Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Expression, Regulation, and Role of an Oligopeptide Transporter: PEPT1 in Tumors

Author(s): Xi Wang, Yiming Chen, Yongjuan Wang, Bangmao Wang, Jie Zhang* and Xu Jian *

Volume 29, Issue 9, 2022

Published on: 07 July, 2021

Page: [1596 - 1605] Pages: 10

DOI: 10.2174/0929867328666210707170214

Price: $65

Abstract

PEPT1 is a vital member of the proton-dependent oligopeptide transporters family (POTs). Many studies have confirmed that PEPT1 plays a critical role in the absorption of dipeptides, tripeptides, and pseudopeptides in the intestinal tract. In recent years, several studies have found that PEPT1 is highly expressed in malignant tumor tissues and cells. The abnormal expression of PEPT1 in tumors may be closely related to the progress of tumors, and hence, could be considered as a potential molecular biomarker for the diagnosis, treatment, and prognosis in malignant tumors. Furthermore, PEPT1 can be used to mediate the targeted delivery of anti-tumor drugs. Herein, the expression, regulation, and role of PEPT1 in tumors in recent years have been reviewed.

Keywords: Oligopeptide transporter, PEPT1, SLC15A1, tumor, POT, PHT2.

[1]
Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M. J. Cancer statistics, 2007. CA Cancer J. Clin., 2007, 57(1), 43-66.
[http://dx.doi.org/10.3322/canjclin.57.1.43] [PMID: 17237035]
[2]
Miyamoto, Y.; Ganapathy, V.; Leibach, F.H. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles. Biochem. Biophys. Res. Commun., 1985, 132(3), 946-953.
[http://dx.doi.org/10.1016/0006-291X(85)91899-6] [PMID: 4074356]
[3]
Ogihara, H.; Saito, H.; Shin, B.C.; Terado, T.; Takenoshita, S.; Nagamachi, Y.; Inui, K.; Takata, K. Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem. Biophys. Res. Commun., 1996, 220(3), 848-852.
[http://dx.doi.org/10.1006/bbrc.1996.0493] [PMID: 8607854]
[4]
Wang, C.Y.; Liu, S.; Xie, X.N.; Tan, Z.R. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des. Devel. Ther., 2017, 11, 3511-3517.
[http://dx.doi.org/10.2147/DDDT.S151725] [PMID: 29263649]
[5]
Nakanishi, T.; Tamai, I.; Sai, Y.; Sasaki, T.; Tsuji, A. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Cancer Res., 1997, 57(18), 4118-4122.
[PMID: 9307302]
[6]
Nakanishi, T.; Tamai, I.; Takaki, A.; Tsuji, A. Cancer cell-targeted drug delivery utilizing oligopeptide transport activity. Int. J. Cancer, 2000, 88(2), 274-280.
[http://dx.doi.org/10.1002/1097-0215(20001015)88:2<274:AID-IJC20>3.0.CO;2-5] [PMID: 11004680]
[7]
Lee, V.H. Membrane transporters. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S41-S50.
[http://dx.doi.org/10.1016/S0928-0987(00)00163-9] [PMID: 11033426]
[8]
Uchiyama, T.; Kulkarni, A.A.; Davies, D.L.; Lee, V.H. Biophysical evidence for His57 as a proton-binding site in the mammalian intestinal transporter hPepT1. Pharm. Res., 2003, 20(12), 1911-1916.
[http://dx.doi.org/10.1023/B:PHAM.0000008036.05892.e9] [PMID: 14725353]
[9]
Gonzalez, D.E.; Covitz, K.M.; Sadée, W.; Mrsny, R.J. An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res., 1998, 58(3), 519-525.
[PMID: 9458100]
[10]
Tai, W.; Chen, Z.; Cheng, K. Expression profile and functional activity of peptide transporters in prostate cancer cells. Mol. Pharm., 2013, 10(2), 477-487.
[http://dx.doi.org/10.1021/mp300364k] [PMID: 22950754]
[11]
Huo, X.; Wang, C.; Yu, Z.; Peng, Y.; Wang, S.; Feng, S.; Zhang, S.; Tian, X.; Sun, C.; Liu, K.; Deng, S.; Ma, X. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J. Pineal Res., 2017, 62(4)
[http://dx.doi.org/10.1111/jpi.12390] [PMID: 28099762]
[12]
Gong, Y.; Wu, X.; Wang, T.; Zhao, J.; Liu, X.; Yao, Z.; Zhang, Q.; Jian, X. Targeting PEPT1: A novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy. Oncotarget, 2017, 8(25), 40454-40468.
[http://dx.doi.org/10.18632/oncotarget.17117] [PMID: 28465466]
[13]
Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta, 2012, 1820(11), 1753-1763.
[http://dx.doi.org/10.1016/j.bbagen.2012.07.007] [PMID: 22842481]
[14]
Ziegler, T.R.; Fernández-Estívariz, C.; Gu, L.H.; Bazargan, N.; Umeakunne, K.; Wallace, T.M.; Diaz, E.E.; Rosado, K.E.; Pascal, R.R.; Galloway, J.R.; Wilcox, J.N.; Leader, L.M. Distribution of the H+/peptide transporter PepT1 in human intestine: Up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am. J. Clin. Nutr., 2002, 75(5), 922-930.
[http://dx.doi.org/10.1093/ajcn/75.5.922] [PMID: 11976168]
[15]
Merlin, D.; Si-Tahar, M.; Sitaraman, S.V.; Eastburn, K.; Williams, I.; Liu, X.; Hediger, M.A.; Madara, J.L. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: Transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology, 2001, 120(7), 1666-1679.
[http://dx.doi.org/10.1053/gast.2001.24845] [PMID: 11375948]
[16]
Walker, D.; Thwaites, D.T.; Simmons, N.L.; Gilbert, H.J.; Hirst, B.H. Substrate upregulation of the human small intestinal peptide transporter, hPepT1. J. Physiol., 1998, 507(Pt 3), 697-706.
[http://dx.doi.org/10.1111/j.1469-7793.1998.697bs.x]
[17]
Adibi, S.A. Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(5), G779-G788.
[http://dx.doi.org/10.1152/ajpgi.00056.2003] [PMID: 14561585]
[18]
Shiraga, T.; Miyamoto, K.; Tanaka, H.; Yamamoto, H.; Taketani, Y.; Morita, K.; Tamai, I.; Tsuji, A.; Takeda, E. Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/Peptide transporter PepT1. Gastroenterology, 1999, 116(2), 354-362.
[http://dx.doi.org/10.1016/S0016-5085(99)70132-0] [PMID: 9922316]
[19]
Inoue, M.; Terada, T.; Okuda, M.; Inui, K. Regulation of human peptide transporter 1 (PEPT1) in gastric cancer cells by anticancer drugs. Cancer Lett., 2005, 230(1), 72-80.
[http://dx.doi.org/10.1016/j.canlet.2004.12.023] [PMID: 16253763]
[20]
Ashida, K.; Katsura, T.; Motohashi, H.; Saito, H.; Inui, K. Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(4), G617-G623.
[http://dx.doi.org/10.1152/ajpgi.00344.2001] [PMID: 11897620]
[21]
Nielsen, C.U.; Amstrup, J.; Steffansen, B.; Frokjaer, S.; Brodin, B. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(1), G191-G199.
[http://dx.doi.org/10.1152/ajpgi.2001.281.1.G191] [PMID: 11408272]
[22]
Iwao, T.; Toyota, M.; Miyagawa, Y.; Okita, H.; Kiyokawa, N.; Akutsu, H.; Umezawa, A.; Nagata, K.; Matsunaga, T. Differentiation of human induced pluripotent stem cells into functional enterocyte-like cells using a simple method. Drug Metab. Pharmacokinet., 2014, 29(1), 44-51.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RG-005] [PMID: 23822979]
[23]
Sun, B.W.; Zhao, X.C.; Wang, G.J.; Li, N.; Li, J.S. Changes of biological functions of dipeptide transporter (PepT1) and hormonal regulation in severe scald rats. World J. Gastroenterol., 2003, 9(12), 2782-2785.
[http://dx.doi.org/10.3748/wjg.v9.i12.2782] [PMID: 14669333]
[24]
Geillinger, K.E.; Kipp, A.P.; Schink, K.; Röder, P.V.; Spanier, B.; Daniel, H. Nrf2 regulates the expression of the peptide transporter PEPT1 in the human colon carcinoma cell line Caco-2. Biochim. Biophys. Acta, 2014, 1840(6), 1747-1754.
[http://dx.doi.org/10.1016/j.bbagen.2013.12.026] [PMID: 24380877]
[25]
Pieri, M.; Christian, H.C.; Wilkins, R.J.; Boyd, C.A.; Meredith, D. The apical (hPepT1) and basolateral peptide transport systems of Caco-2 cells are regulated by AMP-activated protein kinase. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(1), G136-G143.
[http://dx.doi.org/10.1152/ajpgi.00014.2010] [PMID: 20430871]
[26]
Liu, J.; Shi, B.; Shi, K.; Ma, G.; Zhang, H.; Lou, X.; Liu, H.; Wan, S.; Liang, D. Ghrelin upregulates PepT1 activity in the small intestine epithelium of rats with sepsis. Biomed Pharmacother., 2017, 86, 669-676.
[http://dx.doi.org/10.1016/j.biopha.2016.12.026] [PMID: 28038428]
[27]
Warsi, J.; Elvira, B.; Bissinger, R.; Shumilina, E.; Hosseinzadeh, Z.; Lang, F. Downregulation of peptide transporters PEPT1 and PEPT2 by oxidative stress responsive kinase OSR1. Kidney Blood Press. Res., 2014, 39(6), 591-599.
[http://dx.doi.org/10.1159/000368469] [PMID: 25531100]
[28]
Ihara, T.; Tsujikawa, T.; Fujiyama, Y.; Bamba, T. Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion, 2000, 61(1), 59-67.
[http://dx.doi.org/10.1159/000007736] [PMID: 10671775]
[29]
Dalmasso, G.; Nguyen, H.T.; Yan, Y.; Laroui, H.; Charania, M.A.; Obertone, T.S.; Sitaraman, S.V.; Merlin, D. MicroRNA-92b regulates expression of the oligopeptide transporter PepT1 in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(1), G52-G59.
[http://dx.doi.org/10.1152/ajpgi.00394.2010] [PMID: 21030610]
[30]
Dai, X.; Chen, X.; Chen, Q.; Shi, L.; Liang, H.; Zhou, Z.; Liu, Q.; Pang, W.; Hou, D.; Wang, C.; Zen, K.; Yuan, Y.; Zhang, C.Y.; Xia, L. Microrna-193a-3p reduces intestinal inflammation in response to microbiota via down-regulation of colonic pept1. J. Biol. Chem., 2015, 290(26), 16099-16115.
[http://dx.doi.org/10.1074/jbc.M115.659318] [PMID: 25931122]
[31]
Vavricka, S.R.; Musch, M.W.; Fujiya, M.; Kles, K.; Chang, L.; Eloranta, J.J.; Kullak-Ublick, G.A.; Drabik, K.; Merlin, D.; Chang, E.B. Tumor necrosis factor-alpha and interferon-gamma increase PepT1 expression and activity in the human colon carcinoma cell line Caco-2/bbe and in mouse intestine. Pflugers Arch., 2006, 452(1), 71-80.
[http://dx.doi.org/10.1007/s00424-005-0007-8] [PMID: 16328452]
[32]
Viennois, E.; Ingersoll, S.A.; Ayyadurai, S.; Zhao, Y.; Wang, L.; Zhang, M.; Han, M.K.; Garg, P.; Xiao, B.; Merlin, D. Critical role of PepT1 in promoting colitis-associated cancer and therapeutic benefits of the anti-inflammatory PepT1-mediated tripeptide KPV in a murine model. Cell. Mol. Gastroenterol. Hepatol., 2016, 2(3), 340-357.
[http://dx.doi.org/10.1016/j.jcmgh.2016.01.006] [PMID: 27458604]
[33]
Qi, N.; Xiyuan, Y.; Qinling, Y.; Weijie, H.; Dongsheng, Y.; Qi, Z. Quantum dots based near-infrared fluorescent probe for the detection of PepT1 expression in colorectal cancer. J. Chem. Phys. Lett., 2020, 739(C)
[http://dx.doi.org/10.1016/j.cplett.2019.136977]]
[34]
Mitsuoka, K.; Kato, Y.; Miyoshi, S.; Murakami, Y.; Hiraiwa, M.; Kubo, Y.; Nishimura, S.; Tsuji, A. Inhibition of oligopeptide transporter suppress growth of human pancreatic cancer cells. Eur. J. Pharm. Sci., 2010, 40(3), 202-208.
[http://dx.doi.org/10.1016/j.ejps.2010.03.010] [PMID: 20307658]
[35]
Dai, T.; Li, N.; Zhang, L.; Zhang, Y.; Liu, Q. A new target ligand Ser-Glu for PEPT1-overexpressing cancer imaging. Int. J. Nanomedicine, 2016, 11, 203-212.
[http://dx.doi.org/10.2147/IJN.S97207] [PMID: 26811678]
[36]
Mitsuoka, K.; Miyoshi, S.; Kato, Y.; Murakami, Y.; Utsumi, R.; Kubo, Y.; Noda, A.; Nakamura, Y.; Nishimura, S.; Tsuji, A. Cancer detection using a PET tracer, 11C-glycylsarcosine, targeted to H+/peptide transporter. J. Nucl. Med., 2008, 49(4), 615-622.
[http://dx.doi.org/10.2967/jnumed.107.048231] [PMID: 18344442]
[37]
Xie, Y.; Hu, Y.; Smith, D.E. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid. Br. J. Pharmacol., 2016, 173(1), 167-176.
[http://dx.doi.org/10.1111/bph.13356] [PMID: 26444978]
[38]
Hagiya, Y.; Endo, Y.; Yonemura, Y.; Takahashi, K.; Ishizuka, M.; Abe, F.; Tanaka, T.; Okura, I.; Nakajima, M.; Ishikawa, T.; Ogura, S. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. Photodiagn. Photodyn. Ther., 2012, 9(3), 204-214.
[http://dx.doi.org/10.1016/j.pdpdt.2011.12.004] [PMID: 22959800]
[39]
Nakamura, M.; Nishikawa, J.; Hamabe, K.; Goto, A.; Nishimura, J.; Shibata, H.; Nagao, M.; Sasaki, S.; Hashimoto, S.; Okamoto, T.; Sakaida, I. Preliminary study of photodynamic diagnosis using 5-aminolevulinic acid in gastric and colorectal tumors. World J. Gastroenterol., 2015, 21(21), 6706-6712.
[http://dx.doi.org/10.3748/wjg.v21.i21.6706] [PMID: 26074709]
[40]
Namikawa, T.; Inoue, K.; Uemura, S.; Shiga, M.; Maeda, H.; Kitagawa, H.; Fukuhara, H.; Kobayashi, M.; Shuin, T.; Hanazaki, K. Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer. J. Surg. Oncol., 2014, 109(3), 213-217.
[http://dx.doi.org/10.1002/jso.23487] [PMID: 24214406]
[41]
Ushimaru, Y.; Fujiwara, Y.; Kishi, K.; Sugimura, K.; Omori, T.; Moon, J.H.; Yanagimoto, Y.; Ohue, M.; Yasui, M.; Takahashi, H.; Kobayashi, S.; Akita, H.; Miyoshi, N.; Tomokuni, A.; Sakon, M.; Yano, M. Prognostic significance of basing treatment strategy on the results of photodynamic diagnosis in advanced gastric cancer. Ann. Surg. Oncol., 2017, 24(4), 983-989.
[http://dx.doi.org/10.1245/s10434-016-5660-y] [PMID: 27822632]
[42]
Hagiya, Y.; Fukuhara, H.; Matsumoto, K.; Endo, Y.; Nakajima, M.; Tanaka, T.; Okura, I.; Kurabayashi, A.; Furihata, M.; Inoue, K.; Shuin, T.; Ogura, S. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagn. Photodyn. Ther., 2013, 10(3), 288-295.
[http://dx.doi.org/10.1016/j.pdpdt.2013.02.001] [PMID: 23993855]
[43]
Omoto, K.; Matsuda, R.; Nakai, Y.; Tatsumi, Y.; Nakazawa, T.; Tanaka, Y.; Shida, Y.; Murakami, T.; Nishimura, F.; Nakagawa, I.; Motoyama, Y.; Nakamura, M.; Fujimoto, K.; Hiroyuki, N. Expression of peptide transporter 1 has a positive correlation in protoporphyrin IX accumulation induced by 5-aminolevulinic acid with photodynamic detection of non-small cell lung cancer and metastatic brain tumor specimens originating from non-small cell lung cancer. Photodiagn. Photodyn. Ther., 2019, 25, 309-316.
[http://dx.doi.org/10.1016/j.pdpdt.2019.01.009] [PMID: 30639584]
[44]
Yonemura, Y.; Canbay, E.; Ishibashi, H.; Nishino, E.; Endou, Y.; Sako, S.; Ogura, S. 5-aminolevulinic acid fluorescence in detection of peritoneal metastases. Asian Pac. J. Cancer Prev., 2016, 17(4), 2271-2275.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.2271] [PMID: 27221929]
[45]
Recasens, A.; Munoz, L. Targeting cancer cell dormancy. Trends Pharmacol. Sci., 2019, 40(2), 128-141.
[http://dx.doi.org/10.1016/j.tips.2018.12.004] [PMID: 30612715]
[46]
Endo, H.; Okuyama, H.; Ohue, M.; Inoue, M. Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia. PLoS One, 2014, 9(6)e98858
[http://dx.doi.org/10.1371/journal.pone.0098858] [PMID: 24905002]
[47]
Marx, V. How to pull the blanket off dormant cancer cells. Nat. Methods, 2018, 15(4), 249-252.
[http://dx.doi.org/10.1038/nmeth.4640] [PMID: 29614065]
[48]
Nakayama, T.; Otsuka, S.; Kobayashi, T.; Okajima, H.; Matsumoto, K.; Hagiya, Y.; Inoue, K.; Shuin, T.; Nakajima, M.; Tanaka, T.; Ogura, S.I. Dormant cancer cells accumulate high protoporphyrin IX levels and are sensitive to 5- aminolevulinic acid-based photodynamic therapy. Sci. Rep., 2016, 6 36478
[http://dx.doi.org/10.1038/srep36478] [PMID: 27857072]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy