphar.2020.173123] [PMID: 32335091]
[61]
Pakdeechote, P.; Kukongviriyapan, U.; Berkban, W.; Prachaney, P.; Kukongviriyapan, V.; Nakmareong, S. Mentha cordifolia extract inhibits the development of hypertension in L-NAME-induced hypertensive rats. J. Med. Plants Res., 2011, 5(7), 1175-1183.
[62]
Ahrén, I.L.; Xu, J.; Önning, G.; Olsson, C.; Ahrné, S.; Molin, G. Antihypertensive activity of blueberries fermented by Lactobacillus plantarum DSM 15313 and effects on the gut microbiota in healthy rats. Clin. Nutr., 2015, 34(4), 719-726.
[http://dx.doi.org/10.1016/j.clnu.2014.08.009] [PMID: 25194632]
[63]
Kumar, S.; Prahalathan, P.; Raja, B. Syringic acid ameliorates (L)-NAME-induced hypertension by reducing oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(12), 1175-1184.
[http://dx.doi.org/10.1007/s00210-012-0802-7] [PMID: 23079793]
[64]
da Costa, C.A.; de Oliveira, P.R.; de Bem, G.F.; de Cavalho, L.C.; Ognibene, D.T.; da Silva, A.F.; Dos Santos Valença, S.; Pires, K.M.; da Cunha Sousa, P.J.; de Moura, R.S.; Resende, A.C. Euterpe oleracea Mart.-derived polyphenols prevent endothelial dysfunction and vascular structural changes in renovascular hypertensive rats: role of oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(12), 1199-1209.
[http://dx.doi.org/10.1007/s00210-012-0798-z] [PMID: 23052352]
[65]
Rodrigues, R.B.; Lichtenthäler, R.; Zimmermann, B.F.; Papagiannopoulos, M.; Fabricius, H.; Marx, F.; Maia, J.G.; Almeida, O. Total oxidant scavenging capacity of Euterpe oleracea Mart. (açaí) seeds and identification of their polyphenolic compounds. J. Agric. Food Chem., 2006, 54(12), 4162-4167.
[http://dx.doi.org/10.1021/jf058169p] [PMID: 16756342]
[66]
Paredes, M.D.; Romecín, P.; Atucha, N.M.; O'Valle, F.; Castillo, J.; Ortiz, M.C.; García-Estañ, J. Beneficial effects of different flavonoids on vascular and renal function in L-NAME hypertensive rats. Nutrients., 2018, 10(4), E484.
[http://dx.doi.org/10.3390/nu10040484]
[67]
Wunpathe, C.; Maneesai, P.; Rattanakanokchai, S.; Bunbupha, S.; Kukongviriyapan, U.; Tong-Un, T.; Pakdeechote, P. Tangeretin mitigates l-NAME-induced ventricular dysfunction and remodeling through the AT1R/pERK1/2/pJNK signaling pathway in rats. Food Funct., 2020, 11(2), 1322-1333.
[http://dx.doi.org/10.1039/C9FO02365H] [PMID: 32031202]
[68]
Potue, P.; Wunpathe, C.; Maneesai, P.; Kukongviriyapan, U.; Prachaney, P.; Pakdeechote, P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct., 2019, 10(4), 1880-1892.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[69]
Oyagbemi, A.A.; Omobowale, T.O.; Adejumobi, O.A.; Owolabi, A.M.; Ogunpolu, B.S.; Falayi, O.O.; Hassan, F.O.; Ogunmiluyi, I.O.; Asenuga, E.R.; Ola-Davies, O.E.; Soetan, K.O.; Saba, A.B.; Adedapo, A.A.; Nkadimeng, S.M.; McGaw, L.J.; Oguntibeju, O.O.; Yakubu, M.A. Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/ angiotensin converting enzyme (ACE)/ kidney injury molecule (Kim-1) signaling pathway. Eur. J. Pharmacol., 2020, 880, 173142-, 880, 173142.
[http://dx.doi.org/10.1016/j.ejphar.2020.173142] [PMID: 32422184]
[70]
Oyagbemi, A.A.; Bolaji-Alabi, F.B.; Ajibade, T.O.; Adejumobi, O.A.; Ajani, O.S.; Jarikre, T.A.; Omobowale, T.O.; Ola-Davies, O.E.; Soetan, K.O.; Aro, A.O.; Emikpe, B.O.; Saba, A.B.; Adedapo, A.A.; Oyeyemi, M.O.; Nkadimeng, S.M.; Kayoka-Kabongo, P.N.; McGaw, L.J.; Oguntibeju, O.O.; Yakubu, M.A. Novel antihypertensive action of rutin is mediated via inhibition of angiotensin converting enzyme/mineralocorticoid receptor/angiotensin 2 type 1 receptor (ATR1) signaling pathways in uninephrectomized hypertensive rats. J. Food Biochem., 2020, 44(12), e13534.
[http://dx.doi.org/10.1111/jfbc.13534]
[71]
Prince, P.D.; Fraga, C.G.; Galleano, M. (-)-Epicatechin administration protects kidneys against modifications induced by short-term l-NAME treatment in rats. Food Funct., 2020, 11(1), 318-327.
[http://dx.doi.org/10.1039/C9FO02234A] [PMID: 31808777]
[72]
Louis, W.J.; Howes, L.G. Genealogy of the spontaneously hypertensive rat and Wistar-Kyoto rat strains: implications for studies of inherited hypertension. J. Cardiovasc. Pharmacol., 1990, 16(Suppl. 7), S1-S5.
[http://dx.doi.org/10.1097/00005344-199006167-00002] [PMID: 1708002]
[73]
Duthie, G.G.; Pedersen, M.W.; Gardner, P.T.; Morrice, P.C.; Jenkinson, A.M.; McPhail, D.B.; Steele, G.M. The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur. J. Clin. Nutr., 1998, 52(10), 733-736.
[http://dx.doi.org/10.1038/sj.ejcn.1600635] [PMID: 9805220]
[74]
Perez-Vizcaino, F.; Duarte, J.; Jimenez, R.; Santos-Buelga, C.; Osuna, A. Antihypertensive effects of the flavonoid quercetin. Pharmacol. Rep., 2009, 61(1), 67-75.
[http://dx.doi.org/10.1016/S1734-1140(09)70008-8] [PMID: 19307694]
[75]
Duarte, J.; Galisteo, M.; Ocete, M.A.; Pérez-Vizcaino, F.; Zarzuelo, A.; Tamargo, J. Effects of chronic quercetin treatment on hepatic oxidative status of spontaneously hypertensive rats. Mol. Cell. Biochem., 2001, 221(1-2), 155-160.
[http://dx.doi.org/10.1023/A:1010956928584] [PMID: 11506179]
[76]
Dolinsky, V.W.; Chakrabarti, S.; Pereira, T.J.; Oka, T.; Levasseur, J.; Beker, D.; Zordoky, B.N.; Morton, J.S.; Nagendran, J.; Lopaschuk, G.D.; Davidge, S.T.; Dyck, J.R. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim. Biophys. Acta, 2013, 1832(10), 1723-1733.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.018] [PMID: 23707558]
[77]
Monteiro, M.M.; França-Silva, M.S.; Alves, N.F.; Porpino, S.K.; Braga, V.A. Quercetin improves baroreflex sensitivity in spontaneously hypertensive rats. Molecules, 2012, 17(11), 12997-13008.
[http://dx.doi.org/10.3390/molecules171112997] [PMID: 23117438]
[78]
Plotnikov, M.B.; Aliev, O.I.; Sidekhmenova, A.V.; Shamanaev, A.Y.; Anishchenko, A.M.; Nosarev, A.V.; Pushkina, E.A. Modes of hypotensive action of dihydroquercetin in arterial hypertension. Bull. Exp. Biol. Med., 2017, 162(3), 353-356.
[http://dx.doi.org/10.1007/s10517-017-3614-4] [PMID: 28091909]
[79]
Slashcheva, G.A.; Rykov, V.A.; Lobanov, A.V.; Murashev, A.N.; Kim, Y.A.; Arutyunyan, T.V.; Korystova, A.F.; Kublik, L.N.; Levitman, M.K.; Shaposhnikona, V.V.; Korystov, Y.N. Dihydroquercetin does not affect age-dependent increase in blood pressure and angiotensin-converting enzyme activity in the aorta of hypertensive rats. Bull. Exp. Biol. Med., 2016, 161(5), 670-673.
[http://dx.doi.org/10.1007/s10517-016-3482-3] [PMID: 27709387]
[80]
Grande, F.; Parisi, O.I.; Mordocco, R.A.; Rocca, C.; Puoci, F.; Scrivano, L.; Quintieri, A.M.; Cantafio, P.; Ferla, S.; Brancale, A.; Saturnino, C.; Cerra, M.C.; Sinicropi, M.S.; Angelone, T. Quercetin derivatives as novel antihypertensive agents: synthesis and physiological characterization. Eur. J. Pharm. Sci., 2016, 82, 161-170.
[http://dx.doi.org/10.1016/j.ejps.2015.11.021] [PMID: 26631584]
[81]
Galindo, P.; González-Manzano, S.; Zarzuelo, M.J.; Gómez-Guzmán, M.; Quintela, A.M.; González-Paramás, A.; Santos-Buelga, C.; Pérez-Vizcaíno, F.; Duarte, J.; Jiménez, R. Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats. Food Funct., 2012, 3(6), 643-650.
[http://dx.doi.org/10.1039/c2fo10268d] [PMID: 22441211]
[82]
Menendez, C.; Dueñas, M.; Galindo, P.; González-Manzano, S.; Jimenez, R.; Moreno, L.; Zarzuelo, M.J.; Rodríguez-Gómez, I.; Duarte, J.; Santos-Buelga, C.; Perez-Vizcaino, F. Vascular deconjugation of quercetin glucuronide: the flavonoid paradox revealed? Mol. Nutr. Food Res., 2011, 55(12), 1780-1790.
[http://dx.doi.org/10.1002/mnfr.201100378] [PMID: 22144045]
[83]
Galindo, P.; Rodriguez-Gómez, I.; González-Manzano, S.; Dueñas, M.; Jiménez, R.; Menéndez, C.; Vargas, F.; Tamargo, J.; Santos-Buelga, C.; Pérez-Vizcaíno, F.; Duarte, J. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS One, 2012, 7(3), e32673.
[http://dx.doi.org/10.1371/journal.pone.0032673] [PMID: 22427863]
[84]
Kluknavsky, M.; Balis, P.; Puzserova, A.; Radosinska, J.; Berenyiova, A.; Drobna, M.; Lukac, S.; Muchova, J.; Bernatova, I. (-)-Epicatechin prevents blood pressure increase and reduces locomotor hyperactivity in young spontaneously hypertensive rats. Oxid. Med. Cell. Longev., 2016, 2016, 6949020.
[http://dx.doi.org/10.1155/2016/6949020] [PMID: 27885334]
[85]
Galleano, M.; Bernatova, I.; Puzserova, A.; Balis, P.; Sestakova, N.; Pechanova, O.; Fraga, C.G. (-)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life, 2013, 65(8), 710-715.
[http://dx.doi.org/10.1002/iub.1185] [PMID: 23847022]
[86]
Quiñones, M.; Margalef, M.; Arola-Arnal, A.; Muguerza, B.; Miguel, M.; Aleixandre, A. The blood pressure effect and related plasma levels of flavan-3-ols in spontaneously hypertensive rats. Food Funct., 2015, 6(11), 3479-3489.
[http://dx.doi.org/10.1039/C5FO00547G] [PMID: 26294331]
[87]
Dobiaš, L.; Petrová, M.; Vojtko, R.; Kristová, V. Long-term treatment with hesperidin improves endothelium-dependent vasodilation in femoral artery of spontaneously hypertensive rats: the involvement of no-synthase and kv channels. Phytother. Res., 2016, 30(10), 1665-1671.
[http://dx.doi.org/10.1002/ptr.5670] [PMID: 27363952]
[88]
Yamamoto, M.; Jokura, H.; Suzuki, A.; Hase, T.; Shimotoyodome, A. Effects of continuous ingestion of hesperidin and glucosyl hesperidin on vascular gene expression in spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. (Tokyo), 2013, 59(5), 470-473.
[http://dx.doi.org/10.3177/jnsv.59.470] [PMID: 24418882]
[89]
Huai, R.; Han, X.; Wang, B.; Li, C.; Niu, Y.; Li, R.; Qu, Z. Vasorelaxing and antihypertensive effects of 7,8-dihydroxyflavone. Am. J. Hypertens., 2014, 27(5), 750-760.
[http://dx.doi.org/10.1093/ajh/hpt220] [PMID: 24317273]
[90]
Sun, L.; Zhao, T.; Ju, T.; Wang, X.; Li, X.; Wang, L.; Zhang, L.; Yu, G. A combination of intravenous genistein plus Mg2+ enhances antihypertensive effects in SHR by endothelial protection and BKCa channel inhibition. Am. J. Hypertens., 2015, 28(9), 1114-1120.
[http://dx.doi.org/10.1093/ajh/hpv005] [PMID: 25714131]
[91]
Inuwa, I.; Ali, B.H.; Al-Lawati, I.; Beegam, S.; Ziada, A.; Blunden, G. Long-term ingestion of Hibiscus sabdariffa calyx extract enhances myocardial capillarization in the spontaneously hypertensive rat. Exp. Biol. Med. (Maywood), 2012, 237(5), 563-569.
[http://dx.doi.org/10.1258/ebm.2012.011357] [PMID: 22678012]
[92]
Herring, N.; Lee, C.W.; Sunderland, N.; Wright, K.; Paterson, D.J. Pravastatin normalises peripheral cardiac sympathetic hyperactivity in the spontaneously hypertensive rat. J. Mol. Cell. Cardiol., 2011, 50(1), 99-106.
[http://dx.doi.org/10.1016/j.yjmcc.2010.09.025] [PMID: 20933519]
[93]
Langen, B.; Dost, R. Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. Atten. Defic. Hyperact. Disord., 2011, 3(1), 1-12.
[http://dx.doi.org/10.1007/s12402-010-0034-y] [PMID: 21432613]
[94]
Kumar, N.; Kant, R.; Maurya, P.K.; Rizvi, S.I. Concentration dependent effect of (-)-Epicatechin on Na(+) /K(+) -ATPase and Ca(2+) -ATPase inhibition induced by free radicals in hypertensive patients: comparison with L-ascorbic acid. Phytother. Res., 2012, 26(11), 1644-1647.
[http://dx.doi.org/10.1002/ptr.4624] [PMID: 22371366]
[95]
Török, J. Participation of nitric oxide in different models of experimental hypertension. Physiol. Res., 2008, 57(6), 813-825.
[http://dx.doi.org/10.33549/physiolres.931581] [PMID: 19154086]
[96]
Paredes, M.D.; Romecín, P.; Atucha, N.M.; O’Valle, F.; Castillo, J.; Ortiz, M.C.; García-Estañ, J. Moderate effect of flavonoids on vascular and renal function in spontaneously hypertensive rats. Nutrients, 2018, 10(8), E1107.
[http://dx.doi.org/10.3390/nu10081107] [PMID: 30115889]
[97]
Kolata, G. Under New Guidelines, Millions More Americans Will Need to Lower Blood Pressure. New York Times, Nov. 13, 2017. Available from: https://www.nytimes.com/2017/11/13/health/blood-pressure-treatment-guidelines.html Accesed in November 7, 2018.
[98]
Siervo, M.; Lara, J.; Chowdhury, S.; Ashor, A.; Oggioni, C.; Mathers, J.C. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br. J. Nutr., 2015, 113(1), 1-15.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy