Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Acetyltransferase KAT5 Inhibitor NU 9056 Promotes Apoptosis and Inhibits JAK2/STAT3 Pathway in Extranodal NK/T Cell Lymphoma

Author(s): Linyan Xu, Yuanyuan Qin, Mengdi Liu, Jun Jiao, Dongyun Tu, Meng Zhang, Dongmei Yan, Xuguang Song, Cai Sun, Feng Zhu, Xiangmin Wang, Wei Sang* and Kailin Xu*

Volume 22, Issue 8, 2022

Published on: 08 September, 2021

Page: [1530 - 1540] Pages: 11

DOI: 10.2174/1871520621666210908103306

Price: $65

Abstract

Background: Extranodal natural killer/T cell lymphoma (ENKTL) is an aggressive malignant non- Hodgkin's lymphoma (NHL) with a poor prognosis. Therefore, novel therapeutic biomarkers and agents must be identified for the same. KAT5 inhibitor, NU 9056, is a small molecule that can inhibit cellular proliferation; however, its role in ENKTL has not been studied.

Objective: The present study investigated the effect of NU 9056 in ENKTL cells and explored the possible molecular mechanism for its antitumour effect.

Methods: The role of NU 9056 in ENKTL cells was investigated through the Cell Counting Kit-8 assay, flow cytometry, Western blot, and real-time quantitative polymerase chain reaction assay.

Results: NU 9056 inhibited ENKTL cell proliferation and induced G2/M phase arrest. NU 9056 also induced apoptosis by upregulating DR4, DR5, and caspase 8 expressions. Additionally, NU 9056 increased the expression of Bax, Bid, and cytochrome C and decreased the expression of Bcl-2, Mcl-1, and XIAP. Furthermore, NU 9056 activated endoplasmic reticulum (ER) stress and inhibited the JAK2/STAT3 signalling pathway. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was also activated by NU 9056, and the ERK signalling pathway was suppressed in natural killer/T cell lymphoma cells.

Conclusion: NU 9056 inhibited cell proliferation, arrested cell cycle in the G2/M phase, and induced apoptosis through the stimulation of ER stress, thus inhibiting the JAK2/STAT3 signalling pathway and regulating MAPK pathways in ENKTL cells.

Keywords: NU 9056, ENKTL, KAT5, apoptosis, JAK2/STAT3, MAPK.

Graphical Abstract

[1]
Allen, P.B.; Lechowicz, M.J. Management of NK/T-cell lymphoma, nasal type. J. Oncol. Pract., 2019, 15(10), 513-520.
[http://dx.doi.org/10.1200/JOP.18.00719] [PMID: 31600461]
[2]
Yamaguchi, M.; Oguchi, M.; Suzuki, R. Extranodal NK/T-cell lymphoma: Updates in biology and management strategies. Best Pract Res Cl Ha, 2018, 31(3), 315-321.
[http://dx.doi.org/10.1016/j.beha.2018.07.002] [PMID: 30213402]
[3]
de Mel, S.; Hue, S.S.S.; Jeyasekharan, A.D.; Chng, W.J.; Ng, S.B. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J. Hematol. Oncol., 2019, 12(1), 33.
[http://dx.doi.org/10.1186/s13045-019-0716-7] [PMID: 30935402]
[4]
Suzuki, R. NK/T Cell lymphoma: Updates in therapy. Curr. Hematol. Malig. Rep., 2018, 13(1), 7-12.
[http://dx.doi.org/10.1007/s11899-018-0430-5] [PMID: 29368155]
[5]
Wang, L.; Wang, H.; Li, P.F.; Lu, Y.; Xia, Z.J.; Huang, H.Q.; Zhang, Y.J. CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Ann. Hematol., 2015, 94(8), 1381-1388.
[http://dx.doi.org/10.1007/s00277-015-2359-2] [PMID: 25865943]
[6]
Tse, E.; Kwong, Y.L. Diagnosis and management of extranodal NK/T cell lymphoma nasal type. Expert Rev. Hematol., 2016, 9(9), 861-871.
[http://dx.doi.org/10.1080/17474086.2016.1206465] [PMID: 27347812]
[7]
Yamaguchi, M.; Miyazaki, K. Current treatment approaches for NK/T-cell lymphoma. J. Clin. Exp. Hematop., 2017, 57(3), 98-108.
[http://dx.doi.org/10.3960/jslrt.17018] [PMID: 28679966]
[8]
Tse, E.; Kwong, Y.L. The diagnosis and management of NK/T-cell lymphomas. J. Hematol. Oncol., 2017, 10(1), 85.
[http://dx.doi.org/10.1186/s13045-017-0452-9] [PMID: 28410601]
[9]
Park, J.W.; Han, J.W. Targeting epigenetics for cancer therapy. Arch. Pharm. Res., 2019, 42(2), 159-170.
[http://dx.doi.org/10.1007/s12272-019-01126-z] [PMID: 30806885]
[10]
Maleszewska, M.; Wojtas, B.; Kamińska, B. Deregulation of epigenetic mechanisms in cancer. Postepy Biochem., 2018, 64(2), 148-156.
[http://dx.doi.org/10.18388/pb.2018_125] [PMID: 30656897]
[11]
Narita, T.; Weinert, B.T.; Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 156-174.
[http://dx.doi.org/10.1038/s41580-018-0081-3] [PMID: 30467427]
[12]
Benton, C.B.; Fiskus, W.; Bhalla, K.N. Targeting histone acetylation: Readers and writers in leukemia and cancer. Cancer J., 2017, 23(5), 286-291.
[http://dx.doi.org/10.1097/PPO.0000000000000284] [PMID: 28926429]
[13]
Liu, S.; Chang, W.; Jin, Y.; Feng, C.; Wu, S.; He, J.; Xu, T. The function of histone acetylation in cervical cancer development. Biosci. Rep., 2019, 39(4)BSR20190527
[http://dx.doi.org/10.1042/BSR20190527] [PMID: 30886064]
[14]
Guo, P.; Chen, W.; Li, H.; Li, M.; Li, L. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathol. Oncol. Res., 2018, 24(4), 807-813.
[http://dx.doi.org/10.1007/s12253-018-0433-5] [PMID: 29948617]
[15]
Zhang, P.; Zhang, M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin. Epigenetics, 2020, 12(1), 169.
[http://dx.doi.org/10.1186/s13148-020-00962-x] [PMID: 33160401]
[16]
Shyamasundar, S.; Dheen, S.T.; Bay, B.H. Histone modifications as molecular targets in nasopharyngeal cancer. Curr. Med. Chem., 2016, 23(2), 186-197.
[http://dx.doi.org/10.2174/0929867323666151106125631] [PMID: 26549431]
[17]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7)E1414
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[18]
Marson, C.M. Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer. Anticancer. Agents Med. Chem., 2009, 9(6), 661-692.
[http://dx.doi.org/10.2174/187152009788679976] [PMID: 19601748]
[19]
Balakin, K.V.; Ivanenkov, Y.A.; Kiselyov, A.S.; Tkachenko, S.E. Histone deacetylase inhibitors in cancer therapy: latest developments, trends and medicinal chemistry perspective. Anticancer. Agents Med. Chem., 2007, 7(5), 576-592.
[http://dx.doi.org/10.2174/187152007781668698] [PMID: 17896917]
[20]
Brown, J.A.L.; Bourke, E.; Eriksson, L.A.; Kerin, M.J. Targeting cancer using KAT inhibitors to mimic lethal knockouts. Biochem. Soc. Trans., 2016, 44, 979-986.
[21]
Baell, J.B.; Leaver, D.J.; Hermans, S.J.; Kelly, G.L.; Brennan, M.S.; Downer, N.L.; Nguyen, N.; Wichmann, J.; McRae, H.M.; Yang, Y.; Cleary, B.; Lagiakos, H.R.; Mieruszynski, S.; Pacini, G.; Vanyai, H.K.; Bergamasco, M.I.; May, R.E.; Davey, B.K.; Morgan, K.J.; Sealey, A.J.; Wang, B.; Zamudio, N.; Wilcox, S.; Garnham, A.L.; Sheikh, B.N.; Aubrey, B.J.; Doggett, K.; Chung, M.C.; de Silva, M.; Bentley, J.; Pilling, P.; Hattarki, M.; Dolezal, O.; Dennis, M.L.; Falk, H.; Ren, B.; Charman, S.A.; White, K.L.; Rautela, J.; Newbold, A.; Hawkins, E.D.; Johnstone, R.W.; Huntington, N.D.; Peat, T.S.; Heath, J.K.; Strasser, A.; Parker, M.W.; Smyth, G.K.; Street, I.P.; Monahan, B.J.; Voss, A.K.; Thomas, T. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature, 2018, 560(7717), 253-257.
[http://dx.doi.org/10.1038/s41586-018-0387-5] [PMID: 30069049]
[22]
Simon, R.P.; Robaa, D.; Alhalabi, Z.; Sippl, W.; Jung, M. KATching-up on small molecule modulators of lysine acetyltransferases. J. Med. Chem., 2016, 59(4), 1249-1270.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01502] [PMID: 26701186]
[23]
Manzo, F.; Tambaro, F.P.; Mai, A.; Altucci, L. Histone acetyltransferase inhibitors and preclinical studies. Expert Opin. Ther. Pat., 2009, 19(6), 761-774.
[http://dx.doi.org/10.1517/13543770902895727] [PMID: 19473103]
[24]
Furdas, S.D.; Kannan, S.; Sippl, W.; Jung, M. Small molecule inhibitors of histone acetyltransferases as epigenetic tools and drug candidates. Arch. Pharm. (Weinheim), 2012, 345(1), 7-21.
[http://dx.doi.org/10.1002/ardp.201100209] [PMID: 22234972]
[25]
Sun, Y.; Jiang, X.; Chen, S.; Fernandes, N.; Price, B.D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA, 2005, 102(37), 13182-13187.
[http://dx.doi.org/10.1073/pnas.0504211102] [PMID: 16141325]
[26]
Sapountzi, V.; Logan, I.R.; Robson, C.N. Cellular functions of TIP60. Int. J. Biochem. Cell Biol., 2006, 38(9), 1496-1509.
[http://dx.doi.org/10.1016/j.biocel.2006.03.003] [PMID: 16698308]
[27]
Sun, Y.; Jiang, X.; Price, B.D. Tip60: connecting chromatin to DNA damage signaling. Cell Cycle, 2010, 9(5), 930-936.
[http://dx.doi.org/10.4161/cc.9.5.10931] [PMID: 20160506]
[28]
Judes, G.; Rifaï, K.; Ngollo, M.; Daures, M.; Bignon, Y.J.; Penault-Llorca, F.; Bernard-Gallon, D. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenom., 2015, 7(8), 1351-1363.
[http://dx.doi.org/10.2217/epi.15.76] [PMID: 26638912]
[29]
Sun, Y.; Xu, Y.; Roy, K.; Price, B.D. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell. Biol., 2007, 27(24), 8502-8509.
[http://dx.doi.org/10.1128/MCB.01382-07] [PMID: 17923702]
[30]
Murr, R.; Loizou, J.I.; Yang, Y.G.; Cuenin, C.; Li, H.; Wang, Z.Q.; Herceg, Z. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol., 2006, 8(1), 91-99.
[http://dx.doi.org/10.1038/ncb1343] [PMID: 16341205]
[31]
Van Den Broeck, A.; Nissou, D.; Brambilla, E.; Eymin, B.; Gazzeri, S. Activation of a Tip60/E2F1/ERCC1 network in human lung adenocarcinoma cells exposed to cisplatin. Carcinogenesis, 2012, 33(2), 320-325.
[http://dx.doi.org/10.1093/carcin/bgr292] [PMID: 22159227]
[32]
Kim, J.W.; Jang, S.M.; Kim, C.H.; An, J.H.; Kang, E.J.; Choi, K.H. New molecular bridge between RelA/p65 and NF-κB target genes via histone acetyltransferase TIP60 cofactor. J. Biol. Chem., 2012, 287(10), 7780-7791.
[http://dx.doi.org/10.1074/jbc.M111.278465] [PMID: 22249179]
[33]
Takino, T.; Nakada, M.; Li, Z.; Yoshimoto, T.; Domoto, T.; Sato, H. Tip60 regulates MT1-MMP transcription and invasion of glioblastoma cells through NF-κB pathway. Clin. Exp. Metastasis, 2016, 33(1), 45-52.
[http://dx.doi.org/10.1007/s10585-015-9756-8] [PMID: 26464124]
[34]
Feng, F.L.; Yu, Y.; Liu, C.; Zhang, B.H.; Cheng, Q.B.; Li, B.; Tan, W.F.; Luo, X.J.; Jiang, X.Q. KAT5 silencing induces apoptosis of GBC-SD cells through p38MAPK-mediated upregulation of cleaved Casp9. Int. J. Clin. Exp. Pathol., 2013, 7(1), 80-91.
[PMID: 24427328]
[35]
Cregan, S.; McDonagh, L.; Gao, Y.; Barr, M.P.; O’Byrne, K.J.; Finn, S.P.; Cuffe, S.; Gray, S.G. KAT5 (Tip60) is a potential therapeutic target in malignant pleural mesothelioma. Int. J. Oncol., 2016, 48(3), 1290-1296.
[http://dx.doi.org/10.3892/ijo.2016.3335] [PMID: 26780987]
[36]
Wei, X.; Cai, S.; Boohaker, R.J.; Fried, J.; Li, Y.; Hu, L.; Pan, Y.; Cheng, R.; Zhang, S.; Tian, Y.; Gao, M.; Xu, B. KAT5 promotes invasion and metastasis through C-MYC stabilization in ATC. Endocr. Relat. Cancer, 2019, 26(1), 141-151.
[http://dx.doi.org/10.1530/ERC-18-0193] [PMID: 30400007]
[37]
Shiota, M.; Yokomizo, A.; Masubuchi, D.; Tada, Y.; Inokuchi, J.; Eto, M.; Uchiumi, T.; Fujimoto, N.; Naito, S. Tip60 promotes prostate cancer cell proliferation by translocation of androgen receptor into the nucleus. Prostate, 2010, 70(5), 540-554.
[http://dx.doi.org/10.1002/pros.21088] [PMID: 19938016]
[38]
Coffey, K.; Blackburn, T.J.; Cook, S.; Golding, B.T.; Griffin, R.J.; Hardcastle, I.R.; Hewitt, L.; Huberman, K.; McNeill, H.V.; Newell, D.R.; Roche, C.; Ryan-Munden, C.A.; Watson, A.; Robson, C.N. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One, 2012, 7(10)e45539
[http://dx.doi.org/10.1371/journal.pone.0045539] [PMID: 23056207]
[39]
Gao, C.; Bourke, E.; Scobie, M.; Famme, M.A.; Koolmeister, T.; Helleday, T.; Eriksson, L.A.; Lowndes, N.F.; Brown, J.A.L. Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Sci. Rep., 2014, 4, 5372.
[http://dx.doi.org/10.1038/srep05372] [PMID: 24947938]
[40]
Idrissou, M.; Judes, G.; Daures, M.; Sanchez, A.; El Ouardi, D.; Besse, S.; Degoul, F.; Penault-Llorca, F.; Bignon, Y.J.; Bernard-Gallon, D. TIP60 inhibitor TH1834 reduces breast cancer progression in xenografts in mice. OMICS, 2019, 23(9), 457-459.
[http://dx.doi.org/10.1089/omi.2019.0126] [PMID: 31487234]
[41]
Xu, L.; Jiao, J.; Sun, X.; Sang, W.; Gao, X.; Yang, P.; Yan, D.; Song, X.; Sun, C.; Liu, M.; Qin, Y.; Tian, Y.; Zhu, F.; Zeng, L.; Li, Z.; Xu, K. Cladribine induces ATF4 mediated apoptosis and synergizes with SAHA in diffuse large B-cell lymphoma cells. Int. J. Med. Sci., 2020, 17(10), 1375-1384.
[http://dx.doi.org/10.7150/ijms.41793] [PMID: 32624694]
[42]
Xiong, J.; Cui, B.W.; Wang, N.; Dai, Y.T.; Zhang, H.; Wang, C.F.; Zhong, H.J.; Cheng, S.; Ou-Yang, B.S.; Hu, Y.; Zhang, X.; Xu, B.; Qian, W.B.; Tao, R.; Yan, F.; Hu, J.D.; Hou, M.; Ma, X.J.; Wang, X.; Liu, Y.H.; Zhu, Z.M.; Huang, X.B.; Liu, L.; Wu, C.Y.; Huang, L.; Shen, Y.F.; Huang, R.B.; Xu, J.Y.; Wang, C.; Wu, D.P.; Yu, L.; Li, J.F.; Xu, P.P.; Wang, L.; Huang, J.Y.; Chen, S.J.; Zhao, W.L. Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell, 2020, 37(3), 403-419.e6.
[http://dx.doi.org/10.1016/j.ccell.2020.02.005] [PMID: 32183952]
[43]
Xiong, J.; Zhao, W.L. Advances in multiple omics of natural-killer/T cell lymphoma. J. Hematol. Oncol., 2018, 11(1), 134.
[http://dx.doi.org/10.1186/s13045-018-0678-1] [PMID: 30514323]
[44]
Xiong, J.; Zhao, W. What we should know about natural killer/T-cell lymphomas. Hematol. Oncol., 2019, 37(Suppl. 1), 75-81.
[http://dx.doi.org/10.1002/hon.2588] [PMID: 31187536]
[45]
Li, X.; Cheng, Y.; Zhang, M.; Yan, J.; Li, L.; Fu, X.; Zhang, X.; Chang, Y.; Sun, Z.; Yu, H.; Zhang, L.; Wang, X.; Wu, J.; Li, Z.; Nan, F.; Tian, L.; Li, W.; Young, K.H. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J. Hematol. Oncol., 2018, 11(1), 15.
[http://dx.doi.org/10.1186/s13045-018-0559-7] [PMID: 29386072]
[46]
Li, X.; Cui, Y.; Sun, Z.; Zhang, L.; Li, L.; Wang, X.; Wu, J.; Fu, X.; Ma, W.; Zhang, X.; Chang, Y.; Nan, F.; Li, W.; Su, L.; Wang, J.; Xue, H.; Zhang, M. DDGP versus SMILE in newly diagnosed advanced natural killer/T-cell lymphoma: A randomized controlled, multicenter, open-label study in china. Clin. Cancer Res., 2016, 22(21), 5223-5228.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0153] [PMID: 27060152]
[47]
Cai, J.; Liu, P. P.; Huang, H. Q.; Li, Y. J.; Ma, S. Y.; Zhou, H.; Tian, X. P.; Zhang, Y. C.; Gao, Y.; Xia, Y.; Zhang, X. Y.; Yang, H.; Li, L. R.; Cai, Q. Q. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct Tar 2020, 5(1)
[48]
Wang, J.H.; Wang, L.; Liu, C.C.; Xia, Z.J.; Huang, H.Q.; Lin, T.Y.; Jiang, W.Q.; Lu, Y. Efficacy of combined gemcitabine, oxaliplatin and pegaspargase (P-gemox regimen) in patients with newly diagnosed advanced-stage or relapsed/refractory extranodal NK/T-cell lymphoma. Oncotarget, 2016, 7(20), 29092-29101.
[http://dx.doi.org/10.18632/oncotarget.8647] [PMID: 27093153]
[49]
Li, S.; Shi, B.; Liu, X.; An, H.X. Acetylation and Deacetylation of DNA Repair Proteins in Cancers. Front. Oncol., 2020, 10573502
[http://dx.doi.org/10.3389/fonc.2020.573502] [PMID: 33194676]
[50]
van Tilburg, C.M.; Milde, T.; Witt, R.; Ecker, J.; Hielscher, T.; Seitz, A.; Schenk, J.P.; Buhl, J.L.; Riehl, D.; Frühwald, M.C.; Pekrun, A.; Rossig, C.; Wieland, R.; Flotho, C.; Kordes, U.; Gruhn, B.; Simon, T.; Linderkamp, C.; Sahm, F.; Taylor, L.; Freitag, A.; Burhenne, J.; Foerster, K.I.; Meid, A.D.; Pfister, S.M.; Karapanagiotou-Schenkel, I.; Witt, O. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clin. Epigenetics, 2019, 11(1), 188.
[http://dx.doi.org/10.1186/s13148-019-0775-1] [PMID: 31823832]
[51]
Guan, W.; Jing, Y.; Dou, L.; Wang, M.; Xiao, Y.; Yu, L. Chidamide in combination with chemotherapy in refractory and relapsed T lymphoblastic lymphoma/leukemia. Leuk. Lymphoma, 2020, 61(4), 855-861.
[http://dx.doi.org/10.1080/10428194.2019.1691195] [PMID: 31755348]
[52]
Shi, Y.; Jia, B.; Xu, W.; Li, W.; Liu, T.; Liu, P.; Zhao, W.; Zhang, H.; Sun, X.; Yang, H.; Zhang, X.; Jin, J.; Jin, Z.; Li, Z.; Qiu, L.; Dong, M.; Huang, X.; Luo, Y.; Wang, X.; Wang, X.; Wu, J.; Xu, J.; Yi, P.; Zhou, J.; He, H.; Liu, L.; Shen, J.; Tang, X.; Wang, J.; Yang, J.; Zeng, Q.; Zhang, Z.; Cai, Z.; Chen, X.; Ding, K.; Hou, M.; Huang, H.; Li, X.; Liang, R.; Liu, Q.; Song, Y.; Su, H.; Gao, Y.; Liu, L.; Luo, J.; Su, L.; Sun, Z.; Tan, H.; Wang, H.; Wang, J.; Wang, S.; Zhang, H.; Zhang, X.; Zhou, D.; Bai, O.; Wu, G.; Zhang, L.; Zhang, Y. Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China. J. Hematol. Oncol., 2017, 10(1), 69.
[http://dx.doi.org/10.1186/s13045-017-0439-6] [PMID: 28298231]
[53]
He, W.; Zhang, M.G.; Wang, X.J.; Zhong, S.; Shao, Y.; Zhu, Y.; Shen, Z.J. KAT5 and KAT6B are in positive regulation on cell proliferation of prostate cancer through PI3K-AKT signaling. Int. J. Clin. Exp. Pathol., 2013, 6(12), 2864-2871.
[PMID: 24294372]
[54]
Du, J.; Fu, L.; Ji, F.; Wang, C.; Liu, S.; Qiu, X. FosB recruits KAT5 to potentiate the growth and metastasis of papillary thyroid cancer in a DPP4-dependent manner. Life Sci., 2020, 259118374
[http://dx.doi.org/10.1016/j.lfs.2020.118374] [PMID: 32891613]
[55]
Stacy, A.J.; Zhang, J.; Craig, M.P.; Hira, A.; Dole, N.; Kadakia, M.P. TIP60 up-regulates ΔNp63α to promote cellular proliferation. J. Biol. Chem., 2019, 294(45), 17007-17016.
[http://dx.doi.org/10.1074/jbc.RA119.010388] [PMID: 31601649]
[56]
Li, K.; Zhang, T.T.; Wang, F.; Cui, B.; Zhao, C.X.; Yu, J.J.; Lv, X.X.; Zhang, X.W.; Yang, Z.N.; Huang, B.; Li, X.; Hua, F.; Hu, Z.W. Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression. Oncogene, 2018, 37(22), 2967-2981.
[http://dx.doi.org/10.1038/s41388-018-0172-9] [PMID: 29520103]
[57]
Sun, Y.; Jiang, X.; Chen, S.; Price, B.D. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett., 2006, 580(18), 4353-4356.
[http://dx.doi.org/10.1016/j.febslet.2006.06.092] [PMID: 16844118]
[58]
Wagner, E.F.; Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer, 2009, 9(8), 537-549.
[http://dx.doi.org/10.1038/nrc2694] [PMID: 19629069]
[59]
Cowan, K.J.; Storey, K.B. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J. Exp. Biol., 2003, 206(Pt 7), 1107-1115.
[http://dx.doi.org/10.1242/jeb.00220] [PMID: 12604570]
[60]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases (vol 75, pg 50, 2011). Microbiol. Mol. Biol. Rev., 2012, 76(2), 496-496.
[http://dx.doi.org/10.1128/MMBR.00013-12]
[61]
Sun, J.; Nan, G.X. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke (vol 59, pg 90, 2016). J. Mol. Neurosci., 2016, 59(3), 430-430.
[http://dx.doi.org/10.1007/s12031-016-0767-y] [PMID: 27236649]
[62]
Santarpia, L.; Lippman, S.M.; El-Naggar, A.K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 103-119.
[http://dx.doi.org/10.1517/14728222.2011.645805] [PMID: 22239440]
[63]
Lu, Z.; Xu, S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life, 2006, 58(11), 621-631.
[http://dx.doi.org/10.1080/15216540600957438] [PMID: 17085381]
[64]
Yue, J.; López, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346.
[http://dx.doi.org/10.3390/ijms21072346] [PMID: 32231094]
[65]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[66]
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer, 2014, 14(11), 736-746.
[http://dx.doi.org/10.1038/nrc3818] [PMID: 25342631]
[67]
Banerjee, K.; Resat, H. Constitutive activation of STAT3 in breast cancer cells: A review. Int. J. Cancer, 2016, 138(11), 2570-2578.
[http://dx.doi.org/10.1002/ijc.29923] [PMID: 26559373]
[68]
Zhu, F.; Wang, K.B.; Rui, L. STAT3 Activation and Oncogenesis in Lymphoma. Cancers (Basel), 2019, 12(1), 19.
[http://dx.doi.org/10.3390/cancers12010019] [PMID: 31861597]
[69]
Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80106210
[http://dx.doi.org/10.1016/j.intimp.2020.106210] [PMID: 31972425]
[70]
Huynh, J.; Etemadi, N.; Hollande, F.; Ernst, M.; Buchert, M. The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin. Cancer Biol., 2017, 45, 13-22.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.001] [PMID: 28647610]
[71]
Bournazou, E.; Bromberg, J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAK-STAT, 2013, 2(2)e23828
[http://dx.doi.org/10.4161/jkst.23828] [PMID: 24058812]
[72]
Coppo, P.; Gouilleux-Gruart, V.; Huang, Y.; Bouhlal, H.; Bouamar, H.; Bouchet, S.; Perrot, C.; Vieillard, V.; Dartigues, P.; Gaulard, P.; Agbalika, F.; Douay, L.; Lassoued, K.; Gorin, N.C. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia, 2009, 23(9), 1667-1678.
[http://dx.doi.org/10.1038/leu.2009.91] [PMID: 19421230]
[73]
Song, T.L.; Nairismägi, M.L.; Laurensia, Y.; Lim, J.Q.; Tan, J.; Li, Z.M.; Pang, W.L.; Kizhakeyil, A.; Wijaya, G.C.; Huang, D.C.; Nagarajan, S.; Chia, B.K.H.; Cheah, D.; Liu, Y.H.; Zhang, F.; Rao, H.L.; Tang, T.; Wong, E.K.Y.; Bei, J.X.; Iqbal, J.; Grigoropoulos, N.F.; Ng, S.B.; Chng, W.J.; Teh, B.T.; Tan, S.Y.; Verma, N.K.; Fan, H.; Lim, S.T.; Ong, C.K. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood, 2018, 132(11), 1146-1158.
[http://dx.doi.org/10.1182/blood-2018-01-829424] [PMID: 30054295]
[74]
Lee, S.; Park, H.Y.; Kang, S.Y.; Kim, S.J.; Hwang, J.; Lee, S.; Kwak, S.H.; Park, K.S.; Yoo, H.Y.; Kim, W.S.; Kim, J.I.; Ko, Y.H. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget, 2015, 6(19), 17764-17776.
[http://dx.doi.org/10.18632/oncotarget.3776] [PMID: 25980440]
[75]
Huang, Y.; de Reyniès, A.; de Leval, L.; Ghazi, B.; Martin-Garcia, N.; Travert, M.; Bosq, J.; Brière, J.; Petit, B.; Thomas, E.; Coppo, P.; Marafioti, T.; Emile, J.F.; Delfau-Larue, M.H.; Schmitt, C.; Gaulard, P. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood, 2010, 115(6), 1226-1237.
[http://dx.doi.org/10.1182/blood-2009-05-221275] [PMID: 19965620]
[76]
Saleem, A.; Natkunam, Y. Extranodal NK/T-cell lymphomas: The role of natural killer cells and EBV in lymphomagenesis. Int. J. Mol. Sci., 2020, 21(4), 1501.
[http://dx.doi.org/10.3390/ijms21041501] [PMID: 32098335]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy