Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Natural Products Containing Olefinic Bond: Important Substrates for Semi-synthetic Modification Towards Value Addition

Author(s): Meenakshi Singh, V. Ravichandiran, Yogesh P. Bharitkar* and Abhijit Hazra*

Volume 24, Issue 7, 2020

Page: [709 - 745] Pages: 37

DOI: 10.2174/1385272824666200312125734

Price: $65

Abstract

Semi-synthesis, the way of preparing novel bioactive molecules via modification of compounds isolated from natural sources is very much useful nowadays in the drug discovery process. The modification is based on the reaction of functional group(s) present in a natural compound. Among the examples of functional group transformation, double bond modification is also common in the literature. Several reactions like hydrogenation, cyclopropanation, epoxidation, addition reaction (halogenations, hydroxylation), Michael addition, Heck reaction, cycloaddition, dipolar cycloaddition, etc. are employed for this purpose. In this review, we have tried to gather the reactions performed with several double bond containing classes of natural products like diterpenes, xanthones, sesquiterpene exomethylene lactones, diaryl heptanoids, steroidal lactones, triterpenoids, limonoids, and alkamides. Where available, the effects of transformations on the biological activities of the molecules are also mentioned.

Keywords: Semi-synthesis, double bond, sesquiterpene lactone, michael addition, heck reaction, dipolar cycloaddition.

Next »
Graphical Abstract

[1]
Amslinger, S. The tunable functionality of α,β-unsaturated carbonyl compounds enables their differential application in biological systems. ChemMedChem, 2010, 5(3), 351-356.
[http://dx.doi.org/10.1002/cmdc.200900499] [PMID: 20112330]
[2]
Lee, K.H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod., 2010, 73(3), 500-516.
[http://dx.doi.org/10.1021/np900821e] [PMID: 20187635]
[3]
Clarke, S.J.; Rivory, L.P. Clinical pharmacokinetics of docetaxel. Clin. Pharmacokinet., 1999, 36(2), 99-114.
[http://dx.doi.org/10.2165/00003088-199936020-00002] [PMID: 10092957]
[4]
Holton, R.A.; Biediger, R.J.; Boatman, P.D. Taxol: Science and Applications; Suffness, M., Ed.; CRC Press Inc: Boca Raton, 1995, pp. 97-121.
[5]
Bunnag, D.; Karbwang, J.; Harinasuta, T. Artemether in the treatment of multiple drug resistant falciparum malaria. Southeast Asian J. Trop. Med. Public Health, 1992, 23(4), 762-767.
[http://dx.doi.org/10.1016/s0035-9203(98)91081-1] [PMID: 1298086]
[6]
Esu, E.; Effa, E.E.; Opie, O.N.; Uwaoma, A.; Meremikwu, M.M. Artemether for severe malaria. Cochrane Database Syst. Rev., 2014, (9)CD010678
[http://dx.doi.org/10.1002/14651858.CD010678.pub3] [PMID: 25209020]
[7]
CDC-Centers for Disease Control and Prevention (2016) CDC-Malaria-Diagnosis & Treatment (United States)-Treatment (U.S.)-Artesunate. www.cdc.gov Archived from the original on 29 Oct 2016. Retrieved 28 Oct 2016.
[8]
Rosenthal, P.J. Artesunate for the treatment of severe falciparum malaria. N. Engl. J. Med., 2008, 358(17), 1829-1836.
[http://dx.doi.org/10.1056/NEJMct0709050] [PMID: 18434652]
[10]
Lee, F.Y.F.; Borzilleri, R.; Fairchild, C.R.; Kamath, A.; Smykla, R.; Kramer, R.; Vite, G. Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer Chemother. Pharmacol., 2008, 63(1), 157-166.
[http://dx.doi.org/10.1007/s00280-008-0724-8] [PMID: 18347795]
[11]
Nelson, M.L.; Levy, S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci., 2011, 1241, 17-32.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06354.x] [PMID: 22191524]
[12]
Liu, F.; Myers, A.G. Development of a platform for the discovery and practical synthesis of new tetracycline antibiotics. Curr. Opin. Chem. Biol., 2016, 32, 48-57.
[http://dx.doi.org/10.1016/j.cbpa.2016.03.011] [PMID: 27043373]
[13]
Rohloff, J.C.; Kent, K.M.; Postich, M.J.; Becker, M.W.; Chapman, H.H.; Kelly, D.E.; Lew, W.; Louie, M.S.; McGee, L.R.; Prisbe, E.J.; Schultze, L.M.; Yu, R.H.; Zhang, L. Practical total synthesis of the anti-influenza drug GS-4104. J. Org. Chem., 1998, 63, 4545-4550.
[http://dx.doi.org/10.1021/jo980330q]
[14]
Laborda, P.; Wang, S.Y.; Voglmeir, J. Influenza neuraminidase inhibitors: synthetic approaches, derivatives and biological activity. Molecules, 2016, 21(11), 1513.
[http://dx.doi.org/10.3390/molecules21111513] [PMID: 27845731]
[15]
Karpf, M.; Trussardi, R. New, azide-free transformation of epoxides into 1,2-diamino compounds: synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). J. Org. Chem., 2001, 66(6), 2044-2051.
[http://dx.doi.org/10.1021/jo005702l] [PMID: 11300898]
[16]
Golomb, B.A. Acetylcholinesterase inhibitors and Gulf War illnesses. Proc. Natl. Acad. Sci. USA, 2008, 105(11), 4295-4300.
[http://dx.doi.org/10.1073/pnas.0711986105] [PMID: 18332428]
[17]
Kingston, D.G.I. Tubulin-interactive natural products as anticancer agents. J.Nat. Prod., 2009, 72(3), 507-515.(Correction in J. Nat. Prod., 2011, 74,1352)..
[http://dx.doi.org/10.1021/np800568j] [PMID: 19125622]
[18]
Guo, Z. The modification of natural products for medical use. Acta Pharm. Sin. B, 2017, 7(2), 119-136.
[http://dx.doi.org/10.1016/j.apsb.2016.06.003] [PMID: 28303218]
[19]
Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[20]
Dahlin, J.L.; Nissink, J.W.M.; Strasser, J.M.; Francis, S.; Higgins, L.; Zhou, H.; Zhang, Z.; Walters, M.A. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem., 2015, 58(5), 2091-2113.
[http://dx.doi.org/10.1021/jm5019093] [PMID: 25634295]
[21]
Shah, B.A.; Kaur, R.; Gupta, P.; Kumar, A.; Sethi, V.K.; Andotra, S.S.; Singh, J.; Saxena, A.K.; Taneja, S.C. Structure-activity relationship (SAR) of parthenin analogues with pro-apoptotic activity: Development of novel anti-cancer leads. Bioorg. Med. Chem. Lett., 2009, 19(15), 4394-4398.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.089] [PMID: 19501509]
[22]
Ramesh, C.; Harakishore, K.; Murty, U.S.N.; Das, B. Analogues of Parthenin and their antibacterial activity. ARKIVOC, 2003, 2003(9), 126-132.
[http://dx.doi.org/10.3998/ark.5550190.0004.915]
[23]
Hwang, D.R.; Wu, Y.S.; Chang, C.W.; Lien, T.W.; Chen, W.C.; Tan, U.K.; Hsu, J.T.A.; Hsieh, H.P. Synthesis and anti-viral activity of a series of sesquiterpene lactones and analogues in the subgenomic HCV replicon system. Bioorg. Med. Chem., 2006, 14(1), 83-91.
[http://dx.doi.org/10.1016/j.bmc.2005.07.055] [PMID: 16140536]
[24]
Das, B.; Kashinatham, A.; Madhusudhan, P. Regioselective reduction of the α,β-double bond of some naturally occurring dienamides using NaBH4-I2 system. Tetrahedron Lett., 1998, 39(7), 677-678.
[http://dx.doi.org/10.1016/S0040-4039(97)10590-1]
[25]
Sangwan, P.L.; Koul, J.L.; Koul, S.; Reddy, M.V.; Thota, N.; Khan, I.A.; Kumar, A.; Kalia, N.P.; Qazi, G.N. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg. Med. Chem., 2008, 16(22), 9847-9857.
[http://dx.doi.org/10.1016/j.bmc.2008.09.042] [PMID: 18848780]
[26]
Koul, S.; Koul, J.L.; Taneja, S.C.; Dhar, K.L.; Jamwal, D.S.; Singh, K.; Reen, R.K.; Singh, J. Structure-activity relationship of piperine and its synthetic analogues for their inhibitory potentials of rat hepatic microsomal constitutive and inducible cytochrome P450 activities. Bioorg. Med. Chem., 2000, 8(1), 251-268.
[http://dx.doi.org/10.1016/S0968-0896(99)00273-4] [PMID: 10968285]
[27]
Villagomez, R.; Quiroz, M.; Tito, A.; Sterner, O.; Almanza, G.R. Natural pseudoguaianolides prepared from Damsin. Chem. Nat. Compd., 2015, 51(4), 675-680.
[http://dx.doi.org/10.1007/s10600-015-1382-9]
[28]
Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-bacterial and anti-fungal activity of Xanthones obtained via semi-synthetic modification of α-mangostin from Garcinia mangostana. Molecules, 2017, 22(2), 275.
[http://dx.doi.org/10.3390/molecules22020275] [PMID: 28208680]
[29]
Chen, L.; Zhang, J.P.; Liu, X.; Tang, J.J.; Xiang, P.; Ma, X.M. Semisynthesis, an anti-inflammatory effect of derivatives of 1β-hydroxy alantolactone from Inula britannica. Molecules, 2017, 22(11), 1835.
[http://dx.doi.org/10.3390/molecules22111835] [PMID: 29077042]
[30]
Aoyagi, Y.; Fujiwara, K.; Yamazaki, A.; Sugawara, N.; Yano, R.; Fukaya, H.; Hitotsuyanagi, Y.; Takeya, K.; Ishiyama, A.; Iwatsuki, M.; Otoguro, K.; Yamada, H.; Ōmura, S. Semisynthesis of salviandulin E analogues and their antitrypanosomal activity. Bioorg. Med. Chem. Lett., 2014, 24(2), 442-446.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.052] [PMID: 24388808]
[31]
Csuk, R.; Heinold, A.; Siewert, B.; Schwarz, S.; Barthel, A.; Kluge, R.; Ströhl, D. Synthesis and biological evaluation of antitumor-active arglabin derivatives. Arch. Pharm. (Weinheim), 2012, 345(3), 215-222.
[http://dx.doi.org/10.1002/ardp.201100065] [PMID: 21997763]
[32]
Brandt, G.E.L.; Schmidt, M.D.; Prisinzano, T.E.; Blagg, B.S.J. Gedunin, a novel hsp90 inhibitor: semisynthesis of derivatives and preliminary structure-activity relationships. J. Med. Chem., 2008, 51(20), 6495-6502.
[http://dx.doi.org/10.1021/jm8007486] [PMID: 18816111]
[33]
Xu, H.W.; Dai, G.F.; Liu, G.Z.; Wang, J.F.; Liu, H.M. Synthesis of andrographolide derivatives: a new family of α-glucosidase inhibitors. Bioorg. Med. Chem., 2007, 15(12), 4247-4255.
[http://dx.doi.org/10.1016/j.bmc.2007.03.063] [PMID: 17428667]
[34]
Salazar, I.; Diaz, E. Carbofluorination of pseudoguaianolide sesquiterpenic lactones. Tetrahedron, 1979, 35, 815-818.
[http://dx.doi.org/10.1016/0040-4020(79)80099-X]
[35]
Appendino, G.; Ghilardi, E.; Cravotto, G. 11,13-Methylenation of sesquiterpene exomethylene-γ-lactones: synthesis of sesquiterpene cyclopropyl-γ-lactones. Collect. Czech. Chem. Commun., 1991, 56, 1052-1063.
[http://dx.doi.org/10.1135/cccc19911052]
[36]
Villagomez, R.; Hatti-Kaul, R.; Sterner, O.; Almanza, G.; Linares-Pastén, J.A. Effect of natural and semisynthetic pseudoguianolides on the stability of NF-κB:DNA complex studied by agarose gel electrophoresis. PLoS One, 2015, 10(1)e0115819
[http://dx.doi.org/10.1371/journal.pone.0115819] [PMID: 25615602]
[37]
Zhang, Q.; Lu, Y.; Ding, Y.; Zhai, J.; Ji, Q.; Ma, W.; Yang, M.; Fan, H.; Long, J.; Tong, Z.; Shi, Y.; Jia, Y.; Han, B.; Zhang, W.; Qiu, C.; Ma, X.; Li, Q.; Shi, Q.; Zhang, H.; Li, D.; Zhang, J.; Lin, J.; Li, L.Y.; Gao, Y.; Chen, Y. Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J. Med. Chem., 2012, 55(20), 8757-8769.
[http://dx.doi.org/10.1021/jm301064b] [PMID: 22985027]
[38]
Pinel, B.; Dubois, J.; Séraphin, D.; Richomme, P. Semisynthesis of α-methyl-γ-lactones and in vitro evaluation of their activity on protein farnesyltransferase. J. Enzyme Inhib. Med. Chem., 2010, 25(2), 172-179.
[http://dx.doi.org/10.3109/14756360903169592] [PMID: 20222761]
[39]
Dzhalmakhanbetova, R.I.; Raldugin, V.A.; Bagryanskaya, I.Y.; Gatilov, Y.V.; Shakirov, M.M.; Kulyyasov, A.T.; Adekenov, S.M. Synthesis of dihalocarbene derivatives of arglabin. Chem. Nat. Compd., 2005, 41(5), 552-555.
[http://dx.doi.org/10.1007/s10600-005-0204-x]
[40]
Robles, O.; Saldívar, S.O.S.; Uribe, J.A.G.; Romo, D. Cyclopropanations of olefin-containing natural products for simultaneous arming and structure activity studies. Org. Lett., 2012, 14(6), 1394-1397.
[http://dx.doi.org/10.1021/ol300105q] [PMID: 22360738]
[41]
Arnone, A.; Merlini, L.; Nasini, G.; Pava, O.V.; Zunino, F. Secondary mould metabolites. Part 59. Sesquiterpene illudanes: semi-synthesis of new illudins, structures and biological activity. J. Chem. Soc., Perkin Trans, 2001, 1, 610-616.
[http://dx.doi.org/10.1039/b007633n]
[42]
Altmann, K.H.; Gaugaz, F.Z.; Schiess, R. Diversity through semisynthesis: the chemistry and biological activity of semisynthetic epothilone derivatives. Mol. Divers., 2011, 15(2), 383-399.
[http://dx.doi.org/10.1007/s11030-010-9291-0] [PMID: 21197573]
[43]
Rao, A.B.; Venkateswara, M.R.; Kumar, A.; Krupadanam, G.L.D.; Srimannarayana, G. Regioselective enzymatic epoxidation of (E)-(E)-piperylpiperidine. Tetrahedron Lett., 1994, 35, 279-280.
[http://dx.doi.org/10.1016/S0040-4039(00)76531-2]
[44]
Choodej, S.; Pudhom, K.; Mitsunaga, T. Inhibition of TNF-α-induced inflammation by sesquiterpene lactones from Saussurea lappa and semi-synthetic analogues. Planta Med., 2018, 84(5), 329-335.
[http://dx.doi.org/10.1055/s-0043-120115] [PMID: 28962049]
[45]
el-Feraly, F.S.; Chan, Y.M. Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin from Magnolia grandiflora L. J. Pharm. Sci., 1978, 67(3), 347-350.
[http://dx.doi.org/10.1002/jps.2600670319] [PMID: 641720]
[46]
Matos, P.M.; Mahoney, B.; Chan, Y.; Day, D.P.; Cabral, M.M.; Martins, C.H.; Santos, R.A.; Bastos, J.K.; Page, P.C.; Heleno, V.C. New non-toxic semi-synthetic derivatives from natural diterpenes displaying anti-tuberculosis activity. Molecules, 2015, 20(10), 18264-18278.
[http://dx.doi.org/10.3390/molecules201018264] [PMID: 26457701]
[47]
Guo, Y.; Kootstra, J.; Harutyunyan, S.R. Catalytic regio- and enantioselective alkylation of conjugated dienyl amides. Angew. Chem. Int. Ed. Engl., 2018, 57(41), 13547-13550.
[http://dx.doi.org/10.1002/anie.201808392] [PMID: 30144263]
[48]
Kashanna, J.; Jangili, P.; Kumar, R.A.; Rao, B.R. Chemo and diastereoselective conjugate addition of Grignard reagents on Parthenin, a bioactive natural sesquiterpene lactone. Tetrahedron Lett., 2013, 54(13), 1634-1637.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.043]
[49]
Woods, J.R.; Mo, H.; Bieberich, A.A.; Alavanja, T.; Colby, D.A. Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as (19)f NMR probes in deuterium-free environments. J. Med. Chem., 2011, 54(22), 7934-7941.
[http://dx.doi.org/10.1021/jm201114t] [PMID: 22029741]
[50]
Choommongkol, R.; Jongkol, R.; Prabpai, S.; Kongsaeree, P.; Meepowpan, P. Synthesis of racemic and optically active forms of novel antimalarial agents, spirocyclopentanone-anthracene adducts, via tandem Michael addition-Dieckmann condensation reactions as the key steps. Tetrahedron Asymmetry, 2012, 23(5), 357-363.
[http://dx.doi.org/10.1016/j.tetasy.2012.03.006]
[51]
Seca, A.M.; Grigore, A.; Pinto, D.C.; Silva, A.M. The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. J. Ethnopharmacol., 2014, 154(2), 286-310.
[http://dx.doi.org/10.1016/j.jep.2014.04.010] [PMID: 24754913]
[52]
Gao, S.; Wang, Q.; Tian, X-H.; Li, H-L.; Shen, Y-H.; Xu, X-K.; Wu, G-Z.; Hu, Z-L.; Zhang, W-D. Total sesquiterpene lactones prepared from Inula helenium L. has potentials in prevention and therapy of rheumatoid arthritis. J. Ethnopharmacol., 2017, 196, 39-46.
[http://dx.doi.org/10.1016/j.jep.2016.12.020] [PMID: 27988396]
[53]
Kumar, C.; Kumar, A.; Nalli, Y.; Lone, W.I.; Satti, N.K.; Verma, M.K.; Ahmed, Z.; Ali, A. Design, synthesis and biological evaluation of alantolactone derivatives as potential anti-inflammatory agents. Med. Chem. Res., 2019, 28(6), 849-856.
[http://dx.doi.org/10.1007/s00044-019-02337-1]
[54]
Fardella, G.; Barbetti, P.; Grandolini, G.; Chiappini, I.; Ambrogi, V.; Scarcia, V.; Candiani, A.F. Phenylthio-derivatives of α-methylene-γ-lactones as pro-drugs of cytotoxic agents. Eur. J. Med. Chem., 1999, 34, 515-523.
[http://dx.doi.org/10.1016/S0223-5234(99)80100-7]
[55]
Dzhalmakhanbetova, R.I.; Ivasenko, S.A.; Kulyyasov, A.T.; Khasenov, B.B.; Kurmankulov, N.B.; Adekenov, S.M. Phosphorus derivatives of natural lactones. Synthesis of new grosshemin dialkylphosphonates. Chem. Nat. Compd., 2004, 40(4), 381-386.
[http://dx.doi.org/10.1023/B:CONC.0000048253.69784.ad]
[56]
Abduazimov, B.K.; Zoirova, K.T.; Sham’yanov, I.D.; Nurmukhamedova, M.K.; Yusupov, M.M.; Malikov, V.M. Modification of the sesquiterpene lactone arteannuin B and antimicrobial activities of the products obtained. Chem. Nat. Compd., 1997, 33(5), 554-557.
[http://dx.doi.org/10.1007/BF02254803]
[57]
Matsuda, H.; Kageura, T.; Inoue, Y.; Morikawa, T.; Yoshikawa, M. Absolute stereostructures and syntheses of saussureamines A, B, C, D and E, amino acid-sesquiterpene conjugates with gastroprotective effect, from the roots of Saussurea lappa. Tetrahedron, 2000, 56, 7763-7777.
[http://dx.doi.org/10.1016/S0040-4020(00)00696-7]
[58]
Srivastava, S.K.; Abraham, A.; Bhat, B.; Jaggi, M.; Singh, A.T.; Sanna, V.K.; Singh, G.; Agarwal, S.K.; Mukherjee, R.; Burman, A.C. Synthesis of 13-amino costunolide derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2006, 16(16), 4195-4199.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.083] [PMID: 16766184]
[59]
Pavan Kumar, Ch.; Devi, A.; Ashok Yadav, P.; Rao Vadaparthi, R.; Shankaraiah, G.; Sowjanya, P.; Jain, N.; Suresh Babu, K. “Click” reaction mediated synthesis of costunolide and dehydrocostuslactone derivatives and evaluation of their cytotoxic activity. J. Asian Nat. Prod. Res., 2016, 18(11), 1063-1078.
[http://dx.doi.org/10.1080/10286020.2016.1193012] [PMID: 27329166]
[60]
Lone, S.H.; Bhat, K.A.; Rehman,, S.; Majeed, R.; Hamid, A.; Khuroo, M.A. Synthesis and biological evaluation of amino analogs of Ludartin: potent and selective cytotoxic agents. Bioorg. Med. Chem. Lett., 2013, 23(17), 4931-4934.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.068] [PMID: 23886685]
[61]
Lone, S.H.; Bhat, K.A.; Majeed, R.; Hamid, A.; Khuroo, M.A. Click chemistry inspired facile synthesis and bioevaluation of novel triazolyl analogs of Ludartin. Bioorg. Med. Chem. Lett., 2014, 24(4), 1047-1051.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.018] [PMID: 24484897]
[62]
Khazir, J.; Hyder, I.; Gayatri, J.L.; Prasad Yandrati, L.; Nalla, N.; Chasoo, G.; Mahajan, A.; Saxena, A.K.; Alam, M.S.; Qazi, G.N.; Sampath Kumar, H.M. Design and synthesis of novel 1,2,3-triazole derivatives of coronopilin as anti-cancer compounds. Eur. J. Med. Chem., 2014, 82, 255-262.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.053] [PMID: 24910974]
[63]
Nathan, P.J.; Room, J. Isolation and structure of peruvin. Tetrahedron, 1966, 22, 1723-1728.
[http://dx.doi.org/10.1016/S0040-4020(01)82242-0]
[64]
Clement, L.L.; Tsakos, M.; Schaffert, E.S.; Scavenius, C.; Enghild, J.J.; Poulsen, T.B. The amido-pentadienoate-functionality of the rakicidins is a thiol reactive electrophile--development of a general synthetic strategy. Chem. Commun. (Camb.), 2015, 51(62), 12427-12430.
[http://dx.doi.org/10.1039/C5CC04500B] [PMID: 26146360]
[65]
Uesugi, S.; Fujisawa, N.; Yoshida, J.; Watanabe, M.; Dan, S.; Yamori, T.; Shiono, Y.; Kimura, K. Pyrrocidine A, a metabolite of endophytic fungi, has a potent apoptosis-inducing activity against HL60 cells through caspase activation via the Michael addition. J. Antibiot. (Tokyo), 2016, 69(3), 133-140.
[http://dx.doi.org/10.1038/ja.2015.103] [PMID: 26506860]
[66]
Jackson, P.A.; Widen, J.C.; Harki, D.A.; Brummond, K.M. Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-Michael addition reactions. J. Med. Chem., 2017, 60(3), 839-885.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00788] [PMID: 27996267]
[67]
Kupchan, S.M.; Fessler, D.C.; Eakin, M.A.; Giacobbe, T.J. Reactions of alpha methylene lactone tumor inhibitors with model biological nucelophiles. Science, 1970, 168(3929), 376-378.
[http://dx.doi.org/10.1126/science.168.3929.376] [PMID: 5435896]
[68]
Bartmann, W.; Beck, G.; Granzer, E.; Jendralla, H.; Kerekjarto, B.V.; Wess, G. Convenient two-step stereospecific hydroxy-substitution with retention in β-hydroxy-δ-lactones. Tetrahedron Lett., 1986, 27, 4709-4712.
[http://dx.doi.org/10.1016/S0040-4039(00)85044-3]
[69]
Chen, J.L.; You, Z.W.; Qing, F.L. Total synthesis of γ-trifluoromethylated analogs of goniothalamin and their derivatives. J. Fluor. Chem., 2013, 155, 143-150.
[http://dx.doi.org/10.1016/j.jfluchem.2013.07.017]
[70]
Zhang, Z.; Chan, G.K.L.; Li, J.; Fong, W.F.; Cheung, H.Y. Molecular interaction between andrographolide and glutathione follows second order kinetics. Chem. Pharm. Bull. (Tokyo), 2008, 56(9), 1229-1233.
[http://dx.doi.org/10.1248/cpb.56.1229] [PMID: 18758092]
[71]
Yousuf, S.K.; Majeed, R.; Ahmad, M.; Sangwan, Pl.; Purnima, B.; Saxsena, A.K.; Suri, K.A.; Mukherjee, D.; Taneja, S.C. Ring A structural modified derivatives of withaferin A and the evaluation of their cytotoxic potential. Steroids, 2011, 76(10-11), 1213-1222.
[http://dx.doi.org/10.1016/j.steroids.2011.05.012] [PMID: 21669217]
[72]
Ghosal, S.; Veeraragavan, M.; Kalidindi, S.R. Indolealkylamino-withasteroid conjugates and method of use. U.S. Patent 9,084,800, 21 July. 2015.
[73]
Valkute, T.R.; Aratikatla, E.K.; Gupta, N.A.; Ganga, S.; Santra, M.K.; Bhattacharya, A.K. Synthesis and anticancer studies of Michael adducts and Heck arylation products of sesquiterpene lactones, zaluzanin D and zaluzanin C from Vernonia arborea. RSC Advances, 2018, 8, 38289-38304.
[http://dx.doi.org/10.1039/C8RA06238B]
[74]
Patrushev, S.S.; Shakirov, M.M.; Rybalova, T.V.; Shults, E.E. Synthetic transformations of sesquiterpene lactones. 8*. Synthesis Of 13-(2-oxofuro-[2,3-d]pyrimidin-3(2H)-yl) eudesmanolides. Chem. Heterocycl. Compd., 2014, 50, 1063-1080.
[http://dx.doi.org/10.1007/s10593-014-1566-4]
[75]
Dong, S.; Tang, J.J.; Zhang, C.C.; Tian, J.M.; Guo, J.T.; Zhang, Q.; Li, H.; Gao, J.M. Semisynthesis and in vitro cytotoxic evaluation of new analogues of 1-O-acetylbritannilactone, a sesquiterpene from Inula britannica. Eur. J. Med. Chem., 2014, 80, 71-82.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.028] [PMID: 24763364]
[76]
Vadaparthi, P.R.R.; Kumar, C.P.; Kumar, K.; Venkanna, A.; Nayak, V.L.; Ramakrishna, S.; Babu, K.S. Synthesis of costunolide derivatives by Pd-catalyzed Heck arylation and evaluation of their cytotoxic activities. Med. Chem. Res., 2015, 24(7), 2871-2878.
[http://dx.doi.org/10.1007/s00044-015-1337-5]
[77]
Kihkentayeva, A.S.; Shults, E.E.; Gatilov, Y.V.; Patrushev, S.S.; Karim, S.; Atazhanova, G.A.; Adekenov, S.M. Synthetic transformations of sesquiterpene lactones 10. Synthesis of 13-arylguaianolides. Chem. Heterocycl. Compd., 2016, 52(10), 788-796.
[http://dx.doi.org/10.1007/s10593-016-1967-7]
[78]
Shul, E.E.; Belovodskii, A.V.; Shakirov, M.M.; Tolstikov, G.A. Synthetic transformations of sesquiterpene lactones 6*. Alantolactone and isoalantolactone derivatives in the Heck reaction. Russ. Chem. Bull. Int. Ed., 2012, 61(10), 1975-1985.
[http://dx.doi.org/10.1007/s11172-012-0274-4]
[79]
Patrushev, S.S.; Shakirov, M.M.; Shults, E.E. Synthetic transformations of sesquiterpene lactones 9*. Synthesis of 13-(pyridinyl) eudesmanolides. Chem. Heterocycl. Compd., 2016, 52(3), 165-171.
[http://dx.doi.org/10.1007/s10593-016-1855-1]
[80]
Belovodskii, A.V.; Shults, E.E.; Shakirov, M.M.; Bagryanskaya, I.Yu.; Gatilov, Yu.V.; Tolstikov, G.A. Synthetic transformations of methylenelactones of eudesmanic type. Behavior of isoalantolactone under the conitions of Heck reaction. Russ. J. Org. Chem., 2010, 46(11), 1719-1734.
[http://dx.doi.org/10.1134/S1070428010110199]
[81]
Ding, Y.H.; Fan, H.X.; Long, J.; Zhang, Q.; Chen, Y. The application of Heck reaction in the synthesis of guaianolide sesquiterpene lactones derivatives selectively inhibiting resistant acute leukemic cells. Bioorg. Med. Chem. Lett., 2013, 23(22), 6087-6092.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.028] [PMID: 24095093]
[82]
Patrushev, S.S.; Shakirov, M.M.; Rybalova, T.V.; Shul’ts, E.E. Synthetic transformations of sesquiterpene lactones: VII. Palladium-catalyzed cross-coupling of isoalantolactone with 5-halouracils. Russ. J. Org. Chem., 2013, 49(12), 1783-1797.
[http://dx.doi.org/10.1134/S1070428013120130]
[83]
Wei, K.; Wang, S.; Liu, Z.; Du, Y.; Shi, X.; Qi, T.; Ji, S. A solvent-free Diels–Alder cycloaddition of piperine on silica gel: synthesis of dimeric amide alkaloid from the roots of Piper nigrum. Tetrahedron Lett., 2013, 54(18), 2264-2266.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.080]
[84]
Wei, K.; Li, W.; Koike, K.; Nikaido, T. Cobalt(II)-catalyzed intermolecular Diels-Alder reaction of piperine. Org. Lett., 2005, 7(14), 2833-2835.
[http://dx.doi.org/10.1021/ol050689i] [PMID: 15987148]
[85]
Mu, L.H.; Wang, B.; Ren, H.Y.; Liu, P.; Guo, D.H.; Wang, F.M.; Bai, L.; Guo, Y.S. Synthesis and inhibitory effect of piperine derivates on monoamine oxidase. Bioorg. Med. Chem. Lett., 2012, 22(9), 3343-3348.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.090] [PMID: 22475561]
[86]
Rao, V.R.S.; Suresh, G.; Babu, K.S.; Raju, S.S. Vishnu vardhan, M.V.P.S.; Ramakrishna, S.; Rao, J.M. Novel dimeric amide alkaloids from Piper chaba hunter: isolation, cytotoxic activity and their biomimetic synthesis. Tetrahedron, 2011, 67(10), 1885-1892.
[http://dx.doi.org/10.1016/j.tet.2011.01.015]
[87]
Taylor, E.C.; Tseng, C.P.; Rampal, J.B. Conversion of a primary amino group into a nitroso group. Synthesis of nitroso-substituted heterocycles. J. Org. Chem., 1982, 47(3), 552-555.
[http://dx.doi.org/10.1021/jo00342a035]
[88]
Krchnák, V.; Waring, K.R.; Noll, B.C.; Moellmann, U.; Dahse, H.M.; Miller, M.J. Evolution of natural product scaffolds by acyl- and arylnitroso hetero-diels-alder reactions: new chemistry on piperine. J. Org. Chem., 2008, 73(12), 4559-4567.
[http://dx.doi.org/10.1021/jo8004827] [PMID: 18489157]
[89]
Hartmann, T.; Witte, L. Chemistry, biology and chemoecology of pyrrolizidine alkaloids. In: Alkaloids: Chemical and Biological Perspectives; SW Pelletier (Ed), Pergamon Press; . , 1995; Vol. 9, pp. 155-233.
[90]
Arora, K.; Jose, D.; Singh, D.; Gupta, R.S.; Pardasani, P.; Pardasani, R.T. Stereoselective synthesis and antioxidant activity of azabicycloadducts derived from 9,10‐phenanthrenequinone. Heteroatom Chem., 2009, 20, 379-392.
[http://dx.doi.org/10.1002/hc.20562]
[91]
Kharb, R.; Rana, M.; Sharma, P.C.; Yar, M.S. Therapeutic importance of peptidomimetics in medicinal chemistry. J. Chem. Pharm. Res., 2011, 3(6), 173-186.
[92]
Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984.
[93]
Raj, A.A.; Raghunathan, R.; Malar, E.J.P. Synthesis of spiropyrrolidines: 1,3‐dipolar cycloaddition reactions of an azomethine ylide to unusual dipolarophiles; a molecular orbital study of the cycloaddition reaction. Heteroatom Chem., 1999, 10, 500-507.
[http://dx.doi.org/10.1002/(SICI)1098-1071(1999)10:6<500:AID-HC11>3.0.CO;2-M]
[94]
Grigg, R.; Sridharan, V. Advances in Cycloaddition; Jai Press, : London, 1993, 3, pp. 161-180.
[95]
Lal, K.; Kaushik, C.P.; Kumar, S. Regioselective synthesis and antimicrobial activity of 1,2,3-triazolophanes. J. Chem. Pharm. Res., 2013, 5(2), 261-264.
[96]
Reddy, D.M.; Qazi, N.A.; Sawant, S.D.; Bandey, A.H.; Srinivas, J.; Shankar, M.; Singh, S.K.; Verma, M.; Chashoo, G.; Saxena, A.; Mondhe, D.; Saxena, A.K.; Sethi, V.K.; Taneja, S.C.; Qazi, G.N.; Sampath Kumar, H.M. Design and synthesis of spiro derivatives of parthenin as novel anti-cancer agents. Eur. J. Med. Chem., 2011, 46(8), 3210-3217.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.030] [PMID: 21620534]
[97]
Leon, A.O.; Valencia, J.M.T.; Torres, J.J.M.; Rodriguez, J.G.A.; Rojas, C.M.C.G.; Nathan, P.J. The stereochemistry of the 1,3-dipolar cycloadditions of diazomethane to pseudoguaianolides. Tetrahedron Asymmetry, 2017, 28, 367-373.
[http://dx.doi.org/10.1016/j.tetasy.2017.01.009]
[98]
Tang, J.J.; He, Q.R.; Dong, S.; Guo, X.; Wang, Y.G.; Lei, B.L.; Tian, J.M.; Gao, J.M. Diversity modification and structure-activity relationships of two natural products 1β-hydroxy alantolactone and ivangustin as potent cytotoxic agents. Sci. Rep., 2018, 8(1), 1722.
[http://dx.doi.org/10.1038/s41598-018-20192-9] [PMID: 29379131]
[99]
Hazra, A.; Paira, P.; Sahu, K.B.; Naskar, S.; Saha, P.; Paira, R.; Mondal, S.; Maity, A.; Luger, P.; Weber, M.; Mondal, N.B.; Banerjee, S. Chemistry of andrographolide: formation of novel di-spiropyrrolidino and di-spiropyrrolizidino-oxindole adducts via one-pot three-component [3+2] azomethine ylide cycloaddition. Tetrahedron Lett., 2010, 51, 1585-1588.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.052]
[100]
Hazra, A.; Bharitkar, Y.P.; Chakraborty, D.; Mondal, S.K.; Singal, N.; Mondal, S.; Maity, A.; Paira, R.; Banerjee, S.; Mondal, N.B. Regio- and stereoselective synthesis of a library of bioactive dispiro-oxindolo/acenaphthoquino andrographolides via 1,3-dipolar cycloaddition reaction under microwave irradiation. ACS Comb. Sci., 2013, 15(1), 41-48.
[http://dx.doi.org/10.1021/co3001154] [PMID: 23167870]
[101]
Dey, S.K.; Bose, D.; Hazra, A.; Naskar, S.; Nandy, A.; Munda, R.N.; Das, S.; Chatterjee, N.; Mondal, N.B.; Banerjee, S.; Saha, K.D. Cytotoxic activity and apoptosis-inducing potential of di-spiropyrrolidino and di-spiropyrrolizidino oxindole andrographolide derivatives. PLoS One, 2013, 8(3)e58055
[http://dx.doi.org/10.1371/journal.pone.0058055] [PMID: 23472133]
[102]
Chakraborty, D.; Maity, A.; Jain, C.K.; Hazra, A.; Bharitkar, Y.P.; Jha, T.; Majumder, H.K.; Roychoudhury, S.; Mondal, N.B. Cytotoxic potential of dispirooxindolo/acenaphthoquino andrographolide derivatives against MCF-7 cell line. MedChemComm, 2015, 6, 702-707.
[http://dx.doi.org/10.1039/C4MD00469H]
[103]
Hazra, A.; Mondal, C.; Chakraborty, D.; Halder, A.K.; Bharitkar, Y.P.; Mondal, S.K.; Banerjee, S.; Jha, T.; Mondal, N.B. Towards the development of anticancer drugs from andrographolide: semisynthesis, bioevaluation, QSAR analysis and pharmacokinetic studies. Curr. Top. Med. Chem., 2015, 15(11), 1013-1026.
[http://dx.doi.org/10.2174/1568026615666150317222706] [PMID: 25786506]
[104]
Bharitkar, Y.P.; Kanhar, S.; Suneel, N.; Mondal, S.K.; Hazra, A.; Mondal, N.B. Chemistry of withaferin-A: chemo, regio, and stereoselective synthesis of novel spiro-pyrrolizidino-oxindole adducts of withaferin-A via one-pot three-component [3+2] azomethine ylide cycloaddition and their cytotoxicity evaluation. Mol. Divers., 2015, 19(2), 251-261.
[http://dx.doi.org/10.1007/s11030-015-9574-6] [PMID: 25749788]
[105]
Mandal, R.; Singh, M.; Krishnan, A.A.V.; Dahat, Y.H.; Bharitkar, Y.P.; Ravichandiran, V.; Hazra, A. Semi-synthesis of a novel hybrid isoxazolidino withaferin via chemoselective and diastereoselective 1,3-dipolar nitrone cycloaddition reaction. Nat. Prod. Res., 2019, 2019, 1-11.
[http://dx.doi.org/10.1080/14786419.2019.1582045] [PMID: 30938170]
[106]
Bharitkar, Y.P.; Das, M.; Kumari, N.; Kumari, M.P.; Hazra, A.; Bhayye, S.S.; Natarajan, R.; Shah, S.; Chatterjee, S.; Mondal, N.B. Synthesis of bis-pyrrolizidine-fused dispiro-oxindole analogues of curcumin via one-pot azomethine ylide cycloaddition: experimental and computational approach toward regio- and diastereoselection. Org. Lett., 2015, 17(18), 4440-4443.
[http://dx.doi.org/10.1021/acs.orglett.5b02085] [PMID: 26331906]
[107]
Bharitkar, Y.P.; Datta, S.; Sett, S.; Marathee, N.; Khan, P.; Hazra, A.; Singh, M.; Sahoo, A.; Ghosh, S.; Mondal, S.; Mitra, A.K.; Ravichandiran, V.; Mondal, N.B. In vitro antimicrobial, antiproliferative, and antioxidant activities of bis pyrrolizidine fused dispiro oxindolo curcuminoids. Chem. Biol. Interact., 2017, 7(1), 19-31.
[108]
Singh, M.; Hazra, A.; Bharitkar, Y.P.; Kalia, R.; Sahoo, A.; Saha, S.; Ravichandiran, V.; Ghosh, S.; Mondal, N.B. Synthesis of diversely substituted bis-pyrrolizidino/ thiopyrrolizidino oxindolo/acenaphthyleno curcuminoids via sequential azomethine ylide cycloaddition. RSC Advances, 2018, 8, 18938-18951.
[http://dx.doi.org/10.1039/C8RA02725K]
[109]
Singh, M.; Amrutha Krishnan, A.V.; Mandal, R.; Samanta, J.; Ravichandiran, V.; Natarajan, R.; Bharitkar, Y.P.; Hazra, A. Azomethine ylide cycloaddition: a versatile tool for preparing novel pyrrolizidino-spiro-oxindolo hybrids of the doubly conjugated alkamide piperine. Mol. Divers., 2019, 2019, 1-13.
[http://dx.doi.org/10.1007/s11030-019-09969-w] [PMID: 31183672]
[110]
Shah, B.A.; Taneja, S.C.; Sethi, V.K.; Gupta, P.; Andotra, S.S.; Chimni, S.S.; Qazi, G.N. The formation of novel 1,3-dioxolanes: a typical Baylis-Hillman reaction of a sesquiterpene lactone parthenin. Tetrahedron Lett., 2007, 48(6), 955-960.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.019]
[111]
Kalsi, P.S.; Khurana, S.; Talwar, K.K. Chemistry of costunolide and biological activity of the derived lactones. Phytochemistry, 1985, 24, 103-109.
[http://dx.doi.org/10.1016/S0031-9422(00)80816-X]
[112]
Adekenov, S.M.; Kishkentaeva, A.S.; Shaimerdenova, Z.R.; Atazhanova, G.A. Biomolecular compounds based on natural metabolites. Chem. Nat. Compd., 2018, 54, 464-470.
[http://dx.doi.org/10.1007/s10600-018-2380-5]
[113]
Malairajan, P.; Narasimhan, S.; Gopalakrishnan, G.; Veni, K.J.K. Semisynthetic modification of cedrelone and its antimicrobial activity. Int. J. Drug Dev. Res, 2012, 4(4), 385-392.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy