Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Cubosomes: Versatile Nanosized Formulation for Efficient Delivery of Therapeutics

Author(s): Keshav Singhal, Niranjan Kaushik and Amrish Kumar*

Volume 19, Issue 6, 2022

Published on: 11 January, 2022

Page: [644 - 657] Pages: 14

DOI: 10.2174/1567201818666210708123855

Price: $65

conference banner
Abstract

Cubosomes are bicontinuous cubic phase nanoparticles with a size range from 10-500 nm. They offer various advantages with some limitations at the production level, e.g., cubosomes have the feature to encapsulate a large amount of the drug due to its large internal area owing to cuboidal shape but limited in large scale production due to its high viscosity which is associated with the problem in homogenization. This nanoparticulate formulation is compatible for administration by various routes like oral, transdermal, topical, buccal, etc. The drug release mechanism from cubosomes was reported to be dependent on the partition coefficient and diffusion process. Compared with liposomes, cubosomes show many differences in various aspects like shape, size, ingredients, and mode of action. The main ingredients for the preparation of cubosomes include lipids, stabilizers, aqueous phase and therapeutic agents. Several methods have been reported for cubosomes, including the top-down method, the bottom-up method and the adopted coarse method. For the optimization of cubosomes, the key factors to be considered, which will affect the cubosomes characteristics include the concentration of lipid, temperature and pH. At present, many research groups are exploring the potential of cubosomes as biosensors and nanocarriers. Based on the latest reports and research, this review illuminates the structure of the cubosomes, mechanism of the drug release, different methods of preparation with factors affecting the cubosomes, application of cubosomes in different sectors, differences from the liposomes, and their advantages.

Keywords: Cubosomes, nanoparticulates, drug delivery, nanotechnology, targeted delivery, polymeric system.

Graphical Abstract

[1]
Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Acc Chem Res 2000; 33(2): 94-101.
[http://dx.doi.org/10.1021/ar9800993] [PMID: 10673317]
[2]
Kommareddy S, Tiwari SB, Amiji MM. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol Cancer Res Treat 2005; 4(6): 615-25.
[http://dx.doi.org/10.1177/153303460500400605] [PMID: 16292881]
[3]
Bhadra D, Bhadra S, Jain P, Jain NK. Pegnology: A review of PEG-ylated systems. Pharmazie 2002; 57(1): 5-29.
[PMID: 11836932]
[4]
Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 2005; 22(1): 1-10.
[http://dx.doi.org/10.1007/s11095-004-9003-5] [PMID: 15771224]
[5]
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The next generation of smart lipid nanoparticles? Angew Chem Int Ed Engl 2019; 58(10): 2958-78.
[http://dx.doi.org/10.1002/anie.201804067] [PMID: 29926520]
[6]
Lynch ML, Ofori-Boateng A, Hippe A, Kochvar K, Spicer PT. Enhanced loading of water-soluble actives into bicontinuous cubic phase liquid crystals using cationic surfactants. J Colloid Interface Sci 2003; 260(2): 404-13.
[http://dx.doi.org/10.1016/S0021-9797(02)00016-4] [PMID: 12686193]
[7]
Sadhu VR, Beram NS, Kantamneni P. A review on cubosome: the novel drug delivery system. GSC Biol Pharm Sci 2018; 05(01): 076-81.
[8]
Dhadwal A, Sharma DR, Pandit V, Ashawat MS, Kumar P. Cubosomes: A novel carrier for transdermal drug delivery. J Drug Deliv Ther 2020; 10(1): 123-30.
[http://dx.doi.org/10.22270/jddt.v10i1.3814]
[9]
Lee KWY, Nguyen TH, Hanley T, Boyd BJ. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int J Pharm 2009; 365(1-2): 190-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.022] [PMID: 18790030]
[10]
Peng X, Wen X, Pan X, Wang R, Chen B, Wu C. Design and in vitro evaluation of capsaicin transdermal controlled release cubic phase gels. AAPS PharmSciTech 2010; 11(3): 1405-10.
[http://dx.doi.org/10.1208/s12249-010-9481-1] [PMID: 20839080]
[11]
Yu C, Gao C, Lü S, et al. Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release. Colloids Surf B Biointerfaces 2014; 115(115): 331-9.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.023] [PMID: 24398081]
[12]
Liu Z, Dong C, Wang X, et al. Self-assembled biodegradable protein-polymer vesicle as a tumor-targeted nanocarrier. ACS Appl Mater Interfaces 2014; 6(4): 2393-400.
[http://dx.doi.org/10.1021/am404734c] [PMID: 24456410]
[13]
Almeida JD, Edwards DC, Brand CM, Heath TD. Formation of virosomes from influenza subunits and liposomes. Lancet 1975; 2(7941): 899-901.
[http://dx.doi.org/10.1016/S0140-6736(75)92130-3] [PMID: 53375]
[14]
Chang DP, Barauskas J, Dabkowska AP, Wadsäter M, Tiberg F, Nylander T. Non-lamellar lipid liquid crystalline structures at interfaces. Adv Colloid Interface Sci 2015; 222: 135-47.
[http://dx.doi.org/10.1016/j.cis.2014.11.003] [PMID: 25435157]
[15]
Angelova A, Angelov B, Drechsler M, Garamus VM, Lesieur S. Protein entrapment in PEGylated lipid nanoparticles. Int J Pharm 2013; 454(2): 625-32.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.006] [PMID: 23791734]
[16]
Kaasgaard T, Drummond CJ. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys 2006; 8(43): 4957-75.
[http://dx.doi.org/10.1039/b609510k] [PMID: 17091149]
[17]
Ljusberg-Wahren H, Nyberg L, Larsson K. Dispersion of the cubic liquid crystalline phase - Structure, preparation and functionality aspects. Chim Oggi 1996.
[18]
Pan X, Han K, Peng X, et al. Nanostructured cubosomes as advanced drug delivery system. Curr Pharm Des 2013; 19(35): 6290-7.
[http://dx.doi.org/10.2174/1381612811319350006] [PMID: 23470001]
[19]
Nithya R, Jerold P, Siram K. Cubosomes of dapsone enhanced permeation across the skin. J Drug Deliv Sci Technol 2018; 48: 75-81.
[http://dx.doi.org/10.1016/j.jddst.2018.09.002]
[20]
Spicer PT. Progress in liquid crystalline dispersions: cubosomes. Curr Opin Colloid Interface Sci 2005; 10(5-6): 274-9.
[http://dx.doi.org/10.1016/j.cocis.2005.09.004]
[21]
Esposito E, Cortesi R, Drechsler M, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 2005; 22(12): 2163-73.
[http://dx.doi.org/10.1007/s11095-005-8176-x] [PMID: 16267633]
[22]
Kojarunchitt T, Hook S, Rizwan S, Rades T, Baldursdottir S. Development and characterisation of modified poloxamer 407 thermoresponsive depot systems containing cubosomes. Int J Pharm 2011; 408(1-2): 20-6.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.037] [PMID: 21272624]
[23]
Fan Y, Chen H, Huang Z, et al. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int J Pharm 2020; 575: 118875.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118875] [PMID: 31765781]
[24]
Meikle TG, Dyett BP, Strachan JB, White J, Drummond CJ, Conn CE. Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Appl Mater Interfaces 2020; 12(6): 6944-54.
[http://dx.doi.org/10.1021/acsami.9b21783] [PMID: 31917545]
[25]
Bei D, Marszalek J, Youan BBC. Formulation of dacarbazine-loaded cubosomes-part I: Influence of formulation variables. AAPS PharmSciTech 2009; 10(3): 1032-9.
[http://dx.doi.org/10.1208/s12249-009-9293-3] [PMID: 19669896]
[26]
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discovery Today 2016; 21(5): 789-801.
[27]
Azmi IDM, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv 2015; 6(12): 1347-64.
[http://dx.doi.org/10.4155/tde.15.81] [PMID: 26652281]
[28]
Spicer PT, Small WB, Lynch ML, Burns JL. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res 2002; 4(4): 297-311.
[http://dx.doi.org/10.1023/A:1021184216308]
[29]
Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B 2015; 5(1): 79-88.
[http://dx.doi.org/10.1016/j.apsb.2014.12.001] [PMID: 26579429]
[30]
Chong JYT, Mulet X, Postma A, et al. Novel RAFT amphiphilic brush copolymer steric stabilisers for cubosomes: Poly(octadecyl acrylate)-block-poly(polyethylene glycol methyl ether acrylate). Soft Matter 2014; 10(35): 6666-76.
[http://dx.doi.org/10.1039/C4SM01064G] [PMID: 25058647]
[31]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[32]
Zhang L, Li J, Tian D, Sun L, Wang X, Tian M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis 2020; 11(1): 1.
[http://dx.doi.org/10.1038/s41419-019-2182-0] [PMID: 31911576]
[33]
Bhosale RR, Osmani RA, Harkare BR, Ghodake PP. Cubosomes: The inimitable nanoparticulate drug carriers. Sch Acad J Pharm 2013; 2(6): 481-6.
[34]
Monteiro LM, Lione VF, do Carmo FA, et al. Development and characterization of a new oral dapsone nanoemulsion system: Permeability and in silico bioavailability studies. Int J Nanomedicine 2012; 7: 5175-82.
[PMID: 23055729]
[35]
Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Cubic lipid-water phase dispersed into submicron particles. Langmuir 1996.
[http://dx.doi.org/10.1021/la960318y]
[36]
Naveentaj S, Muzib YI. A Review on liquid crystalline nanoparticles (cubosomes): Emerging nanoparticulate drug carrier. Int J Curr Pharm Res 2020; 12(1): 5-9.
[37]
Esposito E, Eblovi N, Rasi S, et al. Lipid-based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci 2003; 5(4): E30.
[http://dx.doi.org/10.1208/ps050430] [PMID: 15198518]
[38]
Abdelrahman FE, Elsayed I, Gad MK, Badr A, Mohamed MI. Investigating the cubosomal ability for transnasal brain targeting: in vitro optimization, ex vivo permeation and in vivo biodistribution. Int J Pharm 2015; 490(1-2): 281-91.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.064] [PMID: 26026251]
[39]
Morsi NM, Abdelbary GA, Ahmed MA. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm 2014; 86(2): 178-89.
[http://dx.doi.org/10.1016/j.ejpb.2013.04.018] [PMID: 23688805]
[40]
Carr HS, Wlodkowski TJ, Rosenkranz HS. Silver sulfadiazine: In vitro antibacterial activity. Antimicrob Agents Chemother 1973; 4(5): 585-7.
[http://dx.doi.org/10.1128/AAC.4.5.585] [PMID: 4791493]
[41]
Caltagirone C, Falchi AM, Lampis S, et al. Cancer-cell-targeted theranostic cubosomes. Langmuir 2014; 30(21): 6228-36.
[http://dx.doi.org/10.1021/la501332u] [PMID: 24815031]
[42]
Murgia S, Falchi AM, Meli V, et al. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf B Biointerfaces 2015; 129: 87-94.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.025] [PMID: 25829131]
[43]
von Halling Laier C, Gibson B, van de Weert M, et al. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int J Pharm 2018; 550(1-2): 35-44.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.036] [PMID: 30134183]
[44]
Liu Q, Dong YD, Hanley TL, Boyd BJ. Sensitivity of nanostructure in charged cubosomes to phase changes triggered by ionic species in solution. Langmuir 2013; 29(46): 14265-73.
[http://dx.doi.org/10.1021/la402426y] [PMID: 24111826]
[45]
Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larsson K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids 2001; 109(1): 47-62.
[http://dx.doi.org/10.1016/S0009-3084(00)00200-0] [PMID: 11163344]
[46]
Shah MH, Paradkar A. Effect of HLB of additives on the properties and drug release from the glyceryl monooleate matrices. Eur J Pharm Biopharm 2007; 67(1): 166-74.
[http://dx.doi.org/10.1016/j.ejpb.2007.01.001] [PMID: 17353118]
[47]
Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 2003; 258(1-2): 141-51.
[http://dx.doi.org/10.1016/S0378-5173(03)00183-2] [PMID: 12753761]
[48]
Verma DD, Verma S, Blume G, Fahr A. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: A skin penetration and confocal laser scanning microscopy study. Eur J Pharm Biopharm 2003; 55(3): 271-7.
[http://dx.doi.org/10.1016/S0939-6411(03)00021-3] [PMID: 12754000]
[49]
Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 2015; 6: 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[50]
Nasr M, Younes H, Abdel-Rashid RS. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv Transl Res 2020; 10(5): 1302-13.
[http://dx.doi.org/10.1007/s13346-020-00785-6] [PMID: 32399604]
[51]
Mertins O, Mathews PD, Angelova A. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials (Basel) 2020; 10(5): 963.
[http://dx.doi.org/10.3390/nano10050963] [PMID: 32443582]
[52]
Polyzos A, Alderton MR, Dawson RM, Hartley PG. Biofunctionalized surfactant mesophases as polyvalent inhibitors of cholera toxin. Bioconjug Chem 2007; 18(5): 1442-9.
[http://dx.doi.org/10.1021/bc0700640] [PMID: 17715991]
[53]
Zheng M, Wang Z, Liu F, Mi Q, Wu J. Study on the microstructure and rheological property of fish oil lyotropic liquid crystal. Colloids Surf A Physicochem Eng Asp 2011; 385(1-3): 47-5.
[http://dx.doi.org/10.1016/j.colsurfa.2011.05.040]
[54]
Ali J, Khar R, Ahuja A, Kalra R. Buccoadhesive erodible disk for treatment of oro-dental infections: design and characterisation. Int J Pharm 2002; 238(1-2): 93-103.
[http://dx.doi.org/10.1016/S0378-5173(02)00059-5] [PMID: 11996813]
[55]
Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci 1997; 86(6): 747-52.
[http://dx.doi.org/10.1021/js960256w] [PMID: 9188059]
[56]
Lian R, Lu Y, Qi J, et al. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices: physical characterization and enhanced oral bioavailability. AAPS PharmSciTech 2011; 12(4): 1234-40.
[http://dx.doi.org/10.1208/s12249-011-9666-2] [PMID: 21948306]
[57]
Makai M, Csányi E, Németh Z, Pálinkás J, Eros I. Structure and drug release of lamellar liquid crystals containing glycerol. Int J Pharm 2003; 256(1-2): 95-107.
[http://dx.doi.org/10.1016/S0378-5173(03)00066-8] [PMID: 12695015]
[58]
Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 2001; 17: 5748-56.
[http://dx.doi.org/10.1021/la010161w]
[59]
Xiao Q, Wang Z, Williams D, et al. Why do membranes of some unhealthy cells adopt a cubic architecture? ACS Cent Sci 2016; 2(12): 943-53.
[http://dx.doi.org/10.1021/acscentsci.6b00284] [PMID: 28058284]
[60]
Sagalowicz L, Michel M, Adrian M, et al. Crystallography of dispersed liquid crystalline phases studied by cryo-transmission electron microscopy. J Microsc 2006; 221(Pt 2): 110-21.
[http://dx.doi.org/10.1111/j.1365-2818.2006.01544.x] [PMID: 16499550]
[61]
Zhao XY, Zhang J, Zheng LQ, Li DH. Studies of cubosomes as a sustained drug delivery system. J Dispers Sci Technol 2004; 25(6): 795-9.
[http://dx.doi.org/10.1081/DIS-200035589]
[62]
Peng X, Zhou Y, Han K, et al. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Devel Ther 2015; 9: 4209-18.
[http://dx.doi.org/10.2147/DDDT.S86370] [PMID: 26345516]
[63]
Shah MH, Biradar SV, Paradkar AR. Spray dried glyceryl monooleate-magnesium trisilicate dry powder as cubic phase precursor. Int J Pharm 2006; 323(1-2): 18-26.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.040] [PMID: 16846704]
[64]
Boyd BJ, Khoo SM, Whittaker DV, Davey G, Porter CJH. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm 2007; 340(1-2): 52-60.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.020] [PMID: 17467935]
[65]
Hong JW, Lee IH, Kwak YH, et al. Efficacy and tissue distribution of DHP107, an oral paclitaxel formulation. Mol Cancer Ther 2007; 6(12 Pt 1): 3239-47.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0261] [PMID: 18089717]
[66]
Ahmed AR, Dashevsky A, Bodmeier R. Drug release from and sterilization of in situ cubic phase forming monoglyceride drug delivery systems. Eur J Pharm Biopharm 2010; 75(3): 375-80.
[http://dx.doi.org/10.1016/j.ejpb.2010.04.004] [PMID: 20403431]
[67]
Han K, Pan X, Chen M, et al. Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. Eur J Pharm Sci 2010; 41(5): 692-9.
[http://dx.doi.org/10.1016/j.ejps.2010.09.012] [PMID: 20883779]
[68]
Réeff J, Gaignaux A, Goole J, et al. Characterization and optimization of GMO-based gels with long term release for intraarticular administration. Int J Pharm 2013; 451(1-2): 95-103.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.079] [PMID: 23651644]
[69]
Lee J, Kellaway IW. Combined effect of oleic acid and polyethylene glycol 200 on buccal permeation of [D-ala2, D-leu5]enkephalin from a cubic phase of glyceryl monooleate. Int J Pharm 2000; 204(1-2): 137-44.
[http://dx.doi.org/10.1016/S0378-5173(00)00490-7] [PMID: 11011997]
[70]
Kossena GA, Charman WN, Boyd BJ, Porter CJH. A novel cubic phase of medium chain lipid origin for the delivery of poorly water soluble drugs. J Control Release 2004; 99(2): 217-29.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.013] [PMID: 15380632]
[71]
Bender J, Simonsson C, Smedh M, Engström S, Ericson MB. Lipid cubic phases in topical drug delivery: visualization of skin distribution using two-photon microscopy. J Control Release 2008; 129(3): 163-9.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.020] [PMID: 18538886]
[72]
Bender J, Ericson MB, Merclin N, et al. Lipid cubic phases for improved topical drug delivery in photodynamic therapy. J Control Release 2005; 106(3): 350-60.
[http://dx.doi.org/10.1016/j.jconrel.2005.05.010] [PMID: 15967535]
[73]
Lopes LB, Lopes JLC, Oliveira DCR, et al. Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: characterization and study of in vitro and in vivo delivery. Eur J Pharm Biopharm 2006; 63(2): 146-55.
[http://dx.doi.org/10.1016/j.ejpb.2006.02.003] [PMID: 16621488]
[74]
Moebus K, Siepmann J, Bodmeier R. Cubic phase-forming dry powders for controlled drug delivery on mucosal surfaces. J Control Release 2012; 157(2): 206-15.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.075] [PMID: 21963767]
[75]
Rattanapak T, Birchall J, Young K, et al. Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy. J Control Release 2013; 172(3): 894-903.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.018] [PMID: 23978683]
[76]
Rizwan SB, Assmus D, Boehnke A, et al. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm 2011; 79(1): 15-22.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.034] [PMID: 21237267]
[77]
Nazaruk E, Landau EM, Bilewicz R. Membrane bound enzyme hosted in liquid crystalline cubic phase for sensing and fuel cells. Electrochim Acta 2014; 140: 96-100.
[http://dx.doi.org/10.1016/j.electacta.2014.05.130]
[78]
Gan L, Han S, Shen J, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm 2010; 396(1-2): 179-87.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.015] [PMID: 20558263]
[79]
Han S, Shen JQ, Gan Y, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin 2010; 31(8): 990-8.
[http://dx.doi.org/10.1038/aps.2010.98] [PMID: 20686524]
[80]
Faria AR, Silvestre OF, Maibohm C, Adão RMR, Silva BFB, Nieder JB. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res 2019; 12(5): 991-8.
[http://dx.doi.org/10.1007/s12274-018-2231-5]
[81]
Lachowicz JI, Picci G, Coni P, Lippolis V, Mamusa M, Murgia S, et al. Fluorescent squaramide ligands for cellular imaging and their encapsulation in cubosomes. New J Chem 2019; 43: 10336-42.
[http://dx.doi.org/10.1039/C9NJ01548E]
[82]
Bazylińska U, Kulbacka J, Schmidt J, Talmon Y, Murgia S. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. J Colloid Interface Sci 2018; 522: 163-73.
[http://dx.doi.org/10.1016/j.jcis.2018.03.063] [PMID: 29601958]
[83]
Tran N, Bye N, Moffat BA, et al. Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution. Mater Sci Eng C 2017; 71: 584-93.
[http://dx.doi.org/10.1016/j.msec.2016.10.028] [PMID: 27987748]
[84]
Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr Opin Colloid Interface Sci 2020; 48: 28-39.
[http://dx.doi.org/10.1016/j.cocis.2020.03.006]
[85]
Fong C, Le T, Drummond CJ. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev 2012; 41(3): 1297-322.
[http://dx.doi.org/10.1039/C1CS15148G] [PMID: 21975366]
[86]
Caltagirone C, Arca M, Falchi AM, Lippolis V, Meli V, Monduzzi M, et al. Solvatochromic fluorescent BODIPY derivative as imaging agent in camptothecin loaded hexosomes for possible theranostic applications. RSC Advances 2015; 5: 23443-9.
[http://dx.doi.org/10.1039/C5RA01025J]
[87]
Lynch ML, Spicer PT. Inventors; cincinnati children s hospital medical centre, children's hospital research foundation, assignee. Functionalized cubic liquid crystalline phase materials and methods for their preparation and use. United States patent US 6,936,187, 2005.
[88]
Jeong SY, Kwon IC, Chung H. Inventors; Korea Advanced Institute of Science, Technology KAIST, assignee. Formulation solubilizing water-insoluble agents and preparation method thereof. United States patent US 6,994,862, 2006.
[89]
Hoath SB, Pickens WL, Visscher MO. Inventors; Cincinnati Childrens Hospital Medical Center, assignee. Simulated vernix compositions for skin cleansing and other applications. United States patent US 7,807,188, 2010.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy