Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Methylene Blue not Contraindicated in Treating Hemodynamic Instability in Pediatric and Neonate Patients

Author(s): Walusa A. Gonçalves-Ferri, Agnes A.S. Albuquerque, Patricia Martinez Evora and Paulo R.B. Evora*

Volume 18, Issue 1, 2022

Published on: 21 December, 2021

Page: [2 - 8] Pages: 7

DOI: 10.2174/1573396317666210816105812

Price: $65

Abstract

The present review was carried out to describe publications on the use of methylene blue (MB) in pediatrics and neonatology, discussing dose, infusion rate, action characteristics, and possible benefits for a pediatric patient group. The research was performed on the data sources PubMed, BioMed Central, and Embase (updated on Aug 31, 2020) by two independent investigators. The selected articles included human studies that evaluated MB use in pediatric or neonatal patients with vasoplegia due to any cause, regardless of the applied methodology. The MB use and 0 to 18-years-old patients with vasodilatory shock were the adopted criteria. Exclusion criteria were the use of MB in patients without vasoplegia and patients ≥ 18-years-old. The primary endpoint was the increase in mean arterial pressure (MAP). Side effects and dose were also evaluated. Eleven studies were found, of which 10 were case reports, and 1 was a randomized clinical study. Only two of these studies were with neonatal patients (less than 28 days-old), reporting a small number of cases (1 and 6). All studies described the positive action of MB on MAP, allowing the decrease of vasoactive amines in several of them. No severe side effects or death related to the use of the medication were reported. The maximum dose used was 2 mg/kg, but there was no consensus on the infusion rate and drug administration timing. Finally, no theoretical or experimental basis sustains the decision to avoid MB in children claiming it can cause pulmonary hypertension. The same goes for the concern of a possible deleterious effect on inflammatory distress syndrome.

Keywords: Circulatory shock, vasoplegia, methylene blue, nitric oxide, mean arterial pressure (MAP), hemodynamic instability.

Graphical Abstract

[1]
Zakariya BP, Bhat B V, Harish BN, Arun Babu T, Joseph NM. Risk factors and predictors of mortality in culture proven neonatal sepsis. Indian J Pediatr 2012; 79(3): 358-61.
[http://dx.doi.org/10.1007/s12098-011-0584-9] [PMID: 21997866]
[2]
Femitha P, Bhat BV. Early neonatal outcome in late preterms. Indian J Pediatr 2012; 79(8): 1019-24.
[http://dx.doi.org/10.1007/s12098-011-0620-9] [PMID: 22161578]
[3]
Al-Aweel I, Pursley DM, Rubin LP, Shah B, Weisberger S, Richardson DK. Variations in prevalence of hypotension, hypertension, and vasopressor use in NICUs. J Perinatol 2001; 21(5): 272-8.
[http://dx.doi.org/10.1038/sj.jp.7210563] [PMID: 11536018]
[4]
Laughon M, Bose C, Allred E, et al. Factors associated with treatment for hypotension in extremely low gestational age newborns during the first postnatal week. Pediatrics 2007; 119(2): 273-80.
[http://dx.doi.org/10.1542/peds.2006-1138] [PMID: 17272616]
[5]
Noori S, Friedlich PS, Seri I. Pathophysiology of shock in the fetus and neonate. Fetal and neonatal physiology (4th) Philadelphia: Elsevier Saunders. Philadelphia: Elsevier Saunders 2011; pp. 853-63.
[http://dx.doi.org/10.1016/B978-1-4160-3479-7.10077-1]
[6]
Bhat BV, Plakkal N. Management of shock in neonates. Indian J Pediatr 2015; 82(10): 923-9.
[http://dx.doi.org/10.1007/s12098-015-1758-7] [PMID: 25990594]
[7]
Cox DJ, Groves AM. Inotropes in preterm infants--evidence for and against. Acta Paediatr 2012; 101(464): 17-23.
[http://dx.doi.org/10.1111/j.1651-2227.2011.02545.x] [PMID: 22404887]
[8]
Singh Y, Katheria AC, Vora F. Advances in diagnosis and management of hemodynamic instability in neonatal shock. Front Pediatr 2018; 6: 2.
[http://dx.doi.org/10.3389/fped.2018.00002]
[9]
Rutledge C, Brown B, Benner K, Prabhakaran P, Hayes L. A novel use of methylene blue in the pediatric ICU. Pediatrics 2015; 136(4): e1030-4.
[http://dx.doi.org/10.1542/peds.2014-3722] [PMID: 26347436]
[10]
Kwok ES, Howes D. Use of methylene blue in sepsis: a systematic review. J Intensive Care Med 2006; 21(6): 359-63.
[http://dx.doi.org/10.1177/0885066606290671] [PMID: 17095500]
[11]
Paciullo CA, McMahon Horner D, Hatton KW, Flynn JD. Methylene blue for the treatment of septic shock. Pharmacotherapy 2010; 30(7): 702-15.
[http://dx.doi.org/10.1592/phco.30.7.702] [PMID: 20575634]
[12]
Etteldorf JN. Methylene blue in the treatment of methemoglobinemia in premature infants caused by marking ink; a report of eight cases. J Pediatr 1951; 38(1): 24-7.
[http://dx.doi.org/10.1016/S0022-3476(51)80082-9] [PMID: 14804249]
[13]
Prakash O. Laboratory diagnosis of toxoplasmosis. Triangle 1971; 10(2): 69-72.
[PMID: 4938869]
[14]
Kafrouni G, Baick CH, Woolley MM. Recurrent tracheoesophageal fistula: a diagnostic problem. Surgery 1970; 68(5): 889-94.
[PMID: 5473443]
[15]
Spahr RC, Salsburey DJ, Krissberg A, Prin W. Intraamniotic injection of methylene blue leading to methemoglobinemia in one of twins. Int J Gynaecol Obstet 1980; 17(5): 477-8.
[http://dx.doi.org/10.1002/j.1879-3479.1980.tb00192.x] [PMID: 6103845]
[16]
Dolk H. Methylene blue and atresia or stenosis of ileum and jejunum. Lancet 1991; 338(8773): 1021-2.
[http://dx.doi.org/10.1016/0140-6736(91)91885-X]
[17]
Kamat P, Favaloro-Sabatier J, Rogers K, Stockwell JA. Use of methylene blue spectrophotometry to detect subclinical aspiration in enterally fed intubated pediatric patients. Pediatr Crit Care Med 2008; 9(3): 299-303.
[http://dx.doi.org/10.1097/PCC.0b013e318172d500] [PMID: 18446103]
[18]
Driscoll W, Thurin S, Carrion V, Steinhorn RH, Morin FC III. Effect of methylene blue on refractory neonatal hypotension. J Pediatr 1996; 129(6): 904-8.
[http://dx.doi.org/10.1016/S0022-3476(96)70036-7] [PMID: 8969734]
[19]
Lai MY, Chu SM, Lakshminrusimha S, Lin HC. Beyond the inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Pediatr Neonatol 2018; 59(1): 15-23.
[http://dx.doi.org/10.1016/j.pedneo.2016.09.011] [PMID: 28923474]
[20]
Steinhorn RH, Russell JA, Morin FC III. Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension. Am J Physiol 1995; 268(4 Pt 2): H1483-9.
[PMID: 7733349]
[21]
Fakler CR, Kaftan HA, Nelin LD. Two cases suggesting a role for the L-arginine nitric oxide pathway in neonatal blood pressure regulation. Acta Paediatr 1995; 84(4): 460-2.
[http://dx.doi.org/10.1111/j.1651-2227.1995.tb13673.x] [PMID: 7795361]
[22]
Sheffield M, Mabry S, Thibeault DW, Truog WE. Pulmonary nitric oxide synthases and nitrotyrosine: findings during lung development and in chronic lung disease of prematurity. Pediatrics 2006; 118(3): 1056-64.
[http://dx.doi.org/10.1542/peds.2006-0195] [PMID: 16950998]
[23]
van Bel F, Latour V, Vreman HJ, et al. Is carbon monoxide-mediated cyclic guanosine monophosphate production responsible for low blood pressure in neonatal respiratory distress syndrome? J Appl Physiol (1985) 2005; 98(3): 1044-9.
[http://dx.doi.org/10.1152/japplphysiol.00760.2004] [PMID: 15516362]
[24]
Krediet TG, Valk L, Hempenius I, Egberts J, van Bel F. Nitric oxide production and plasma cyclic guanosine monophosphate in premature infants with respiratory distress syndrome. Biol Neonate 2002; 82(3): 150-4.
[http://dx.doi.org/10.1159/000063609] [PMID: 12373064]
[25]
Turanlahti M, Pesonen E, Pohjavuori M, Lassus P, Fyhrquist F, Andersson S. Plasma cyclic guanosine monophosphate reflecting the severity of persistent pulmonary hypertension of the newborn. Biol Neonate 2001; 80(2): 107-12.
[http://dx.doi.org/10.1159/000047128] [PMID: 11509809]
[26]
van Bel F, Valk L, Uiterwaal CS, Egberts J, Krediet TG. Plasma guanosine 3′,5′-cyclic monophosphate and severity of peri/intraventricular haemorrhage in the preterm newborn. Acta Paediatr 2002; 91(4): 434-9.
[http://dx.doi.org/10.1080/080352502317371689] [PMID: 12061360]
[27]
Aydemir O, Ozcan B, Yucel H, Bas AY, Demirel N. Asymmetric dimethylarginine and L-arginine levels in neonatal sepsis and septic shock. J Matern Fetal Neonatal Med 2015; 28(8): 977-82.
[http://dx.doi.org/10.3109/14767058.2014.939950] [PMID: 24983667]
[28]
Evora PR, Ribeiro PJ, Vicente WV, et al. Methylene blue for vasoplegic syndrome treatment in heart surgery: fifteen years of questions, answers, doubts and certainties. Rev Bras Cir Cardiovasc 2009; 24(3): 279-88.
[http://dx.doi.org/10.1590/S0102-76382009000400005] [PMID: 20011872]
[29]
Evora PR, Alves Junior L, Ferreira CA, et al. Twenty years of vasoplegic syndrome treatment in heart surgery. Methylene blue revised. Rev Bras Cir Cardiovasc 2015; 30(1): 84-92.
[PMID: 25859872]
[30]
Fernandes D, da Silva-Santos JE, Duma D, Villela CG, Barja-Fidalgo C, Assreuy J. Nitric oxide-dependent reduction in soluble guanylate cyclase functionality accounts for early lipopolysaccharide-induced changes in vascular reactivity. Mol Pharmacol 2006; 69(3): 983-90.
[http://dx.doi.org/10.1124/mol.105.015479] [PMID: 16326931]
[31]
López-Suárez O, Pérez-Muñuzuri A, Baña-Souto A, Crespo- Suárez P, Couce-Pico ML, Fernández-Lorenzo JR. Methylene blue: usefulness in the treatment of refractory hypotension in premature infants. An Pediatr (Barc) 2011; 74(3): 209-10.
[PMID: 21300579]
[32]
Abdelazim R, Salah D, Labib HA, Elmidany AA. Methylene blue compared to norepinephrine in the management of vasoplegic syndrome in pediatric patients after cardiopulmonary bypass: a randomized controlled study. Egypt J Anaesth 2016; 32(3): 264-75.
[http://dx.doi.org/10.1016/j.egja.2016.05.001]
[33]
Taylor K, Holtby H. Methylene blue revisited: management of hypotension in a pediatric patient with bacterial endocarditis. J Thorac Cardiovasc Surg 2005; 130(2): 566.
[http://dx.doi.org/10.1016/j.jtcvs.2005.01.001] [PMID: 16077431]
[34]
Flynn BC, Sladen RN. The use of methylene blue for vasodilatory shock in a pediatric lung transplant patient. J Cardiothorac Vasc Anesth 2009; 23(4): 529-30.
[http://dx.doi.org/10.1053/j.jvca.2008.11.016] [PMID: 19217797]
[35]
Bhalla T, Sawardekar A, Russell H, Tobias JD. The role of methylene blue in the pediatric patient with vasoplegic syndrome. World J Pediatr Congenit Heart Surg 2011; 2(4): 652-5.
[http://dx.doi.org/10.1177/2150135111410992]
[36]
Hassan GA, Salem YA, Labib HA, Elmidany AA. Methylene blue for the management of pediatric patients with vasoplegic syndrome. Egypt J Cardiothorac Anesth 2014; 8(2): 66-73.
[http://dx.doi.org/10.4103/1687-9090.143265]
[37]
Volpon LC, Evora PRB, Teixeira GD, et al. Methylene blue for refractory shock in polytraumatized patient: a case report. J Emerg Med 2018; S0736-4679(18): 30651-6.
[http://dx.doi.org/10.1016/j.jemermed.2018.06.037]
[38]
Lee JK, Ing C. Prothrombin complex concentrate and methylene blue for treatment of coagulopathy and vasoplegia in a pediatric heart transplant patient. A A Case Rep 2016; 6(5): 127-9.
[39]
Jaggi AS, Bhatia N, Kumar N, Singh N, Anand P, Dhawan R. A review on animal models for screening potential anti-stress agents. Neurol Sci 2011; 32(6): 993-1005.
[http://dx.doi.org/10.1007/s10072-011-0770-6] [PMID: 21927881]
[40]
Nantais J, Dumbarton TC, Farah N, et al. Impact of methylene blue in addition to norepinephrine on the intestinal microcirculation in experimental septic shock. Clin Hemorheol Microcirc 2014; 58(1): 97-105.
[http://dx.doi.org/10.3233/CH-141874] [PMID: 25227191]
[41]
Ratiani L, Gamkrelidze M, Khuchua E, Khutsishvili T, Intskirveli N, Vardosanidze K. Altered microcirculation in septic shock. Georgian Med News 2015; (244-245): 16-24.
[PMID: 26177130]
[42]
Evgenov OV, Sager G, Bjertnaes LJ. Methylene blue reduces lung fluid filtration during the early phase of endotoxemia in awake sheep. Crit Care Med 2001; 29(2): 374-9.
[http://dx.doi.org/10.1097/00003246-200102000-00028] [PMID: 11246319]
[43]
Evgenov OV, Evgenov NV, Mollnes TE, Bjertnaes LJ. Methylene blue reduces pulmonary oedema and cyclo-oxygenase products in endotoxaemic sheep. Eur Respir J 2002; 20(4): 957-64.
[http://dx.doi.org/10.1183/09031936.02.00932001] [PMID: 12412689]
[44]
Raikhelkar JK, Milla F, Darrow B, Scurlock C. Adjuvant therapy with methylene blue in the treatment of right ventricular failure after pulmonary embolectomy. Heart Lung Circ 2011; 20(4): 234-6.
[http://dx.doi.org/10.1016/j.hlc.2010.08.018] [PMID: 20952252]
[45]
Talley Watts L, Long JA, Chemello J, et al. Methylene blue is neuroprotective against mild traumatic brain injury. J Neurotrauma 2014; 31(11): 1063-71.
[http://dx.doi.org/10.1089/neu.2013.3193] [PMID: 24479842]
[46]
Mehaffey JH, Johnston LE, Hawkins RB, et al. Methylene blue for vasoplegic syndrome after cardiac operation: early administration improves survival. Ann Thorac Surg 2017; 104(1): 36-41.
[http://dx.doi.org/10.1016/j.athoracsur.2017.02.057] [PMID: 28551045]
[47]
Leyh RG, Kofidis T, Strüber M, et al. Methylene blue: the drug of choice for catecholamine-refractory vasoplegia after cardiopulmonary bypass? J Thorac Cardiovasc Surg 2003; 125(6): 1426-31.
[http://dx.doi.org/10.1016/S0022-5223(02)73284-4] [PMID: 12830064]
[48]
Bitterman Y, Hubara E, Hadash A, Ben-Ari J, Annich G, Eytan D. Methylene blue administration for distributive shock states in critically ill children. Isr Med Assoc J 2020; 22(7): 404-8.
[PMID: 33236563]
[49]
Otero Luna AV, Johnson R, Funaro M, Canarie MF, Pierce RW. Methylene blue for refractory shock in children: a systematic review and survey practice analysis. Pediatr Crit Care Med 2020; 21(6): e378-86.
[http://dx.doi.org/10.1097/PCC.0000000000002295] [PMID: 32453920]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy