Review Article

Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases

Author(s): Ashi Mannan, Thakur Gurjeet Singh*, Varinder Singh, Nikhil Garg, Amarjot Kaur and Manjinder Singh

Volume 23, Issue 3, 2022

Published on: 07 July, 2021

Page: [286 - 310] Pages: 25

DOI: 10.2174/1389450122666210707120256

Price: $65

Abstract

Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO’s hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as a potential treatment for neurological diseases.

Keywords: Flavoenzyme, monoamine oxidase inhibitors, apoptosis, neurological diseases, alzheimer’s disease, parkinson’sdisease, oxidative stress.

Graphical Abstract

[1]
Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A. Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 2009; 48(20): 4220-30.
[http://dx.doi.org/10.1021/bi900413g] [PMID: 19371079]
[2]
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol 2016; 7: 340.
[http://dx.doi.org/10.3389/fphar.2016.00340] [PMID: 27803666]
[3]
Riederer P, Lachenmayer L, Laux G. Clinical applications of MAO-inhibitors. Curr Med Chem 2004; 11(15): 2033-43.
[http://dx.doi.org/10.2174/0929867043364775] [PMID: 15279566]
[4]
Wang CC, Borchert A, Ugun-Klusek A, et al. Monoamine oxidase a expression is vital for embryonic brain development by modulating developmental apoptosis. J Biol Chem 2011; 286(32): 28322-30.
[http://dx.doi.org/10.1074/jbc.M111.241422] [PMID: 21697081]
[5]
Shih JC. Monoamine oxidase isoenzymes: genes, functions and targets for behavior and cancer therapy. J Neural Transm (Vienna) 2018; 125(11): 1553-66.
[http://dx.doi.org/10.1007/s00702-018-1927-8] [PMID: 30259128]
[6]
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 2005; 102(36): 12684-9.
[http://dx.doi.org/10.1073/pnas.0505975102] [PMID: 16129825]
[7]
Li M, Binda C, Mattevi A, Edmondson DE. Functional role of the “aromatic cage” in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins. Biochemistry 2006; 45(15): 4775-84.
[http://dx.doi.org/10.1021/bi051847g] [PMID: 16605246]
[8]
Kurian MA, Gissen P, Smith M, Heales S Jr, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 2011; 10(8): 721-33.
[http://dx.doi.org/10.1016/S1474-4422(11)70141-7] [PMID: 21777827]
[9]
Naoi M, Maruyama W, Akao Y, Yi H, Yamaoka Y. Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neuroprotection. J Neural Transm Suppl 2006; 71(71): 67-77.
[http://dx.doi.org/10.1007/978-3-211-33328-0_8] [PMID: 17447417]
[10]
Zheng H, Youdim MB, Fridkin M. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy. ACS Chem Biol 2010; 5(6): 603-10.
[http://dx.doi.org/10.1021/cb900264w] [PMID: 20455574]
[11]
Gaweska H, Fitzpatrick PF. Structures and mechanism of the monoamine oxidase family. Biomol Concepts 2011; 2(5): 365-77.
[http://dx.doi.org/10.1515/BMC.2011.030] [PMID: 22022344]
[12]
Ma J, Yoshimura M, Yamashita E, Nakagawa A, Ito A, Tsukihara T. Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors. J Mol Biol 2004; 338(1): 103-14.
[http://dx.doi.org/10.1016/j.jmb.2004.02.032] [PMID: 15050826]
[13]
Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 2003; 100(17): 9750-5.
[http://dx.doi.org/10.1073/pnas.1633804100] [PMID: 12913124]
[14]
Alieva I, Mustafayeva N, Gojayev N. Conformation analysis of the N-terminal sequence Met1-Val60 of the tyrosine hydroxylase. J Mol Struct 2006; 785: 76-84.
[http://dx.doi.org/10.1016/j.molstruc.2005.09.026]
[15]
Youdim MB, Lavie L. Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson’s disease. Life Sci 1994; 55(25-26): 2077-82.
[http://dx.doi.org/10.1016/0024-3205(94)00388-2] [PMID: 7527888]
[16]
Youdim MB, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 2006; 147(Suppl. 1): S287-96.
[http://dx.doi.org/10.1038/sj.bjp.0706464] [PMID: 16402116]
[17]
Cummings JL. Lewy body diseases with dementia: pathophysiology and treatment. Brain Cogn 1995; 28(3): 266-80.
[http://dx.doi.org/10.1006/brcg.1995.1257] [PMID: 8546854]
[18]
Drozak J, Kozłowski M. [Monoamine oxidase as a target for drug action]. Postepy Hig Med Dosw 2006; 60: 498-515.
[PMID: 17060892]
[19]
Siddiqui A, Mallajosyula JK, Rane A, Andersen JK. Ability to delay neuropathological events associated with astrocytic MAO-B increase in a Parkinsonian mouse model: implications for early intervention on disease progression. Neurobiol Dis 2011; 43(2): 527-32.
[http://dx.doi.org/10.1016/j.nbd.2010.12.014] [PMID: 21809503]
[20]
Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: A relevant approach in epilepsy. Mitochondrion 2021; 58: 213-26.
[http://dx.doi.org/10.1016/j.mito.2021.03.009] [PMID: 33775871]
[21]
Gregersen N, Bross P. Protein misfolding and cellular stress: an overview. Methods Mol Biol 2010; 648: 3-23.
[http://dx.doi.org/10.1007/978-1-60761-756-3_1] [PMID: 20700702]
[22]
Kang SS, Ahn EH, Zhang Z, et al. α-Synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson’s disease. EMBO J 2018; 37(12): e98878.
[http://dx.doi.org/10.15252/embj.201798878] [PMID: 29769405]
[23]
Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 2020; 18: 207-19.
[http://dx.doi.org/10.1016/j.csbj.2019.12.013] [PMID: 31993111]
[24]
Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 2010; 16(25): 2766-78.
[http://dx.doi.org/10.2174/138161210793176572] [PMID: 20698820]
[25]
Salim S. Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther 2017; 360(1): 201-5.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[26]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev 2017; 2017: 8416763.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[27]
Bielecka AM, Paul-Samojedny M, Obuchowicz E. Moclobemide exerts anti-inflammatory effect in lipopolysaccharide-activated primary mixed glial cell culture. Naunyn Schmiedebergs Arch Pharmacol 2010; 382(5-6): 409-17.
[http://dx.doi.org/10.1007/s00210-010-0535-4] [PMID: 20811738]
[28]
Lin YC, Chang YT, Campbell M, et al. MAOA-a novel decision maker of apoptosis and autophagy in hormone refractory neuroendocrine prostate cancer cells. Sci Rep 2017; 7: 46338.
[http://dx.doi.org/10.1038/srep46338] [PMID: 28402333]
[29]
Weinstock M, Luques L, Poltyrev T, Bejar C, Shoham S. Ladostigil prevents age-related glial activation and spatial memory deficits in rats. Neurobiol Aging 2011; 32(6): 1069-78.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.06.004] [PMID: 19625104]
[30]
Rodríguez S, Ito T, He XJ, Uchida K, Nakayama H. Resistance of the golden hamster to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity is not only related with low levels of cerebral monoamine oxidase-B. Exp Toxicol Pathol 2013; 65(1-2): 127-33.
[http://dx.doi.org/10.1016/j.etp.2011.06.010] [PMID: 21795029]
[31]
Tapia-González S, Giráldez-Pérez RM, Cuartero MI, et al. Dopamine and α-synuclein dysfunction in Smad3 null mice. Mol Neurodegener 2011; 6: 72.
[http://dx.doi.org/10.1186/1750-1326-6-72] [PMID: 21995845]
[32]
Sharma T, Kaur D, Grewal AK, Singh TG. Therapies modulating insulin resistance in Parkinson’s disease: A cross talk. Neurosci Lett 2021; 749: 135754.
[http://dx.doi.org/10.1016/j.neulet.2021.135754] [PMID: 33610666]
[33]
Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer's disease. Biomed Pharmacother 2020; 129: 110373.
[34]
Wąsik A, Romańska I, Zelek-Molik A, Antkiewicz-Michaluk L. Multiple administration of endogenous amines TIQ and 1MeTIQ protects against a 6-OHDA-induced essential fall of dopamine release in the rat striatum: In vivo microdialysis study. Neurotox Res 2018; 33(3): 523-31.
[http://dx.doi.org/10.1007/s12640-017-9824-8] [PMID: 29076060]
[35]
Gomez-Lazaro M, Galindo MF, Concannon CG, et al. 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 2008; 104(6): 1599-612.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05115.x] [PMID: 17996028]
[36]
Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J Alzheimers Dis 2017; 57(4): 1105-21.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[37]
Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 2018; 20(7): 755-65.
[http://dx.doi.org/10.1038/s41556-018-0133-0] [PMID: 29950571]
[38]
Alavi Naini SM, Soussi-Yanicostas N. Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? Oxid Med Cell Longev 2015; 2015: 151979.
[http://dx.doi.org/10.1155/2015/151979] [PMID: 26576216]
[39]
Borroni E, Bohrmann B, Grueninger F, et al. Sembragiline: A Novel, Selective Monoamine Oxidase Type B Inhibitor for the Treatment of Alzheimer’s Disease. J Pharmacol Exp Ther 2017; 362(3): 413-23.
[http://dx.doi.org/10.1124/jpet.117.241653] [PMID: 28642233]
[40]
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98(2): 813-80.
[http://dx.doi.org/10.1152/physrev.00011.2017] [PMID: 29488822]
[41]
Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Oxid Med Cell Longev 2016; 2016: 8590578.
[http://dx.doi.org/10.1155/2016/8590578] [PMID: 28116038]
[42]
Rehni AK, Singh TG, Singh N, Arora S. Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine H1 receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 2010; 381(1): 11-9.
[http://dx.doi.org/10.1007/s00210-009-0476-y] [PMID: 20012267]
[43]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[44]
Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer’s disease. Life Sci 2020; 262: 118401.
[http://dx.doi.org/10.1016/j.lfs.2020.118401] [PMID: 32926928]
[45]
Sharma VK, Singh TG. Navigating Alzheimer’s disease via Chronic Stress: The Role of Glucocorticoids. Curr Drug Targets 2020; 21(5): 433-44.
[46]
Sharma VK, Mehta V, Singh TG. Alzheimer’s disorder: Epigenetic connection and associated risk factors. Curr Neuropharmacol 2020; 18(8): 740-53.
[47]
Quartey MO, Nyarko JNK, Pennington PR, et al. Alzheimer Disease and Selected Risk Factors Disrupt a Co-regulation of Monoamine Oxidase-A/B in the Hippocampus, but Not in the Cortex. Front Neurosci 2018; 12: 419.
[http://dx.doi.org/10.3389/fnins.2018.00419] [PMID: 29997470]
[48]
Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol Med Rep 2014; 9(5): 1533-41.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[49]
Parnetti L, Reboldi GP, Santucci C, et al. Platelet MAO-B activity as a marker of behavioural characteristics in dementia disorders. Aging (Milano) 1994; 6(3): 201-7.
[http://dx.doi.org/10.1007/BF03324240] [PMID: 7993928]
[50]
Sturza A, Popoiu CM, Ionică M, et al. Monoamine oxidase-related vascular oxidative stress in diseases associated with inflammatory burden. Oxid Med Cell Longev 2019; 2019
[http://dx.doi.org/10.1155/2019/8954201]
[51]
Youdim MB. Multi target neuroprotective and neurorestorative anti-Parkinson and anti-Alzheimer drugs ladostigil and m30 derived from rasagiline. Exp Neurobiol 2013; 22(1): 1-10.
[http://dx.doi.org/10.5607/en.2013.22.1.1] [PMID: 23585716]
[52]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34: 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[53]
Wenzel TJ, Klegeris A. Novel multi-target directed ligand-based strategies for reducing neuroinflammation in Alzheimer’s disease. Life Sci 2018; 207: 314-22.
[http://dx.doi.org/10.1016/j.lfs.2018.06.025] [PMID: 29940242]
[54]
Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018; 23(2): 250.
[http://dx.doi.org/10.3390/molecules23020250] [PMID: 29382051]
[55]
Weinstock M, Bejar C, Wang RH, et al. TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. J Neural Transm Suppl 2000; 60(60): 157-69.
[http://dx.doi.org/10.1007/978-3-7091-6301-6_10] [PMID: 11205137]
[56]
Kumar B, Dwivedi AR, Sarkar B, et al. 4,6-Diphenylpyrimidine Derivatives as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase for the Treatment of Alzheimer’s Disease. ACS Chem Neurosci 2019; 10(1): 252-65.
[http://dx.doi.org/10.1021/acschemneuro.8b00220] [PMID: 30296051]
[57]
Schedin-Weiss S, Inoue M, Hromadkova L, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res Ther 2017; 9(1): 57.
[http://dx.doi.org/10.1186/s13195-017-0279-1] [PMID: 28764767]
[58]
Avramovich-Tirosh Y, Amit T, Bar-Am O, Zheng H, Fridkin M, Youdim MB. Therapeutic targets and potential of the novel brain- permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer’s disease. J Neurochem 2007; 100(2): 490-502.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04258.x] [PMID: 17144902]
[59]
Park JH, Ju YH, Choi JW, et al. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci Adv 2019; 5(3): eaav0316.
[http://dx.doi.org/10.1126/sciadv.aav0316] [PMID: 30906861]
[60]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3: 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[61]
Kouli A, Torsney KM, Kuan WL. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis.Parkinson’s Disease: Pathogenesis and Clinical Aspects. 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1]
[62]
Eckert LL. Parkinson's disease and a dopamine-derived neurotoxin, 3,4-Dihydroxyphenylacetaldehyde : Implications for proteins, microglia, and neurons 2012.
[63]
Ayano G. Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures. J Mental Dis Treatment 2016; 2(2)
[64]
Petzer JP, Castagnoli N Jr, Schwarzschild MA, Chen JF, Van der Schyf CJ. Dual-target-directed drugs that block monoamine oxidase B and adenosine A(2A) receptors for Parkinson’s disease. Neurotherapeutics 2009; 6(1): 141-51.
[http://dx.doi.org/10.1016/j.nurt.2008.10.035] [PMID: 19110205]
[65]
Nam MH, Park JH, Song HJ, Choi JW, Kim S. KDS2010, a newly developed reversible MAO-B inhibitor, as an effective therapeutic candidate for Parkinson’s disease. bioRevix 2020; 6: 190579.
[66]
Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2018; 125(1): 53-66.
[http://dx.doi.org/10.1007/s00702-017-1709-8] [PMID: 28293733]
[67]
Ulrich S, Ricken R, Adli M. Tranylcypromine in mind (Part I): Review of pharmacology. Eur Neuropsychopharmacol 2017; 27(8): 697-713.
[http://dx.doi.org/10.1016/j.euroneuro.2017.05.007] [PMID: 28655495]
[68]
Ricken R, Ulrich S, Schlattmann P, Adli M. Tranylcypromine in mind (Part II): Review of clinical pharmacology and meta-analysis of controlled studies in depression. Eur Neuropsychopharmacol 2017; 27(8): 714-31.
[http://dx.doi.org/10.1016/j.euroneuro.2017.04.003] [PMID: 28579071]
[69]
Knoll J, Magyar K. Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 1972; 5: 393-408.
[PMID: 5066229]
[70]
Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 2009; 4(6): 461-70.
[http://dx.doi.org/10.1111/j.1747-4949.2009.00387.x] [PMID: 19930058]
[71]
Grewal AK, Singh TG, Singh N. Potential Herbal Drugs For Ischemic Stroke: A Review. Plant Arch 2020; 20(1): 3772-83.
[72]
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci 2015; 16(11): 25959-81.
[http://dx.doi.org/10.3390/ijms161125939] [PMID: 26528968]
[73]
Kimelberg HK, Macvicar BA, Sontheimer H. Anion channels in astrocytes: biophysics, pharmacology, and function. Glia 2006; 54(7): 747-57.
[http://dx.doi.org/10.1002/glia.20423] [PMID: 17006903]
[74]
Grewal AK, Singh N, Singh TG. Effects of Resveratrol Postconditioning on Cerebral Ischemia in mice: Role of the Sirtuin-1 (SIRT1) Pathway. Can J Physiol Pharmacol 2019; 97(11): 1094-1101.
[75]
Kato M, Iwata H, Okamoto M, Ishii T, Narita H. Focal cerebral ischemia-induced escape deficit in rats is ameliorated by a reversible inhibitor of monoamine oxidase-a: implications for a novel animal model of post-stroke depression. Biol Pharm Bull 2000; 23(4): 406-10.
[http://dx.doi.org/10.1248/bpb.23.406] [PMID: 10784417]
[76]
Liu Y, Feng S, Subedi K, Wang H. Attenuation of ischemic stroke-caused brain injury by a monoamine oxidase inhibitor involves improved proteostasis and reduced neuroinflammation. Mol Neurobiol 2020; 57(2): 937-48.
[http://dx.doi.org/10.1007/s12035-019-01788-2] [PMID: 31620993]
[77]
Chand SP, Marwaha R. Anxiety. StatPearls books 2020.
[78]
Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci 2017; 19(2): 93-107.
[http://dx.doi.org/10.31887/DCNS.2017.19.2/bbandelow] [PMID: 28867934]
[79]
Madhav M. Epidemiological study of prevalence of mental disorders in India. Indian J Community Med 2001; 26(4): 10-2.
[80]
Khambaty M, Parikh RM. Cultural aspects of anxiety disorders in India. Dialogues Clin Neurosci 2017; 19(2): 117-26.
[http://dx.doi.org/10.31887/DCNS.2017.19.2/rparikh] [PMID: 28867936]
[81]
Robinson OJ, Vytal K, Cornwell BR, Grillon C. The impact of anxiety upon cognition: perspectives from human threat of shock studies. Front Hum Neurosci 2013; 7: 203.
[http://dx.doi.org/10.3389/fnhum.2013.00203] [PMID: 23730279]
[82]
Bystritsky A, Khalsa SS, Cameron ME, Schiffman J. Current diagnosis and treatment of anxiety disorders. P&T 2013; 38(1): 30-57.
[PMID: 23599668]
[83]
Nikolaus S, Antke C, Beu M, Müller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders--results from in vivo imaging studies. Rev Neurosci 2010; 21(2): 119-39.
[http://dx.doi.org/10.1515/REVNEURO.2010.21.2.119] [PMID: 20614802]
[84]
Sloley BD, Urichuk LJ, Morley P, et al. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 2000; 52(4): 451-9.
[http://dx.doi.org/10.1211/0022357001774075] [PMID: 10813558]
[85]
Guo B, Zheng C, Cai W, et al. Multifunction of Chrysin in Parkinson’s Model: Anti-Neuronal Apoptosis, Neuroprotection via Activation of MEF2D, and Inhibition of Monoamine Oxidase-B. J Agric Food Chem 2016; 64(26): 5324-33.
[http://dx.doi.org/10.1021/acs.jafc.6b01707] [PMID: 27245668]
[86]
Xiao B, Han F, Shi Y. Administration of moclobemide facilitates fear extinction and attenuates anxiety-like behaviors by regulating synaptic-associated proteins in a rat model of post-traumatic stress disorder. Synapse 2020; 74(6): e22146.
[http://dx.doi.org/10.1002/syn.22146] [PMID: 31869485]
[87]
Ma J, Wang F, Yang J, et al. Xiaochaihutang attenuates depressive/anxiety-like behaviors of social isolation-reared mice by regulating monoaminergic system, neurogenesis and BDNF expression. J Ethnopharmacol 2017; 208: 94-104.
[http://dx.doi.org/10.1016/j.jep.2017.07.005] [PMID: 28687505]
[88]
Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6: 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[89]
Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull 2016; 119(1): 87-98.
[http://dx.doi.org/10.1093/bmb/ldw026] [PMID: 27450455]
[90]
Vermeiren Y, Janssens J, Van Dam D, De Deyn PP. Serotonergic dysfunction in amyotrophic lateral sclerosis and parkinson’s disease: Similar mechanisms, dissimilar outcomes. Front Neurosci 2018; 12: 185.
[http://dx.doi.org/10.3389/fnins.2018.00185] [PMID: 29615862]
[91]
Arti AK, Singh M, Arora S, Dhiman S, Satija S, Singh TG. Pharmacotherapy Of Amyotrophic Lateral Sclerosis: An Insight. Plant Arch 2019; 19(2): 1385-97.
[92]
Nopoulos PC. Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci 2016; 18(1): 91-8.
[http://dx.doi.org/10.31887/DCNS.2016.18.1/pnopoulos] [PMID: 27069383]
[93]
Ajitkumar A, De Jesus O. Huntington Disease. StatPearls books 2020.
[94]
Vishwas S, Gulati M, Kapoor B, et al. Expanding the arsenal against Huntington’s disease- Herbal drugs and their nanoformulations. Curr Neuropharmacol 2020.
[http://dx.doi.org/10.2174/1570159X18666201109090824] [PMID: 33167841]
[95]
Ooi J, Hayden MR, Pouladi MA. Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease. Mol Neurobiol 2015; 52(3): 1850-61.
[http://dx.doi.org/10.1007/s12035-014-8974-4] [PMID: 25398695]
[96]
Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 2013; 7: 114.
[http://dx.doi.org/10.3389/fnins.2013.00114] [PMID: 23847463]
[97]
Markianos M, Panas M, Kalfakis N, Vassilopoulos D. Platelet monoamine oxidase activity in subjects tested for Huntington’s disease gene mutation. J Neural Transm (Vienna) 2004; 111(4): 475-83.
[http://dx.doi.org/10.1007/s00702-003-0103-x] [PMID: 15057517]
[98]
Garcia-Miralles M, Ooi J, Ferrari Bardile C, et al. Treatment with the MAO-A inhibitor clorgyline elevates monoamine neurotransmitter levels and improves affective phenotypes in a mouse model of Huntington disease. Exp Neurol 2016; 278: 4-10.
[http://dx.doi.org/10.1016/j.expneurol.2016.01.019] [PMID: 26825854]
[99]
Sidhu G, Marwaha R. Phenelzine. StatPearls books 2020.
[100]
Kiani C. Tranylcypromine: its pharmacology, safety, and efficacy. Am J Psychiatry Resid J 2020; 15: 3-5.
[http://dx.doi.org/10.1176/appi.ajp-rj.2020.150402]
[101]
Finberg JPM. The discovery and development of rasagiline as a new anti-Parkinson medication. J Neural Transm (Vienna) 2020; 127(2): 125-30.
[http://dx.doi.org/10.1007/s00702-020-02142-w] [PMID: 31974721]
[102]
Thull U, Carrupt P-A, Testa B. Pargyline Analogues as Potent, Non-selective Monoamine Oxidase Inhibitors. Pharm Pharmacol Commun 1998; 4: 579-81.
[103]
Riederer P, Müller T. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin Drug Metab Toxicol 2017; 13(2): 233-40.
[http://dx.doi.org/10.1080/17425255.2017.1273901] [PMID: 27998194]
[104]
Kim JH, Son YK, Kim GH, Hwang KH. Xanthoangelol and 4-Hydroxyderricin Are the Major Active Principles of the Inhibitory Activities against Monoamine Oxidases on Angelica keiskei K. Biomol Ther (Seoul) 2013; 21(3): 234-40.
[http://dx.doi.org/10.4062/biomolther.2012.100] [PMID: 24265870]
[105]
Gaur K, Sharma B. Antidepressants: mechanism of action, toxicity and possible amelioration. J Appl Biotechnol Bioeng 2017; 3: 437-48.
[106]
Weinreb O, Amit T, Bar-Am O, Youdim MB. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 2012; 13(4): 483-94.
[http://dx.doi.org/10.2174/138945012799499794] [PMID: 22280345]
[107]
Wang Y, Sun Y, Guo Y, Wang Z, Huang L, Li X. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer’s disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. J Enzyme Inhib Med Chem 2016; 31(3): 389-97.
[PMID: 25798687]
[108]
Weinreb O, Amit T, Bar-Am O, Youdim MB. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer’s disease. Br J Pharmacol 2016; 173(13): 2080-94.
[http://dx.doi.org/10.1111/bph.13318] [PMID: 26332830]
[109]
Chaurasiya ND, Zhao J, Pandey P, Doerksen RJ, Muhammad I, Tekwani BL. Selective Inhibition of Human Monoamine Oxidase B by Acacetin 7-Methyl Ether Isolated from Turnera diffusa (Damiana). Molecules 2019; 24(4): 810.
[http://dx.doi.org/10.3390/molecules24040810] [PMID: 30813423]
[110]
Bonnet U. Moclobemide: therapeutic use and clinical studies. CNS Drug Rev 2003; 9(1): 97-140.
[http://dx.doi.org/10.1111/j.1527-3458.2003.tb00245.x] [PMID: 12595913]
[111]
Khattab SN, Khalil HH, Bekhit AA, El-Rahman MM, El-Faham A, Albericio F. Synthesis and Preliminary Biological Evaluation of 1,3,5-Triazine Amino Acid Derivatives to Study Their MAO Inhibitors. Molecules 2015; 20(9): 15976-88.
[http://dx.doi.org/10.3390/molecules200915976] [PMID: 26364629]
[112]
Williams T, McCaul M, Schwarzer G, Cipriani A, Stein DJ, Ipser J. Pharmacological treatments for social anxiety disorder in adults: a systematic review and network meta-analysis. Acta Neuropsychiatr 2020; 32(4): 169-76.
[http://dx.doi.org/10.1017/neu.2020.6] [PMID: 32039743]
[113]
Moureau F, Wouters J, Vercauteren DP, et al. A reversible monoamine oxidase inhibitor, toloxatone: structural, and electronic properties. Eur J Med Chem 1992; 27: 939-48.
[http://dx.doi.org/10.1016/0223-5234(92)90026-W]
[114]
Entzeroth M, Ratty AK. Monoamine Oxidase Inhibitors: revisiting a therapeutic principle. OJD 2017; 6: 31-68.
[115]
Reyes-Parada M, Iturriaga-Vasquez P, Cassels BK. Amphetamine derivatives as monoamine oxidase inhibitors. Front Pharmacol 2020; 10: 1590.
[http://dx.doi.org/10.3389/fphar.2019.01590] [PMID: 32038257]
[116]
White HL, Ascher JA. Preclinical and early clinical studies with BW 1370U87, a reversible competitive MAO-A inhibitor. Clin Neuropharmacol 1992; 15(Suppl. 1 Pt A): 343A-4A.
[http://dx.doi.org/10.1097/00002826-199201001-00178] [PMID: 1354041]
[117]
Kilpatrick IC, Traut M, Heal DJ. Monoamine oxidase inhibition is unlikely to be relevant to the risks associated with phentermine and fenfluramine: a comparison with their abilities to evoke monoamine release. Int J Obes Relat Metab Disord 2001; 25(10): 1454-8.
[http://dx.doi.org/10.1038/sj.ijo.0801732] [PMID: 11673765]
[118]
Zheng H, Amit T, Bar-Am O, Fridkin M, Youdim MB, Mandel SA. From anti-Parkinson’s drug rasagiline to novel multitarget iron chelators with acetylcholinesterase and monoamine oxidase inhibitory and neuroprotective properties for Alzheimer’s disease. J Alzheimers Dis 2012; 30(1): 1-16.
[http://dx.doi.org/10.3233/JAD-2012-120013] [PMID: 22387411]
[119]
Ramsay RR, Albreht A. Kinetics, mechanism, and inhibition of monoamine oxidase. J Neural Transm (Vienna) 2018; 125(11): 1659-83.
[http://dx.doi.org/10.1007/s00702-018-1861-9] [PMID: 29516165]
[120]
Berlin I, Aubin HJ, Pedarriosse AM, Rames A, Lancrenon S, Lagrue G. Lazabemide, a selective, reversible monoamine oxidase B inhibitor, as an aid to smoking cessation. Addiction 2002; 97(10): 1347-54.
[http://dx.doi.org/10.1046/j.1360-0443.2002.00258.x] [PMID: 12359039]
[121]
Keller HH, Kettler R, Keller G, Da Prada M. Short-acting novel MAO inhibitors: in vitro evidence for the reversibility of MAO inhibition by moclobemide and Ro 16-6491. Naunyn Schmiedebergs Arch Pharmacol 1987; 335(1): 12-20.
[http://dx.doi.org/10.1007/BF00165029] [PMID: 3574489]
[122]
Blair HA, Dhillon S. Safinamide: A Review in Parkinson’s Disease. CNS Drugs 2017; 31(2): 169-76.
[http://dx.doi.org/10.1007/s40263-017-0408-1] [PMID: 28110399]
[123]
Nave S, Doody RS, Boada M, et al. Sembragiline in Moderate Alzheimer’s Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase II Trial (MAyflOwer RoAD). J Alzheimers Dis 2017; 58(4): 1217-28.
[http://dx.doi.org/10.3233/JAD-161309] [PMID: 28550255]
[124]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[125]
Larit F, Elokely KM, Chaurasiya ND, et al. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine 2018; 40: 27-36.
[http://dx.doi.org/10.1016/j.phymed.2017.12.032] [PMID: 29496172]
[126]
Batiha GES, Beshbishy AM, Ikram M, et al. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020; 9(3): 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[127]
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules 2019; 10(1): 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[128]
Viña D, Serra S, Lamela M, Delogu G. Herbal natural products as a source of monoamine oxidase inhibitors: a review. Curr Top Med Chem 2012; 12(20): 2131-44.
[http://dx.doi.org/10.2174/156802612805219996] [PMID: 23231392]
[129]
Okhuarobo A, Falodun JE, Erharuyi O, Imieje V, Falodun A, Langer P. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pac J Trop Dis 2014; 4: 213-22.
[http://dx.doi.org/10.1016/S2222-1808(14)60509-0]
[130]
Masibo M, He Q. Major mango polyphenols and their potential significance to human health. Compr Rev Food Sci Food Saf 2008; 7(4): 309-19.
[http://dx.doi.org/10.1111/j.1541-4337.2008.00047.x] [PMID: 33467788]
[131]
Panda S, Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors 2007; 31(3-4): 201-10.
[http://dx.doi.org/10.1002/biof.5520310307] [PMID: 18997283]
[132]
Chimenti F, Cottiglia F, Bonsignore L, et al. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod 2006; 69(6): 945-9.
[http://dx.doi.org/10.1021/np060015w] [PMID: 16792415]
[133]
Saaby L, Rasmussen HB, Jäger AK. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J Ethnopharmacol 2009; 121(1): 178-81.
[http://dx.doi.org/10.1016/j.jep.2008.10.012] [PMID: 19013512]
[134]
Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: A key emphasis to Its anticancer potential. Molecules 2019; 24(12): 2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[135]
Ryu SY, Han YN, Han BH. Monoamine oxidase-A inhibitors from medicinal plants. Arch Pharm Res 1988; 11: 230-9.
[http://dx.doi.org/10.1007/BF02861314]
[136]
Han YN, Noh DB, Han DS. Studies on the monoamine oxidase inhibitors of medicinal plants I. Isolation of MAO-B inhibitors from Chrysanthemum indicum. Arch Pharm Res 1987; 10: 142.
[http://dx.doi.org/10.1007/BF02857780]
[137]
Dhiman P, Malik N, Sobarzo-Sánchez E, Uriarte E, Khatkar A. Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders. Molecules 2019; 24(3): 418.
[http://dx.doi.org/10.3390/molecules24030418] [PMID: 30678358]
[138]
Hou WC, Lin RD, Chen CT, Lee MH. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J Ethnopharmacol 2005; 100(1-2): 216-20.
[http://dx.doi.org/10.1016/j.jep.2005.03.017] [PMID: 15890481]
[139]
Oh JM, Jang HJ, Kim WJ, et al. Calycosin and 8-O-methylretusin isolated from Maackia amurensis as potent and selective reversible inhibitors of human monoamine oxidase-B. Int J Biol Macromol 2020; 151: 441-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.144] [PMID: 32087226]
[140]
Hwang JS, Lee SA, Hong SS, et al. Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch Pharm Res 2005; 28(2): 190-4.
[http://dx.doi.org/10.1007/BF02977714] [PMID: 15789750]
[141]
Han XH, Hong SS, Hwang JS, Lee MK, Hwang BY, Ro JS. Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 2007; 30(1): 13-7.
[http://dx.doi.org/10.1007/BF02977772] [PMID: 17328236]
[142]
Haraguchi H, Tanaka Y, Kabbash A, Fujioka T, Ishizu T, Yagi A. Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry 2004; 65(15): 2255-60.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.025] [PMID: 15587710]
[143]
Zarmouh NO, Messeha SS, Mateeva N, et al. The Antiproliferative Effects of Flavonoid MAO Inhibitors on Prostate Cancer Cells. Molecules 2020; 25(9): 2257.
[http://dx.doi.org/10.3390/molecules25092257] [PMID: 32403270]
[144]
Recalde-Gil MA, Klein-Júnior LC, Passos CDS, et al. Monoamine Oxidase Inhibitory Activity of Biflavonoids from Branches of Garcinia gardneriana (Clusiaceae). Nat Prod Commun 2017; 12(4): 505-8.
[http://dx.doi.org/10.1177/1934578X1701200411] [PMID: 30520583]
[145]
Lee HW, Ryu HW, Kang MG, et al. Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int J Biol Macromol 2017; 97: 598-605.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.080] [PMID: 28109809]
[146]
Baek SC, Park MH, Ryu HW, et al. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg Chem 2019; 83: 317-25.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.051] [PMID: 30396116]
[147]
Girdhar S, Girdhar A, Verma SK, Lather V, Pandita D. Plant derived alkaloids in major neurodegenerative diseases: from animal models to clinical trials. J Ayu Herb Med 2015; 1: 91-100.
[148]
Hussain G, Rasul A, Anwar H, et al. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int J Biol Sci 2018; 14(3): 341-57.
[http://dx.doi.org/10.7150/ijbs.23247] [PMID: 29559851]
[149]
Cao R, Peng W, Wang Z, Xu A. β-Carboline alkaloids: biochemical and pharmacological functions. Curr Med Chem 2007; 14(4): 479-500.
[http://dx.doi.org/10.2174/092986707779940998] [PMID: 17305548]
[150]
Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H. beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol 2010; 48(3): 839-45.
[http://dx.doi.org/10.1016/j.fct.2009.12.019] [PMID: 20036304]
[151]
Kong LD, Cheng CH, Tan RX. Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J Ethnopharmacol 2004; 91(2-3): 351-5.
[http://dx.doi.org/10.1016/j.jep.2004.01.013] [PMID: 15120460]
[152]
Samoylenko V, Rahman MM, Tekwani BL, et al. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. J Ethnopharmacol 2010; 127(2): 357-67.
[http://dx.doi.org/10.1016/j.jep.2009.10.030] [PMID: 19879939]
[153]
Dos Santos Passos C, Soldi TC, Torres Abib R, et al. Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata. J Enzyme Inhib Med Chem 2013; 28(3): 611-8.
[http://dx.doi.org/10.3109/14756366.2012.666536] [PMID: 22424181]
[154]
Kong LD, Cheng CH, Tan RX. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med 2001; 67(1): 74-6.
[http://dx.doi.org/10.1055/s-2001-10874] [PMID: 11270727]
[155]
Ro JS, Lee SS, Lee KS, Lee MK. Inhibition of type A monoamine oxidase by coptisine in mouse brain. Life Sci 2001; 70(6): 639-45.
[http://dx.doi.org/10.1016/S0024-3205(01)01437-0] [PMID: 11833714]
[156]
Han XH, Hong SS, Lee D, et al. Quinolone alkaloids from evodiae fructus and their inhibitory effects on monoamine oxidase. Arch Pharm Res 2007; 30(4): 397-401.
[http://dx.doi.org/10.1007/BF02980210] [PMID: 17489352]
[157]
Lee SA, Hwang JS, Han XH, et al. Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch Pharm Res 2008; 31(6): 679-83.
[http://dx.doi.org/10.1007/s12272-001-1212-7] [PMID: 18563347]
[158]
Al-Baghdadi OB, Prater NI, Van der Schyf CJ, Geldenhuys WJ. Inhibition of monoamine oxidase by derivatives of piperine, an alkaloid from the pepper plant Piper nigrum, for possible use in Parkinson’s disease. Bioorg Med Chem Lett 2012; 22(23): 7183-8.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.056] [PMID: 23102654]
[159]
Baek SC, Ryu HW, Kang MG, et al. Selective inhibition of monoamine oxidase A by chelerythrine, an isoquinoline alkaloid. Bioorg Med Chem Lett 2018; 28(14): 2403-7.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.023] [PMID: 29925480]
[160]
Diderot NT, Etienne NST. Xanthones as therapeutic agents: chemistry and pharmacology. Advances phytomed 2006; 2: 273-98.
[161]
Di Matteo V, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord 2003; 2(2): 95-107.
[http://dx.doi.org/10.2174/1568007033482959] [PMID: 12769802]
[162]
Rocha L, Marston A, Kaplan MAC, et al. An antifungal gamma-pyrone and xanthones with monoamine oxidase inhibitory activity from Hypericum brasiliense. Phytochemistry 1994; 36(6): 1381-5.
[http://dx.doi.org/10.1016/S0031-9422(00)89727-7] [PMID: 7765428]
[163]
Urbain A, Marston A, Grilo LS, et al. Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 2008; 71(5): 895-7.
[http://dx.doi.org/10.1021/np070690l] [PMID: 18336006]
[164]
Kuder KJ, Załuski M, Schabikowski J, et al. KiećKononowicz K. Novel, dual target-directed annelated xanthine derivatives acting on adenosine receptors and monoamine oxidase B. ChemMedChem 2020; 15(9): 772-86.
[http://dx.doi.org/10.1002/cmdc.201900717] [PMID: 32162782]
[165]
Gnerre C, Thull U, Gaillard P, et al. Natural and Synthetic Xanthones as Monoamine Oxidase Inhibitors: Biological Assay and 3D-QSAR. Helv Chim Acta 2001; 84: 552-70.
[http://dx.doi.org/10.1002/1522-2675(20010321)84:3<552::AID-HLCA552>3.0.CO;2-X]
[166]
Brühlmann C, Marston A, Hostettmann K, Carrupt PA, Testa B. Screening of non-alkaloidal natural compounds as acetylcholinesterase inhibitors. Chem Biodivers 2004; 1(6): 819-29.
[http://dx.doi.org/10.1002/cbdv.200490064] [PMID: 17191882]
[167]
Dimitrov M, Nikolova I, Benbasat N, Kitanov G, Danchev N. Acute toxicity, antidepressive and MAO inhibitory activity of mangiferin isolated from Hypericum aucheri. Biotechnol Biotechnol Equip 2011; 25: 2668-71.
[http://dx.doi.org/10.5504/BBEQ.2011.0099]
[168]
Singh M, Saini B, Singh TG, Chander J, Satija S, Arora S. Design, synthesis and biological evaluation of chalcone based compounds in Alzheimer’s disease. Plant Arch 2019; 19(2): 1317-22.
[169]
Singh M, Sharma P, Joshi P, et al. Chalcones: A Privileged Scaffold with Diverse Biological Activities. Plant Arch 2020; 20(1): 3812-9.
[170]
Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res Int 2013; 2013: 963248.
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[171]
Yusufzai SK, Khan MS, Sulaiman O, Osman H, Lamjin DN. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem Cent J 2018; 12(1): 128.
[http://dx.doi.org/10.1186/s13065-018-0497-z] [PMID: 30515636]
[172]
Jeong SH, Han XH, Hong SS, et al. Monoamine oxidase inhibitory coumarins from the aerial parts of Dictamnus albus. Arch Pharm Res 2006; 29(12): 1119-24.
[http://dx.doi.org/10.1007/BF02969302] [PMID: 17225461]
[173]
Huang M, Xie SS, Jiang N, Lan JS, Kong LY, Wang XB. Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25(3): 508-13.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.034] [PMID: 25542589]
[174]
Jo YS, Huong DTL, Bae K, Lee MK, Kim YH. Monoamine oxidase inhibitory coumarin from Zanthoxylum schinifolium. Planta Med 2002; 68(1): 84-5.
[http://dx.doi.org/10.1055/s-2002-20056] [PMID: 11842339]
[175]
Aydin T, Akincioglu H, Gumustas M, Gulcin I, Kazaz C, Cakir A. human monoamine oxidase (hMAO) A and hMAO B inhibitors from Artemisia dracunculus L. herniarin and skimmin: human mononamine oxidase A and B inhibitors from A. dracunculus L. Z Natforsch C J Biosci 2020; 75(11-12): 459-66.
[http://dx.doi.org/10.1515/znc-2019-0227] [PMID: 32598328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy