摘要
PEPT1 是质子依赖性寡肽转运蛋白家族 (POT) 的重要成员。 许多研究证实,PEPT1在肠道吸收二肽、三肽和假肽方面发挥着关键作用。 近年来,多项研究发现PEPT1在恶性肿瘤组织和细胞中高表达。 PEPT1在肿瘤中的异常表达可能与肿瘤的进展密切相关,可作为恶性肿瘤诊断、治疗和预后的潜在分子标志物。 此外,PEPT1可用于介导抗肿瘤药物的靶向递送。 本文就近年来PEPT1在肿瘤中的表达、调控及作用进行综述。
关键词: 寡肽转运蛋白、PEPT1、SLC15A1、肿瘤、POT、PHT2。
[1]
Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M. J. Cancer statistics, 2007. CA Cancer J. Clin., 2007, 57(1), 43-66.
[http://dx.doi.org/10.3322/canjclin.57.1.43] [PMID: 17237035]
[http://dx.doi.org/10.3322/canjclin.57.1.43] [PMID: 17237035]
[2]
Miyamoto, Y.; Ganapathy, V.; Leibach, F.H. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles. Biochem. Biophys. Res. Commun., 1985, 132(3), 946-953.
[http://dx.doi.org/10.1016/0006-291X(85)91899-6] [PMID: 4074356]
[http://dx.doi.org/10.1016/0006-291X(85)91899-6] [PMID: 4074356]
[3]
Ogihara, H.; Saito, H.; Shin, B.C.; Terado, T.; Takenoshita, S.; Nagamachi, Y.; Inui, K.; Takata, K. Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem. Biophys. Res. Commun., 1996, 220(3), 848-852.
[http://dx.doi.org/10.1006/bbrc.1996.0493] [PMID: 8607854]
[http://dx.doi.org/10.1006/bbrc.1996.0493] [PMID: 8607854]
[4]
Wang, C.Y.; Liu, S.; Xie, X.N.; Tan, Z.R. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des. Devel. Ther., 2017, 11, 3511-3517.
[http://dx.doi.org/10.2147/DDDT.S151725] [PMID: 29263649]
[http://dx.doi.org/10.2147/DDDT.S151725] [PMID: 29263649]
[5]
Nakanishi, T.; Tamai, I.; Sai, Y.; Sasaki, T.; Tsuji, A. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Cancer Res., 1997, 57(18), 4118-4122.
[PMID: 9307302]
[PMID: 9307302]
[6]
Nakanishi, T.; Tamai, I.; Takaki, A.; Tsuji, A. Cancer cell-targeted drug delivery utilizing oligopeptide transport activity. Int. J. Cancer, 2000, 88(2), 274-280.
[http://dx.doi.org/10.1002/1097-0215(20001015)88:2<274:AID-IJC20>3.0.CO;2-5] [PMID: 11004680]
[http://dx.doi.org/10.1002/1097-0215(20001015)88:2<274:AID-IJC20>3.0.CO;2-5] [PMID: 11004680]
[7]
Lee, V.H. Membrane transporters. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S41-S50.
[http://dx.doi.org/10.1016/S0928-0987(00)00163-9] [PMID: 11033426]
[http://dx.doi.org/10.1016/S0928-0987(00)00163-9] [PMID: 11033426]
[8]
Uchiyama, T.; Kulkarni, A.A.; Davies, D.L.; Lee, V.H. Biophysical evidence for His57 as a proton-binding site in the mammalian intestinal transporter hPepT1. Pharm. Res., 2003, 20(12), 1911-1916.
[http://dx.doi.org/10.1023/B:PHAM.0000008036.05892.e9] [PMID: 14725353]
[http://dx.doi.org/10.1023/B:PHAM.0000008036.05892.e9] [PMID: 14725353]
[9]
Gonzalez, D.E.; Covitz, K.M.; Sadée, W.; Mrsny, R.J. An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res., 1998, 58(3), 519-525.
[PMID: 9458100]
[PMID: 9458100]
[10]
Tai, W.; Chen, Z.; Cheng, K. Expression profile and functional activity of peptide transporters in prostate cancer cells. Mol. Pharm., 2013, 10(2), 477-487.
[http://dx.doi.org/10.1021/mp300364k] [PMID: 22950754]
[http://dx.doi.org/10.1021/mp300364k] [PMID: 22950754]
[11]
Huo, X.; Wang, C.; Yu, Z.; Peng, Y.; Wang, S.; Feng, S.; Zhang, S.; Tian, X.; Sun, C.; Liu, K.; Deng, S.; Ma, X. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J. Pineal Res., 2017, 62(4)
[http://dx.doi.org/10.1111/jpi.12390] [PMID: 28099762]
[http://dx.doi.org/10.1111/jpi.12390] [PMID: 28099762]
[12]
Gong, Y.; Wu, X.; Wang, T.; Zhao, J.; Liu, X.; Yao, Z.; Zhang, Q.; Jian, X. Targeting PEPT1: A novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy. Oncotarget, 2017, 8(25), 40454-40468.
[http://dx.doi.org/10.18632/oncotarget.17117] [PMID: 28465466]
[http://dx.doi.org/10.18632/oncotarget.17117] [PMID: 28465466]
[13]
Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta, 2012, 1820(11), 1753-1763.
[http://dx.doi.org/10.1016/j.bbagen.2012.07.007] [PMID: 22842481]
[http://dx.doi.org/10.1016/j.bbagen.2012.07.007] [PMID: 22842481]
[14]
Ziegler, T.R.; Fernández-Estívariz, C.; Gu, L.H.; Bazargan, N.; Umeakunne, K.; Wallace, T.M.; Diaz, E.E.; Rosado, K.E.; Pascal, R.R.; Galloway, J.R.; Wilcox, J.N.; Leader, L.M. Distribution of the H+/peptide transporter PepT1 in human intestine: Up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am. J. Clin. Nutr., 2002, 75(5), 922-930.
[http://dx.doi.org/10.1093/ajcn/75.5.922] [PMID: 11976168]
[http://dx.doi.org/10.1093/ajcn/75.5.922] [PMID: 11976168]
[15]
Merlin, D.; Si-Tahar, M.; Sitaraman, S.V.; Eastburn, K.; Williams, I.; Liu, X.; Hediger, M.A.; Madara, J.L. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: Transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology, 2001, 120(7), 1666-1679.
[http://dx.doi.org/10.1053/gast.2001.24845] [PMID: 11375948]
[http://dx.doi.org/10.1053/gast.2001.24845] [PMID: 11375948]
[16]
Walker, D.; Thwaites, D.T.; Simmons, N.L.; Gilbert, H.J.; Hirst, B.H. Substrate upregulation of the human small intestinal peptide transporter, hPepT1. J. Physiol., 1998, 507(Pt 3), 697-706.
[http://dx.doi.org/10.1111/j.1469-7793.1998.697bs.x]
[http://dx.doi.org/10.1111/j.1469-7793.1998.697bs.x]
[17]
Adibi, S.A. Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(5), G779-G788.
[http://dx.doi.org/10.1152/ajpgi.00056.2003] [PMID: 14561585]
[http://dx.doi.org/10.1152/ajpgi.00056.2003] [PMID: 14561585]
[18]
Shiraga, T.; Miyamoto, K.; Tanaka, H.; Yamamoto, H.; Taketani, Y.; Morita, K.; Tamai, I.; Tsuji, A.; Takeda, E. Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/Peptide transporter PepT1. Gastroenterology, 1999, 116(2), 354-362.
[http://dx.doi.org/10.1016/S0016-5085(99)70132-0] [PMID: 9922316]
[http://dx.doi.org/10.1016/S0016-5085(99)70132-0] [PMID: 9922316]
[19]
Inoue, M.; Terada, T.; Okuda, M.; Inui, K. Regulation of human peptide transporter 1 (PEPT1) in gastric cancer cells by anticancer drugs. Cancer Lett., 2005, 230(1), 72-80.
[http://dx.doi.org/10.1016/j.canlet.2004.12.023] [PMID: 16253763]
[http://dx.doi.org/10.1016/j.canlet.2004.12.023] [PMID: 16253763]
[20]
Ashida, K.; Katsura, T.; Motohashi, H.; Saito, H.; Inui, K. Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(4), G617-G623.
[http://dx.doi.org/10.1152/ajpgi.00344.2001] [PMID: 11897620]
[http://dx.doi.org/10.1152/ajpgi.00344.2001] [PMID: 11897620]
[21]
Nielsen, C.U.; Amstrup, J.; Steffansen, B.; Frokjaer, S.; Brodin, B. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(1), G191-G199.
[http://dx.doi.org/10.1152/ajpgi.2001.281.1.G191] [PMID: 11408272]
[http://dx.doi.org/10.1152/ajpgi.2001.281.1.G191] [PMID: 11408272]
[22]
Iwao, T.; Toyota, M.; Miyagawa, Y.; Okita, H.; Kiyokawa, N.; Akutsu, H.; Umezawa, A.; Nagata, K.; Matsunaga, T. Differentiation of human induced pluripotent stem cells into functional enterocyte-like cells using a simple method. Drug Metab. Pharmacokinet., 2014, 29(1), 44-51.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RG-005] [PMID: 23822979]
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RG-005] [PMID: 23822979]
[23]
Sun, B.W.; Zhao, X.C.; Wang, G.J.; Li, N.; Li, J.S. Changes of biological functions of dipeptide transporter (PepT1) and hormonal regulation in severe scald rats. World J. Gastroenterol., 2003, 9(12), 2782-2785.
[http://dx.doi.org/10.3748/wjg.v9.i12.2782] [PMID: 14669333]
[http://dx.doi.org/10.3748/wjg.v9.i12.2782] [PMID: 14669333]
[24]
Geillinger, K.E.; Kipp, A.P.; Schink, K.; Röder, P.V.; Spanier, B.; Daniel, H. Nrf2 regulates the expression of the peptide transporter PEPT1 in the human colon carcinoma cell line Caco-2. Biochim. Biophys. Acta, 2014, 1840(6), 1747-1754.
[http://dx.doi.org/10.1016/j.bbagen.2013.12.026] [PMID: 24380877]
[http://dx.doi.org/10.1016/j.bbagen.2013.12.026] [PMID: 24380877]
[25]
Pieri, M.; Christian, H.C.; Wilkins, R.J.; Boyd, C.A.; Meredith, D. The apical (hPepT1) and basolateral peptide transport systems of Caco-2 cells are regulated by AMP-activated protein kinase. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(1), G136-G143.
[http://dx.doi.org/10.1152/ajpgi.00014.2010] [PMID: 20430871]
[http://dx.doi.org/10.1152/ajpgi.00014.2010] [PMID: 20430871]
[26]
Liu, J.; Shi, B.; Shi, K.; Ma, G.; Zhang, H.; Lou, X.; Liu, H.; Wan, S.; Liang, D. Ghrelin upregulates PepT1 activity in the small intestine epithelium of rats with sepsis. Biomed Pharmacother., 2017, 86, 669-676.
[http://dx.doi.org/10.1016/j.biopha.2016.12.026] [PMID: 28038428]
[http://dx.doi.org/10.1016/j.biopha.2016.12.026] [PMID: 28038428]
[27]
Warsi, J.; Elvira, B.; Bissinger, R.; Shumilina, E.; Hosseinzadeh, Z.; Lang, F. Downregulation of peptide transporters PEPT1 and PEPT2 by oxidative stress responsive kinase OSR1. Kidney Blood Press. Res., 2014, 39(6), 591-599.
[http://dx.doi.org/10.1159/000368469] [PMID: 25531100]
[http://dx.doi.org/10.1159/000368469] [PMID: 25531100]
[28]
Ihara, T.; Tsujikawa, T.; Fujiyama, Y.; Bamba, T. Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion, 2000, 61(1), 59-67.
[http://dx.doi.org/10.1159/000007736] [PMID: 10671775]
[http://dx.doi.org/10.1159/000007736] [PMID: 10671775]
[29]
Dalmasso, G.; Nguyen, H.T.; Yan, Y.; Laroui, H.; Charania, M.A.; Obertone, T.S.; Sitaraman, S.V.; Merlin, D. MicroRNA-92b regulates expression of the oligopeptide transporter PepT1 in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(1), G52-G59.
[http://dx.doi.org/10.1152/ajpgi.00394.2010] [PMID: 21030610]
[http://dx.doi.org/10.1152/ajpgi.00394.2010] [PMID: 21030610]
[30]
Dai, X.; Chen, X.; Chen, Q.; Shi, L.; Liang, H.; Zhou, Z.; Liu, Q.; Pang, W.; Hou, D.; Wang, C.; Zen, K.; Yuan, Y.; Zhang, C.Y.; Xia, L. Microrna-193a-3p reduces intestinal inflammation in response to microbiota via down-regulation of colonic pept1. J. Biol. Chem., 2015, 290(26), 16099-16115.
[http://dx.doi.org/10.1074/jbc.M115.659318] [PMID: 25931122]
[http://dx.doi.org/10.1074/jbc.M115.659318] [PMID: 25931122]
[31]
Vavricka, S.R.; Musch, M.W.; Fujiya, M.; Kles, K.; Chang, L.; Eloranta, J.J.; Kullak-Ublick, G.A.; Drabik, K.; Merlin, D.; Chang, E.B. Tumor necrosis factor-alpha and interferon-gamma increase PepT1 expression and activity in the human colon carcinoma cell line Caco-2/bbe and in mouse intestine. Pflugers Arch., 2006, 452(1), 71-80.
[http://dx.doi.org/10.1007/s00424-005-0007-8] [PMID: 16328452]
[http://dx.doi.org/10.1007/s00424-005-0007-8] [PMID: 16328452]
[32]
Viennois, E.; Ingersoll, S.A.; Ayyadurai, S.; Zhao, Y.; Wang, L.; Zhang, M.; Han, M.K.; Garg, P.; Xiao, B.; Merlin, D. Critical role of PepT1 in promoting colitis-associated cancer and therapeutic benefits of the anti-inflammatory PepT1-mediated tripeptide KPV in a murine model. Cell. Mol. Gastroenterol. Hepatol., 2016, 2(3), 340-357.
[http://dx.doi.org/10.1016/j.jcmgh.2016.01.006] [PMID: 27458604]
[http://dx.doi.org/10.1016/j.jcmgh.2016.01.006] [PMID: 27458604]
[33]
Qi, N.; Xiyuan, Y.; Qinling, Y.; Weijie, H.; Dongsheng, Y.; Qi, Z. Quantum dots based near-infrared fluorescent probe for the detection of PepT1 expression in colorectal cancer. J. Chem. Phys. Lett., 2020, 739(C)
[http://dx.doi.org/10.1016/j.cplett.2019.136977]]
[http://dx.doi.org/10.1016/j.cplett.2019.136977]]
[34]
Mitsuoka, K.; Kato, Y.; Miyoshi, S.; Murakami, Y.; Hiraiwa, M.; Kubo, Y.; Nishimura, S.; Tsuji, A. Inhibition of oligopeptide transporter suppress growth of human pancreatic cancer cells. Eur. J. Pharm. Sci., 2010, 40(3), 202-208.
[http://dx.doi.org/10.1016/j.ejps.2010.03.010] [PMID: 20307658]
[http://dx.doi.org/10.1016/j.ejps.2010.03.010] [PMID: 20307658]
[35]
Dai, T.; Li, N.; Zhang, L.; Zhang, Y.; Liu, Q. A new target ligand Ser-Glu for PEPT1-overexpressing cancer imaging. Int. J. Nanomedicine, 2016, 11, 203-212.
[http://dx.doi.org/10.2147/IJN.S97207] [PMID: 26811678]
[http://dx.doi.org/10.2147/IJN.S97207] [PMID: 26811678]
[36]
Mitsuoka, K.; Miyoshi, S.; Kato, Y.; Murakami, Y.; Utsumi, R.; Kubo, Y.; Noda, A.; Nakamura, Y.; Nishimura, S.; Tsuji, A. Cancer detection using a PET tracer, 11C-glycylsarcosine, targeted to H+/peptide transporter. J. Nucl. Med., 2008, 49(4), 615-622.
[http://dx.doi.org/10.2967/jnumed.107.048231] [PMID: 18344442]
[http://dx.doi.org/10.2967/jnumed.107.048231] [PMID: 18344442]
[37]
Xie, Y.; Hu, Y.; Smith, D.E. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid. Br. J. Pharmacol., 2016, 173(1), 167-176.
[http://dx.doi.org/10.1111/bph.13356] [PMID: 26444978]
[http://dx.doi.org/10.1111/bph.13356] [PMID: 26444978]
[38]
Hagiya, Y.; Endo, Y.; Yonemura, Y.; Takahashi, K.; Ishizuka, M.; Abe, F.; Tanaka, T.; Okura, I.; Nakajima, M.; Ishikawa, T.; Ogura, S. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. Photodiagn. Photodyn. Ther., 2012, 9(3), 204-214.
[http://dx.doi.org/10.1016/j.pdpdt.2011.12.004] [PMID: 22959800]
[http://dx.doi.org/10.1016/j.pdpdt.2011.12.004] [PMID: 22959800]
[39]
Nakamura, M.; Nishikawa, J.; Hamabe, K.; Goto, A.; Nishimura, J.; Shibata, H.; Nagao, M.; Sasaki, S.; Hashimoto, S.; Okamoto, T.; Sakaida, I. Preliminary study of photodynamic diagnosis using 5-aminolevulinic acid in gastric and colorectal tumors. World J. Gastroenterol., 2015, 21(21), 6706-6712.
[http://dx.doi.org/10.3748/wjg.v21.i21.6706] [PMID: 26074709]
[http://dx.doi.org/10.3748/wjg.v21.i21.6706] [PMID: 26074709]
[40]
Namikawa, T.; Inoue, K.; Uemura, S.; Shiga, M.; Maeda, H.; Kitagawa, H.; Fukuhara, H.; Kobayashi, M.; Shuin, T.; Hanazaki, K. Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer. J. Surg. Oncol., 2014, 109(3), 213-217.
[http://dx.doi.org/10.1002/jso.23487] [PMID: 24214406]
[http://dx.doi.org/10.1002/jso.23487] [PMID: 24214406]
[41]
Ushimaru, Y.; Fujiwara, Y.; Kishi, K.; Sugimura, K.; Omori, T.; Moon, J.H.; Yanagimoto, Y.; Ohue, M.; Yasui, M.; Takahashi, H.; Kobayashi, S.; Akita, H.; Miyoshi, N.; Tomokuni, A.; Sakon, M.; Yano, M. Prognostic significance of basing treatment strategy on the results of photodynamic diagnosis in advanced gastric cancer. Ann. Surg. Oncol., 2017, 24(4), 983-989.
[http://dx.doi.org/10.1245/s10434-016-5660-y] [PMID: 27822632]
[http://dx.doi.org/10.1245/s10434-016-5660-y] [PMID: 27822632]
[42]
Hagiya, Y.; Fukuhara, H.; Matsumoto, K.; Endo, Y.; Nakajima, M.; Tanaka, T.; Okura, I.; Kurabayashi, A.; Furihata, M.; Inoue, K.; Shuin, T.; Ogura, S. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagn. Photodyn. Ther., 2013, 10(3), 288-295.
[http://dx.doi.org/10.1016/j.pdpdt.2013.02.001] [PMID: 23993855]
[http://dx.doi.org/10.1016/j.pdpdt.2013.02.001] [PMID: 23993855]
[43]
Omoto, K.; Matsuda, R.; Nakai, Y.; Tatsumi, Y.; Nakazawa, T.; Tanaka, Y.; Shida, Y.; Murakami, T.; Nishimura, F.; Nakagawa, I.; Motoyama, Y.; Nakamura, M.; Fujimoto, K.; Hiroyuki, N. Expression of peptide transporter 1 has a positive correlation in protoporphyrin IX accumulation induced by 5-aminolevulinic acid with photodynamic detection of non-small cell lung cancer and metastatic brain tumor specimens originating from non-small cell lung cancer. Photodiagn. Photodyn. Ther., 2019, 25, 309-316.
[http://dx.doi.org/10.1016/j.pdpdt.2019.01.009] [PMID: 30639584]
[http://dx.doi.org/10.1016/j.pdpdt.2019.01.009] [PMID: 30639584]
[44]
Yonemura, Y.; Canbay, E.; Ishibashi, H.; Nishino, E.; Endou, Y.; Sako, S.; Ogura, S. 5-aminolevulinic acid fluorescence in detection of peritoneal metastases. Asian Pac. J. Cancer Prev., 2016, 17(4), 2271-2275.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.2271] [PMID: 27221929]
[http://dx.doi.org/10.7314/APJCP.2016.17.4.2271] [PMID: 27221929]
[45]
Recasens, A.; Munoz, L. Targeting cancer cell dormancy. Trends Pharmacol. Sci., 2019, 40(2), 128-141.
[http://dx.doi.org/10.1016/j.tips.2018.12.004] [PMID: 30612715]
[http://dx.doi.org/10.1016/j.tips.2018.12.004] [PMID: 30612715]
[46]
Endo, H.; Okuyama, H.; Ohue, M.; Inoue, M. Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia. PLoS One, 2014, 9(6)e98858
[http://dx.doi.org/10.1371/journal.pone.0098858] [PMID: 24905002]
[http://dx.doi.org/10.1371/journal.pone.0098858] [PMID: 24905002]
[47]
Marx, V. How to pull the blanket off dormant cancer cells. Nat. Methods, 2018, 15(4), 249-252.
[http://dx.doi.org/10.1038/nmeth.4640] [PMID: 29614065]
[http://dx.doi.org/10.1038/nmeth.4640] [PMID: 29614065]
[48]
Nakayama, T.; Otsuka, S.; Kobayashi, T.; Okajima, H.; Matsumoto, K.; Hagiya, Y.; Inoue, K.; Shuin, T.; Nakajima, M.; Tanaka, T.; Ogura, S.I. Dormant cancer cells accumulate high protoporphyrin IX levels and are sensitive to 5- aminolevulinic acid-based photodynamic therapy. Sci. Rep., 2016, 6 36478
[http://dx.doi.org/10.1038/srep36478] [PMID: 27857072]
[http://dx.doi.org/10.1038/srep36478] [PMID: 27857072]