Abstract
Background: PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of a variety of solid tumors. Some clinical trials have also confirmed the excellent efficacy of PD- 1/PD-L1 inhibitors on lymphoma. However, the efficacy of PD-1/PD-L1 inhibitors on leukemia remains unclear.
Introduction: To understand the connection between PD-1/PD-L1 and leukemia better, this review concentrates on the up-regulated expression of PD-1/PD-L1 and the PD-1/PD-L1 blockade trials in participants with leukemia. PD-1/PD-L1 signal performs momentously negative immunoregulation of cancer, which can inhibit the activation of cytotoxic T cells and involve in the immune escape in tumors. Activated PD-1/PD-L1 may transduce negative intracellular signals to block the mitotic cycle and the development of T-cells. Several pathways are involved in these critical biochemical processes, including MAPK, calcium, PI3K/AKT, and so on. Lately, PD-1/PD-L1 antibodies have illustrated unprecedented curative effects on Hodgkin's lymphoma and some solid tumors. Specimens from patients with leukemia demonstrated the elevated level of PD-1/PD-L1 in T lymphocytes. This finding inspired hematologists to use PD-1/PD-L1 inhibitors for subjects suffering from leukemia. Some clinical trials have implied that PD-1/PD-L1 inhibitors could help patients fight against leukemia, however, other researchers have reported the opposite results.
Conclusion: PD-1/PD-L1 is upregulated in leukemia, but the results regarding PD-1/PD-L1 blockade are mixed and more clinical trials are needed to be conducted.
Keywords: Leukemia, immune checkpoints, PD-1, PD-L1, T lymphocytes, nivolumab, pembrolizumab, clinical trials.
Graphical Abstract
[http://dx.doi.org/10.1182/blood-2016-03-643544] [PMID: 27069254]
[http://dx.doi.org/10.1101/cshperspect.a034819] [PMID: 31727680]
[http://dx.doi.org/10.1038/s41408-018-0054-y] [PMID: 29426921]
[http://dx.doi.org/10.6004/jnccn.2019.0028] [PMID: 31200351]
[http://dx.doi.org/10.1200/JCO.2016.68.4761] [PMID: 28095152]
[http://dx.doi.org/10.6004/jnccn.2019.0024] [PMID: 31085755]
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[http://dx.doi.org/10.6004/jnccn.2020.0026] [PMID: 32502987]
[http://dx.doi.org/10.6004/jnccn.2020.0022] [PMID: 32380458]
[http://dx.doi.org/10.6004/jnccn.2020.7608] [PMID: 32755987]
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[http://dx.doi.org/10.1093/intimm/10.10.1563] [PMID: 9796923]
[http://dx.doi.org/10.1016/S1074-7613(00)80089-8] [PMID: 10485649]
[http://dx.doi.org/10.1084/jem.193.7.839] [PMID: 11283156]
(b) Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med., 1999, 5(12), 1365-1369.
[http://dx.doi.org/10.1038/70932] [PMID: 10581077]
[http://dx.doi.org/10.1016/j.molimm.2019.02.009] [PMID: 30851633]
[http://dx.doi.org/10.1016/j.immuni.2018.03.014] [PMID: 29562194]
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[http://dx.doi.org/10.4049/jimmunol.173.2.945] [PMID: 15240681]
[http://dx.doi.org/10.1016/j.immuni.2018.06.012] [PMID: 30076099]
[http://dx.doi.org/10.1038/s41467-019-09431-3] [PMID: 30926899]
[http://dx.doi.org/10.3389/fimmu.2019.02468] [PMID: 31708921]
[http://dx.doi.org/10.1016/j.csbj.2019.03.006] [PMID: 31205619]
[http://dx.doi.org/10.1038/s41590-018-0131-1] [PMID: 29915297]
[http://dx.doi.org/10.1016/j.ceca.2017.01.014] [PMID: 28153342]
[http://dx.doi.org/10.1016/j.intimp.2017.04.028] [PMID: 28528205]
[http://dx.doi.org/10.1038/onc.2017.222] [PMID: 28692045]
[http://dx.doi.org/10.1172/JCI43271] [PMID: 20972331]
[http://dx.doi.org/10.1172/JCI121957] [PMID: 30084841]
[http://dx.doi.org/10.1016/j.molimm.2018.02.010] [PMID: 29494848]
[http://dx.doi.org/10.1016/j.molimm.2020.01.008] [PMID: 32001420]
[http://dx.doi.org/10.1172/JCI99317] [PMID: 30198904]
[http://dx.doi.org/10.1158/2159-8290.CD-18-1259] [PMID: 31340937]
[http://dx.doi.org/10.1038/nature22396] [PMID: 28514441]
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0537] [PMID: 30012633]
[http://dx.doi.org/10.1182/blood-2009-02-203141] [PMID: 19339692]
[http://dx.doi.org/10.1189/jlb.0813443] [PMID: 24319287]
[http://dx.doi.org/10.1080/2162402X.2015.1085146] [PMID: 27141339]
[http://dx.doi.org/10.1002/eji.200839103] [PMID: 19688742]
[http://dx.doi.org/10.21147/j.issn.1000-9604.2017.05.11] [PMID: 29142466]
[http://dx.doi.org/10.1016/j.clim.2017.08.021] [PMID: 28893624]
[http://dx.doi.org/10.1182/blood.V128.22.2900.2900]
[http://dx.doi.org/10.1038/bcj.2015.58] [PMID: 26230954]
[http://dx.doi.org/10.1038/s41408-018-0069-4] [PMID: 29563517]
[http://dx.doi.org/10.1186/s40364-020-0185-8] [PMID: 32082573]
[http://dx.doi.org/10.1080/10428194.2019.1675880] [PMID: 31608729]
[http://dx.doi.org/10.1002/JLB.MA0119-021R] [PMID: 31136687]
[http://dx.doi.org/10.1186/s13045-015-0189-2] [PMID: 26219463]
[http://dx.doi.org/10.1007/s00262-020-02617-5] [PMID: 32474769]
[http://dx.doi.org/10.1182/blood-2016-10-745992] [PMID: 28049640]
[http://dx.doi.org/10.1002/cyto.b.21879] [PMID: 32268011]
[http://dx.doi.org/10.1182/blood.V120.21.1778.1778]
[http://dx.doi.org/10.20452/pamw.2967] [PMID: 26140546]
[http://dx.doi.org/10.3109/10428194.2015.1017820] [PMID: 25682964]
[http://dx.doi.org/10.1159/000381468] [PMID: 26066608]
[http://dx.doi.org/10.3390/ijms20112823] [PMID: 31185600]
[PMID: 30998140]
[http://dx.doi.org/10.3389/fimmu.2020.01710] [PMID: 32849603]
[http://dx.doi.org/10.1007/s00262-010-0909-y] [PMID: 20814675]
[http://dx.doi.org/10.4161/cbt.7.5.5689] [PMID: 18756622]
[PMID: 18928614]
[http://dx.doi.org/10.18632/oncotarget.12357] [PMID: 27708227]
[PMID: 29070112]
[PMID: 26314420]
[http://dx.doi.org/10.3324/haematol.2012.077537] [PMID: 23300177]
[PMID: 28395442]
[PMID: 28843266]
[http://dx.doi.org/10.1159/000430980] [PMID: 26159545]
[http://dx.doi.org/10.1182/blood-2017-07-740993] [PMID: 29118007]
[http://dx.doi.org/10.1158/2159-8290.CD-18-0774] [PMID: 30409776]
[http://dx.doi.org/10.1016/S2352-3026(19)30114-0] [PMID: 31400961]
[http://dx.doi.org/10.1182/blood-2018-99-111845]
[http://dx.doi.org/10.1182/blood.2019002038] [PMID: 31467059]
[http://dx.doi.org/10.1182/bloodadvances.2020002403] [PMID: 32692850]
[http://dx.doi.org/10.1182/blood-2017-02-765685] [PMID: 28424162]
[http://dx.doi.org/10.1016/j.leukres.2018.07.011] [PMID: 30056299]
[http://dx.doi.org/10.1038/bmt.2016.274] [PMID: 27892950]
[http://dx.doi.org/10.2217/ijh-2018-0009] [PMID: 30863527]
[http://dx.doi.org/10.3747/co.27.5371] [PMID: 32669928]
[http://dx.doi.org/10.1038/bmt.2017.107] [PMID: 28581460]
[http://dx.doi.org/10.1159/000447508] [PMID: 27462240]
[http://dx.doi.org/10.12998/wjcc.v8.i13.2833] [PMID: 32742992]
[http://dx.doi.org/10.1038/nm955] [PMID: 14595408]
(b) Nishimura, H.; Okazaki, T.; Tanaka, Y.; Nakatani, K.; Hara, M.; Matsumori, A.; Sasayama, S.; Mizoguchi, A.; Hiai, H.; Minato, N.; Honjo, T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001, 291(5502), 319-322.
[http://dx.doi.org/10.1126/science.291.5502.319] [PMID: 11209085]