Review Article

Oral Semaglutide in the Management of Type 2 DM: Clinical Status and Comparative Analysis

Author(s): Ilora Bandyopadhyay, Sunny Dave, Amita Rai, Madhavan Nampoothiri, Mallikarjuna Rao Chamallamudi and Nitesh Kumar*

Volume 23, Issue 3, 2022

Published on: 24 November, 2021

Page: [311 - 327] Pages: 17

DOI: 10.2174/1389450122666210901125420

Price: $65

Abstract

Background: In the incretin system, Glucagon-like peptide-1 (GLP-1) is a hormone that inhibits the release of glucagon and regulates glucose-dependent insulin secretion. In type 2 diabetes, correcting the impaired incretin system using GLP-1 agonist is a well-defined therapeutic strategy.

Objectives: This review article aims to discuss the mechanism of action, key regulatory events, clinical trials for glycaemic control, and comparative analysis of semaglutide with the second-line antidiabetic drugs.

Description: Semaglutide is a glucagon-like peptide 1 (GLP-1) receptor agonist with enhanced glycaemic control in diabetes patients. In 2019, USFDA approved the first oral GLP-1 receptor agonist, semaglutide, to be administered as a once-daily tablet. Further, recent studies highlight the ability of semaglutide to improve Glycemic control in obese patients with a reduction in body weight. Still, in clinical practice, in the type 2 DM treatment paradigm, the impact of oral semaglutide remains unidentified. This review article discusses the mechanism of action, pharmacodynamics, key regulatory events, and clinical trials regarding glycaemic control.

Conclusion: The review highlights the comparative analysis of semaglutide with the existing second- line drugs for the management of type 2 diabetes mellitus by stressing its benefits and adverse events.

Keywords: Oral Semaglutide, GLP-1 receptor agonist, mechanism of action, type 2 diabetes, glycemic control, incretin system.

« Previous
Graphical Abstract

[1]
Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2014; 2(1): 56-64.
[http://dx.doi.org/10.1016/S2213-8587(13)70112-8] [PMID: 24622669]
[2]
Zimmet PZ, Alberti KGMM. Epidemiology of diabetes-status of a pandemic and issues around metabolic surgery. Diabetes Care 2016; 39(6): 878-83.
[http://dx.doi.org/10.2337/dc16-0273] [PMID: 27222545]
[3]
Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet 2014; 383(9922): 1084-94.
[http://dx.doi.org/10.1016/S0140-6736(13)62219-9] [PMID: 24315621]
[4]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (United Kingdom) 2019; 47: 22-7.
[5]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon) 2014; 42: 698-702.
[http://dx.doi.org/10.1016/j.mpmed.2014.09.007] [PMID: 25568613]
[6]
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5): 1047-53.
[7]
Meuleneire F. Management of diabetic foot ulcers using dressings with safetac®: A review of case studie. Wounds 2008; 4(4): 16-30.
[8]
American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2015; 38: S8-S16.
[9]
Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 2006; 290(3): E550-9.
[http://dx.doi.org/10.1152/ajpendo.00326.2004] [PMID: 16219666]
[10]
Bucheit JD, Pamulapati LG, Carter N, Malloy K, Dixon DL, Sisson EM. Oral semaglutide: A review of the first oral glucagon-like peptide 1 receptor agonist. Diabetes Technol Ther 2020; 22(1): 10-8.
[http://dx.doi.org/10.1089/dia.2019.0185] [PMID: 31436480]
[11]
Kapitza C, Nosek L, Jensen L, Hartvig H, Jensen CB, Flint A. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel. J Clin Pharmacol 2015; 55(5): 497-504.
[http://dx.doi.org/10.1002/jcph.443] [PMID: 25475122]
[12]
Gotfredsen CF, Mølck AM, Thorup I, et al. The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates. Diabetes 2014; 63(7): 2486-97.
[http://dx.doi.org/10.2337/db13-1087] [PMID: 24608440]
[13]
Maguire A, Douglas I, Smeeth L, Thompson M. Pharmacoepidemiol Drug Saf 2007; 16: 228-8.
[14]
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015; 38(1): 140-9.
[http://dx.doi.org/10.2337/dc14-2441] [PMID: 25538310]
[15]
Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne) 2019; 10: 155.
[http://dx.doi.org/10.3389/fendo.2019.00155] [PMID: 31031702]
[16]
Knudsen LB, Nielsen PF, Huusfeldt PO, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 2000; 43(9): 1664-9.
[http://dx.doi.org/10.1021/jm9909645] [PMID: 10794683]
[17]
Hedrington MS, Davis SN. Oral semaglutide for the treatment of type 2 diabetes. Expert Opin Pharmacother 2019; 20(2): 133-41.
[http://dx.doi.org/10.1080/14656566.2018.1552258] [PMID: 30499733]
[18]
FDA. Highlights of prescribing information of ozempic; 2020; pp. 1-51. label (fda.gov)
[19]
FDA. Highlights of Prescribing Information of Rybelsus; 2019. label (fda.gov)
[20]
Nordisk Novo A/S. Victoza (Liraglutide) Full Prescription Information. FDA Packag. Inser. In: 2010; pp. 1-23. Victoza (liraglutide [rDNA origin] injection (fda.gov)
[21]
European Medicines Agency (EMA). Trulicity dulaglutide EPAR 2015; 44: 1-167. TRULICITY, INN-dulaglutide (europa.eu)
[22]
FDA. Cent drug eval res appl number 125469Orig1s000 labeling 2014.
[23]
FDA TANZEUM (albiglutide) for injection, for subcutaneous use Initial U.S. Approval: 2014. FDA-Approved Drugs - Drugs@FDA 2014.
[24]
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87(4): 1409-39.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[25]
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132(6): 2131-57.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[26]
Tolhurst G, Reimann F, Gribble FM. Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol 2009; 587(1): 27-32.
[http://dx.doi.org/10.1113/jphysiol.2008.164012] [PMID: 19001044]
[27]
Thurmond DC. Insulin-regulated glucagon-like peptide-1 release from L cells: actin’ out. Endocrinology 2009; 150(12): 5202-4.
[http://dx.doi.org/10.1210/en.2009-1178] [PMID: 19933397]
[28]
Tian L, Jin T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes 2016; 8(6): 753-65.
[http://dx.doi.org/10.1111/1753-0407.12439] [PMID: 27287542]
[29]
From GP-S, Gribble FM, Williams L, Simpson AK, Reimann F. Diabetes 2003; 52: 1147.
[http://dx.doi.org/10.2337/diabetes.52.5.1147] [PMID: 12716745]
[30]
Gorboulev V, Schürmann A, Vallon V, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61(1): 187-96.
[http://dx.doi.org/10.2337/db11-1029] [PMID: 22124465]
[31]
Reimann F, Gribble FM. Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 2002; 51(9): 2757-63.1: 2757-63.
[http://dx.doi.org/10.2337/diabetes.51.9.2757] [PMID: 12196469]
[32]
Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. Glucose sensing in L cells: a primary cell study. Cell Metab 2008; 8(6): 532-9.
[http://dx.doi.org/10.1016/j.cmet.2008.11.002] [PMID: 19041768]
[33]
Ahead P A. City 2010; 1-31.
[34]
Bortolato A, Doré AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH. Structure of Class B GPCRs: new horizons for drug discovery. Br J Pharmacol 2014; 171(13): 3132-45.
[http://dx.doi.org/10.1111/bph.12689] [PMID: 24628305]
[35]
Mayo KE, Miller LJ, Bataille D, et al. International union of pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 2003; 55(1): 167-94.
[http://dx.doi.org/10.1124/pr.55.1.6] [PMID: 12615957]
[36]
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113(3): 546-93.
[http://dx.doi.org/10.1016/j.pharmthera.2006.11.007] [PMID: 17306374]
[37]
Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother 2018; 108: 952-62.
[http://dx.doi.org/10.1016/j.biopha.2018.08.088] [PMID: 30372907]
[38]
Twarog C, Fattah S, Heade J, Maher S, Fattal E, Brayden DJ. Intestinal permeation enhancers for oral delivery of macromolecules: a comparison between salcaprozate sodium (SNAC) and sodium caprate (C 10). Pharmaceutics 2019; 11(2): 78.
[http://dx.doi.org/10.3390/pharmaceutics11020078]
[39]
Buckley ST, Bækdal TA, Vegge A, et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med 2018; 10(467): eaar7047.
[http://dx.doi.org/10.1126/scitranslmed.aar7047] [PMID: 30429357]
[40]
Hess S, Rotshild V, Hoffman A. Investigation of the enhancing mechanism of sodium N-[8-(2-hydroxybenzoyl)amino]caprylate effect on the intestinal permeability of polar molecules utilizing a voltage clamp method. Eur J Pharm Sci 2005; 25(2-3): 307-12.
[http://dx.doi.org/10.1016/j.ejps.2005.03.003] [PMID: 15911227]
[41]
Baekdal TA, Thomsen M, Kupčová V, Hansen CW, Anderson TW. Pharmacokinetics, safety, and tolerability of oral semaglutide in subjects with hepatic impairment. J Clin Pharmacol 2018; 58(10): 1314-23.
[http://dx.doi.org/10.1002/jcph.1131] [PMID: 29693715]
[42]
Anderson SL, Beutel TR, Trujillo JM. Oral semaglutide in type 2 diabetes. J Diabetes Complications 2020; 34(4): 107520.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107520] [PMID: 31952996]
[43]
Bækdal TA, Borregaard J, Hansen CW, Thomsen M, Anderson TW. Effect of oral semaglutide on the pharmacokinetics of Lisinopril, Warfarin, Digoxin, and metformin in healthy subjects. Clin Pharmacokinet 2019; 58(9): 1193-203.
[http://dx.doi.org/10.1007/s40262-019-00756-2] [PMID: 30945118]
[44]
European Medicines Agency (EMA). Prod Inf
[45]
FDA. Semaglutide Injection. Product Quality Review. Cent DRUG Eval Res Appl NUMBER 209637Orig1s000 Prod Qual Rev 2017. 209637Orig1s000ChemR.pdf fda.gov
[46]
FDA. Semaglutide: clinical pharmacology and biopharmaceutics review(s); 2016. 209637Orig1s000ClinPharmR.pdf fda.gov
[47]
FDA. Highlights of prescribing information 2017. OZEMPIC (semaglutide) injection, for subcutaneous use fda.gov
[48]
European medicines agency (EMA). EPAR-Ozempic (Semaglutide). Summary of product characteristics. 1-73. Ozempic, INN-semaglutide europa.eu
[49]
Pharmaceuticals and Medical Devices Agency (PMDA) Japan. New drug approved in FY 2017. 000232769.pdf pmda.go.jp
[50]
Inc., N. N. C. Ozempic (semaglutide injection) product monograph 2018.
[51]
Canada H. Rybelsus®(semaglutide tablets) Product Monograph. Product information canada.ca
[52]
Therapeutic good adinistration, department of health, australian government. OZEMPIC 1 mg semaglutide (rys) 1.34 mg/mL solution for injection pre-filled pen. TGA Search funnelback.com
[53]
Ahmann AJ, Capehorn M, Charpentier G, et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (sustain 3): A 56-week, open-label, randomized clinical trial. Diabetes Care 2018; 41(2): 258-66.
[http://dx.doi.org/10.2337/dc17-0417] [PMID: 29246950]
[54]
Rodbard HW, Lingvay I, Reed J, et al. Semaglutide added to basal insulin in type 2 diabetes (sustain 5): A randomized, controlled trial. J Clin Endocrinol Metab 2018; 103(6): 2291-301.
[http://dx.doi.org/10.1210/jc.2018-00070] [PMID: 29688502]
[55]
Rosenstock J, Allison D, Birkenfeld AL, et al. JAMA - J Am Med Assoc 2019; 321: 1466-80.
[http://dx.doi.org/10.1001/jama.2019.2942] [PMID: 30903796]
[56]
Coronavirus disease 2019 (COVID-19) Situation Report – 88. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
[57]
FDA. Center for drug evaluation and research. application number: 213051orig1s000 Clinical Review(S). Review (fda.gov)
[58]
EMA. Product information of rybelsus epar product information. Rybelsus, INN-semaglutide (europa.eu)
[59]
Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003; 289(1): 76-9.
[http://dx.doi.org/10.1001/jama.289.1.76] [PMID: 12503980]
[60]
Bradley DP, Kulstad R, Schoeller DA. Exenatide and weight loss. Nutrition 2010; 26(3): 243-9.
[http://dx.doi.org/10.1016/j.nut.2009.07.008] [PMID: 20152707]
[61]
Kanoski SE, Rupprecht LE, Fortin SM, De Jonghe BC, Hayes MR. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology 2012; 62(5-6): 1916-27.
[http://dx.doi.org/10.1016/j.neuropharm.2011.12.022] [PMID: 22227019]
[62]
Monami M, Dicembrini I, Marchionni N, Rotella C M, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Exp Diabetes Res 2012; 2012: 672658.
[63]
Heppner KM, Kirigiti M, Secher A, et al. Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology 2015; 156(1): 255-67.
[http://dx.doi.org/10.1210/en.2014-1675] [PMID: 25380238]
[64]
Hayes MR, De Jonghe BC, Kanoski SE. Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiol Behav 2010; 100(5): 503-10.
[http://dx.doi.org/10.1016/j.physbeh.2010.02.029] [PMID: 20226203]
[65]
Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol 2016; 310(10): R885-95.
[http://dx.doi.org/10.1152/ajpregu.00520.2015] [PMID: 27030669]
[66]
Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol 2018; 9: 900.
[67]
Blundell J, Finlayson G, Axelsen M, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab 2017; 19(9): 1242-51.
[http://dx.doi.org/10.1111/dom.12932] [PMID: 28266779]
[68]
Scott LJ. Empagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs 2014; 74(15): 1769-84.
[http://dx.doi.org/10.1007/s40265-014-0298-1] [PMID: 25274537]
[69]
Frampton JE. Empagliflozin: A review in type 2 diabetes. Drugs 2018; 78(10): 1037-48.
[http://dx.doi.org/10.1007/s40265-018-0937-z] [PMID: 29946963]
[70]
Al Jobori H, Daniele G, Adams J, et al. Empagliflozin treatment is associated with improved β-cell function in type 2 diabetes mellitus. J Clin Endocrinol Metab 2018; 103(4): 1402-7.
[http://dx.doi.org/10.1210/jc.2017-01838] [PMID: 29342295]
[71]
Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2014; 16(5): 457-66.
[http://dx.doi.org/10.1111/dom.12244] [PMID: 24320621]
[72]
Merovci A, Solis-Herrera C, Daniele G, et al. J Clin Invest 2014; 124: 2287.
[http://dx.doi.org/10.1172/JCI76184]
[73]
Röhrborn D, Wronkowitz N, Eckel J. Front Immunol 2015; 6: 1-20.
[http://dx.doi.org/10.3389/fimmu.2015.00386] [PMID: 25657648]
[74]
Gupta V. Glucagon-like peptide-1 analogues: An overview. Indian J Endocrinol Metab 2013; 17(3): 413-21.
[http://dx.doi.org/10.4103/2230-8210.111625] [PMID: 23869296]
[75]
Reutens AT, Shaw JE. Incretin mimetics and enhancers: clinical applications. Aust Prescr 2008; 31: 104-8.
[http://dx.doi.org/10.18773/austprescr.2008.059]
[76]
DeYoung MB, MacConell L, Sarin V, Trautmann M, Herbert P. Encapsulation of exenatide in poly-(D,L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Ther 2011; 13(11): 1145-54.
[http://dx.doi.org/10.1089/dia.2011.0050] [PMID: 21751887]
[77]
Atkinson MA. Chapter 32 – type 1 diabetes mellitus. Thirteenth. Elsevier Inc. 2016.
[78]
Pro.medicin.dk Lantus®. ProMedicinDk 2015; 6
[79]
Foley JE, Jordan J. Weight neutrality with the DPP-4 inhibitor, vildagliptin: mechanistic basis and clinical experience. Vasc Health Risk Manag 2010; 6: 541-8.
[http://dx.doi.org/10.2147/VHRM.S10952] [PMID: 20730070]
[80]
Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs 2019; 79(3): 219-30.
[http://dx.doi.org/10.1007/s40265-019-1057-0] [PMID: 30701480]
[81]
Busch RS, Kane MP. Combination SGLT2 inhibitor and GLP-1 receptor agonist therapy: a complementary approach to the treatment of type 2 diabetes. Postgrad Med 2017; 129(7): 686-97.
[http://dx.doi.org/10.1080/00325481.2017.1342509] [PMID: 28657399]
[82]
Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 2016; 65(5): 1190-5.
[http://dx.doi.org/10.2337/db15-1356] [PMID: 26861783]
[83]
Tsai AG, Bessesen DH. Obesity. Ann Intern Med 2019; 170(5): ITC33-48.
[http://dx.doi.org/10.7326/AITC201903050] [PMID: 30831593]
[84]
Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab 2016; 18(8): 783-94.
[http://dx.doi.org/10.1111/dom.12670] [PMID: 27059700]
[85]
Rodbard HW, Rosenstock J, Canani LH, et al. Oral Semaglutide versus Empagliflozin in patients with type 2 diabetes uncontrolled on metformin: The pioneer 2 trial. Diabetes Care 2019; 42(12): 2272-81.
[http://dx.doi.org/10.2337/dc19-0883] [PMID: 31530666]
[86]
Pratley R, Amod A, Hoff ST, et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 2019; 394(10192): 39-50.
[http://dx.doi.org/10.1016/S0140-6736(19)31271-1] [PMID: 31186120]
[87]
Aroda VR, Rosenstock J, Terauchi Y, et al. PIONEER 1: Randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care 2019; 42(9): 1724-32.
[http://dx.doi.org/10.2337/dc19-0749] [PMID: 31186300]
[88]
Sorli C, Harashima Sichi, Tsoukas G M, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet diabetes endocrinol 2017; 5: 251-60.
[http://dx.doi.org/10.1016/S2213-8587(17)30013-X] [PMID: 28110911]
[89]
Mosenzon O, Blicher TM, Rosenlund S, et al. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol 2019; 7: 515-27.
[http://dx.doi.org/10.1016/S2213-8587(19)30192-5] [PMID: 31189517]
[90]
Einarson TR, Acs A, Ludwig C, Panton UH. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): the ADMA, SDMA and hArg paradoxes. Cardiovasc Diabetol 2018; 17: 1-19.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29301528]
[91]
European Medicines Agency (EMA) EPAR. Trulicity (Dulaglutide) public assessment report. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/trulicity
[92]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[93]
Pearson S, Kietsiriroje N, Ajjan RA. Diabetes. Diabetes Metab Syndr Obes 2019; 12: 2515-29.
[http://dx.doi.org/10.2147/DMSO.S229802] [PMID: 31819577]
[94]
Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019; 381(9): 841-51.
[http://dx.doi.org/10.1056/NEJMoa1901118] [PMID: 31185157]
[95]
Christou GA, Katsiki N, Blundell J, Fruhbeck G, Kiortsis DN. Semaglutide as a promising antiobesity drug. Obes Rev 2019; 20(6): 805-15.
[http://dx.doi.org/10.1111/obr.12839] [PMID: 30768766]
[96]
Xiao Y, Sun L. Semaglutide in weight management. Lancet 2019; 394(10205): 1226.
[http://dx.doi.org/10.1016/S0140-6736(18)33195-7] [PMID: 31591979]
[97]
Carreras-Torres R, Johansson M, Haycock PC, et al. Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018; 361.
[http://dx.doi.org/10.1136/bmj.k1767]
[98]
Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 2010; 153(7): 435-41.
[http://dx.doi.org/10.7326/0003-4819-153-7-201010050-00006] [PMID: 20921542]
[99]
Wilding JPH. Semaglutide in weight management - author’s reply. Lancet 2019; 394(10205): 1226-7.
[http://dx.doi.org/10.1016/S0140-6736(19)31904-X] [PMID: 31591978]
[100]
O’Neil PM, Birkenfeld AL, McGowan B, et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 2018; 392(10148): 637-49.
[http://dx.doi.org/10.1016/S0140-6736(18)31773-2] [PMID: 30122305]
[101]
Kushner RF, Calanna S, Davies M, et al. Semaglutide 2.4 mg for the treatment of obesity: key elements of the step trials 1 to 5. Obesity (Silver Spring) 2020; 28(6): 1050-61.
[http://dx.doi.org/10.1002/oby.22794] [PMID: 32441473]
[102]
Hölscher C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology 2018; 136(Pt B): 251-9.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.040] [PMID: 29402504]
[103]
Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 2006; 9(1): 13-33.
[http://dx.doi.org/10.3233/JAD-2006-9102] [PMID: 16627931]
[104]
Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 2010; 31(2): 224-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.04.002] [PMID: 18479783]
[105]
Talbot K, Wang HY, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012; 122(4): 1316-38.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[106]
Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J Alzheimers Dis 2005; 7(1): 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[107]
Morris JK, Bomhoff GL, Gorres BK, et al. Insulin resistance impairs nigrostriatal dopamine function. Exp Neurol 2011; 231(1): 171-80.
[http://dx.doi.org/10.1016/j.expneurol.2011.06.005] [PMID: 21703262]
[108]
Morris JK, Zhang H, Gupte AA, Bomhoff GL, Stanford JA, Geiger PC. Measures of striatal insulin resistance in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res 2008; 1240: 185-95.
[http://dx.doi.org/10.1016/j.brainres.2008.08.089] [PMID: 18805403]
[109]
Pellecchia MT, Santangelo G, Picillo M, et al. Insulin-like growth factor-1 predicts cognitive functions at 2-year follow-up in early, drug-naïve Parkinson’s disease. Eur J Neurol 2014; 21(5): 802-7.
[http://dx.doi.org/10.1111/ene.12137] [PMID: 23551560]
[110]
Numao A, Suzuki K, Miyamoto M, Miyamoto T, Hirata K. Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 2014; 20(2): 212-6.
[http://dx.doi.org/10.1016/j.parkreldis.2013.11.005] [PMID: 24280021]
[111]
Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson’s disease, insulin resistance and novel agents of neuroprotection. Brain 2013; 136(Pt 2): 374-84.
[http://dx.doi.org/10.1093/brain/aws009] [PMID: 22344583]
[112]
Daniels D, Mietlicki-Baase EG. Glucagon-like peptide 1 in the brain: where is it coming from, where is it going? Diabetes 2019; 68(1): 15-7.
[http://dx.doi.org/10.2337/dbi18-0045] [PMID: 30573675]
[113]
Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J Parkinsons Dis 2019; 9(1): 157-71.
[http://dx.doi.org/10.3233/JPD-181503] [PMID: 30741689]
[114]
Femminella GD, Frangou E, Love SB, et al. The bowel preparation for magnetic resonance enterography in patients with Crohn's disease: study protocol for a randomized controlled trial. Trials 2019; 20: 1-10.
[http://dx.doi.org/10.1186/s13063-019-3259-x] [PMID: 30606236]
[115]
Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 2018; 27(4): 740-56.
[http://dx.doi.org/10.1016/j.cmet.2018.03.001] [PMID: 29617641]
[116]
Barbato GM, Cadamuro M, Fabris L. Incretin-based treatment in type 2 diabetes mellitus and risk of cholangiocarcinoma: Is it only adverse drug effect? Clin Res Hepatol Gastroenterol 2019; 43(3): 232-5.
[http://dx.doi.org/10.1016/j.clinre.2019.01.009] [PMID: 30833185]
[117]
Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3(3): 153-65.
[http://dx.doi.org/10.1016/j.cmet.2006.01.004] [PMID: 16517403]
[118]
Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev 2012; 33(2): 187-215.
[http://dx.doi.org/10.1210/er.2011-1052] [PMID: 22323472]
[119]
Knudsen LB, Madsen LW, Andersen S, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010; 151: 1473-86.
[http://dx.doi.org/10.1210/en.2009-1272] [PMID: 20203154]
[120]
Liu Y, Zhang X, Chai S, Zhao X, Ji L. Risk of malignant neoplasia with glucagon-like peptide-1 receptor agonist treatment in patients with type 2 diabetes: A meta-analysis. J Diabetes Res 2019; 2019: 1534365.
[http://dx.doi.org/10.1155/2019/1534365] [PMID: 31396537]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy