[1]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo, E.S.G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[2]
Maluccio, M.; Covey, A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J. Clin., 2012, 62(6), 394-399.
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. 2018, 68(1), 7-30.
[5]
Sun, J.H.; Luo, Q.; Liu, L.L.; Song, G.B. Liver cancer stem cell markers: Progression and therapeutic implications. World J. Gastroenterol., 2016, 22(13), 3547-3557.
[6]
Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314.
[7]
Li, L.; Wang, H. Heterogeneity of liver cancer and personalized therapy. Cancer Lett., 2016, 379(2), 191-197.
[8]
Bruix, J.; Han, K.H.; Gores, G.; Llovet, J.M.; Mazzaferro, V. Liver cancer: Approaching a personalized care. J. Hepatol., 2015, 62(1)(Suppl.), S144-S156.
[9]
Zucman-Rossi, J.; Villanueva, A.; Nault, J.C.; Llovet, J.M. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology, 2015, 149(5), 1226-1239.e1224.
[10]
Scaggiante, B.; Kazemi, M.; Pozzato, G.; Dapas, B.; Farra, R.; Grassi, M.; Zanconati, F.; Grassi, G. Novel hepatocellular carcinoma molecules with prognostic and therapeutic potentials. World J. Gastroenterol., 2014, 20(5), 1268-1288.
[11]
Wang, Y.; Song, J.; Bian, H.; Bo, J.; Lv, S.; Pan, W.; Lv, X. Apelin promotes hepatic fibrosis through ERK signaling in LX-2 cells. 2019, 460(1-2), 205-215.
[12]
Xing, J.; Tian, Y.; Ji, W.; Wang, X. Comprehensive evaluation of SPATS2 expression and its prognostic potential in liver cancer. Medicine (Baltimore), 2020, 99(9), e19230.
[13]
Zhai, K.; Yang, Y.; Gao, Z.G.; Ding, J. Interleukin-6-174G>C gene promoter polymorphism and prognosis in patients with cancer. Oncotarget, 2017, 8(27), 44490-44497.
[14]
Wang, Q.; Zhu, Y.; Li, Z.; Bu, Q.; Sun, T.; Wang, H.; Sun, H.; Cao, X. Up-regulation of SPC25 promotes breast cancer. Aging (Albany NY), 2019, 11(15), 5689-5704.
[15]
Buoncervello, M.; Gabriele, L.; Toschi, E. The Janus Face of Tumor Microenvironment Targeted by Immunotherapy. Int. J. Mol. Sci., 2019, 20(17)
[16]
Houthuijzen, J.M.; Jonkers, J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev., 2018, 37(4), 577-597.
[17]
Whiteside, T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin. Immunol., 2018, 35, 69-79.
[18]
Syed, S.N.; Frank, A.C.; Raue, R.; Brüne, B. MicroRNA-A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells, 2019, 8(12)
[19]
Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer, 2019, 19(1), 9-31.
[20]
Meurette, O.; Mehlen, P. Notch Signaling in the Tumor Microenvironment. Cancer Cell, 2018, 34(4), 536-548.
[21]
Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V. Targeting Tumor Microenvironment for Cancer Therapy. 2019, 20(4)
[22]
Jarosz-Biej, M.; Smolarczyk, R.; Cichoń, T.; Kułach, N. Tumor Microenvironment as A “Game Changer” in Cancer Radiotherapy. Int. J. Mol. Sci., 2019, 20(13)
[23]
Gurin, D.; Slavik, M.; Hermanova, M. The tumor immune microenvironment and its implications for clinical outcome in patients with oropharyngeal squamous cell carcinoma., 2020.
[24]
Chandler, C.; Liu, T.; Buckanovich, R.; Coffman, L.G. The double edge sword of fibrosis in cancer. Transl. Res., 2019, 209, 55-67.
[25]
Chen, C.; Liu, J.M.; Luo, Y.P. MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages. J. Zhejiang Univ. Sci. B, 2020, 21(1), 12-28.
[26]
Eissmann, M.F.; Buchert, M.; Ernst, M. IL33 and Mast Cells-The Key Regulators of Immune Responses in Gastrointestinal Cancers? Front. Immunol., 2020, 11, 1389.
[27]
Miao, Y.R.; Zhang, Q.; Lei, Q.; Luo, M.; Xie, G.Y.; Wang, H.; Guo, A.Y. ImmuCellAI: A Unique Method for Comprehensive T-Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy. Adv. Sci. (Weinh.), 2020, 7(7), 1902880.
[28]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. 2019, 35(17), 3199-3202.
[29]
Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; Asplund, A.; Sjöstedt, E.; Lundberg, E.; Szigyarto, C.A.; Skogs, M.; Takanen, J.O.; Berling, H.; Tegel, H.; Mulder, J.; Nilsson, P.; Schwenk, J.M.; Lindskog, C.; Danielsson, F.; Mardinoglu, A.; Sivertsson, A.; von Feilitzen, K.; Forsberg, M.; Zwahlen, M.; Olsson, I.; Navani, S.; Huss, M.; Nielsen, J.; Ponten, F.; Uhlén, M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics, 2014, 13(2), 397-406.
[30]
Zhang, Y.; Liu, T.; Chen, L.; Yang, J.; Yin, J.; Zhang, Y.; Yun, Z.; Xu, H.; Ning, L.; Guo, F.; Jiang, Y.; Lin, H.; Wang, D.; Huang, Y.; Huang, J. RIscoper: a tool for RNA-RNA interaction extraction from the literature. Bioinformatics, 2019, 35(17), 3199-3202.
[31]
Dong, M.B.; Wang, G.; Chow, R.D.; Ye, L.; Zhu, L.; Dai, X.; Park, J.J.; Kim, H.R.; Errami, Y.; Guzman, C.D.; Zhou, X.; Chen, K.Y.; Renauer, P.A.; Du, Y.; Shen, J.; Lam, S.Z.; Zhou, J.J.; Lannin, D.R.; Herbst, R.S.; Chen, S. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell, 2019, 178(5), 1189-1204.e1123.
[32]
Denisov, E.V.; Skryabin, N.A.; Gerashchenko, T.S.; Tashireva, L.A.; Wilhelm, J.; Buldakov, M.A.; Sleptcov, A.A.; Lebedev, I.N.; Vtorushin, S.V.; Zavyalova, M.V.; Cherdyntseva, N.V.; Perelmuter, V.M. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44(+)CD24(-) stemness. Oncotarget, 2017, 8(37), 61163-61180.
[33]
Rodrigues-Peres, R.M. de, S.C.B.; Anurag, M.; Lei, J.T.; Conz, L.; Gonçalves, R.; Cardoso Filho, C.; Ramalho, S.; de Paiva, G.R.; Derchain, S.F.M.; Lopes-Cendes, I.; Ellis, M.J.; Sarian, L.O. Copy number alterations associated with clinical features in an underrepresented population with breast cancer. Mol. Genet. Genomic Med., 2019, 7(7), e00750.
[34]
Ceder, M.M.; Lekholm, E.; Klaesson, A.; Tripathi, R.; Schweizer, N.; Weldai, L.; Patil, S.; Fredriksson, R. Glucose Availability Alters Gene and Protein Expression of Several Newly Classified and Putative Solute Carriers in Mice Cortex Cell Culture and D. melanogaster. Front. Cell Dev. Biol., 2020, 8, 579.
[35]
Zheng, J.; Liu, X.; Wang, P.; Xue, Y.; Ma, J.; Qu, C.; Liu, Y. CRNDE Promotes Malignant Progression of Glioma by Attenuating miR-384/PIWIL4/STAT3 Axis. Mol. Ther., 2016, 24(7), 1199-1215.
[36]
Wang, Z.; Liu, N.; Shi, S.; Liu, S.; Lin, H. The Role of PIWIL4, an Argonaute Family Protein, in Breast Cancer. J. Biol. Chem., 2016, 291(20), 10646-10658.
[37]
Ning, L.; Cui, T.; Zheng, B.; Wang, N.; Luo, J.; Yang, B.; Du, M.; Cheng, J.; Dou, Y.; Wang, D. MNDR v3.0: mammal ncRNA-disease repository with increased coverage and annotation. Nucleic Acids Res., 2020.
[38]
Lin, Y.; Liu, T.; Cui, T.; Wang, Z.; Zhang, Y.; Tan, P.; Huang, Y.; Yu, J.; Wang, D. RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res., 2020, 48(D1), D189-d197.
[39]
Li, Y.; Wang, C.; Miao, Z.; Bi, X.; Wu, D.; Jin, N.; Wang, L.; Wu, H.; Qian, K.; Li, C.; Zhang, T.; Zhang, C.; Yi, Y.; Lai, H.; Hu, Y.; Cheng, L.; Leung, K.S.; Li, X.; Zhang, F.; Li, K.; Li, X.; Wang, D. ViRBase: a resource for virus-host ncRNA-associated interactions., 2015. 43(Database issue), D578-582.
[40]
Abbott, G.W. KCNE4 and KCNE5: K(+) channel regulation and cardiac arrhythmogenesis. Gene, 2016, 593(2), 249-260.
[41]
Huang, Y.; Wang, J.; Zhao, Y.; Wang, H.; Liu, T.; Li, Y.; Cui, T.; Li, W.; Feng, Y.; Luo, J.; Gong, J.; Ning, L.; Zhang, Y.; Wang, D.; Zhang, Y. cncRNAdb: a manually curated resource of experimentally supported RNAs with both protein-coding and noncoding function. Nucleic Acids Res., 2020.
[42]
Szymczak, S.; Dose, J.; Torres, G.G.; Heinsen, F.A.; Venkatesh, G.; Datlinger, P.; Nygaard, M.; Mengel-From, J.; Flachsbart, F.; Klapper, W.; Christensen, K.; Lieb, W.; Schreiber, S.; Häsler, R.; Bock, C.; Franke, A.; Nebel, A. DNA methylation QTL analysis identifies new regulators of human longevity. Hum. Mol. Genet., 2020, 29(7), 1154-1167.
[43]
Jin, N.; Li, Y.; Zhang, L.; Yang, H.; Hu, Z.; Zhang, L.; Hu, C.; Li, C.; Qian, K.; Zhang, C.; Huang, Y.; Li, K.; Lin, H.; Wang, D.
[44]
Terabe, M.; Berzofsky, J.A. Tissue-Specific Roles of NKT Cells in Tumor Immunity. Front. Immunol., 2018, 9, 1838.
[45]
Paluskievicz, C.M.; Cao, X.; Abdi, R.; Zheng, P.; Liu, Y.; Bromberg, J.S. T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Front. Immunol., 2019, 10, 2453.
[46]
Downs-Canner, S.; Berkey, S.; Delgoffe, G.M.; Edwards, R.P.; Curiel, T.; Odunsi, K.; Bartlett, D.L.; Obermajer, N. Suppressive IL-17A(+)Foxp3(+) and ex-Th17 IL-17A(neg)Foxp3(+) T(reg) cells are a source of tumour-associated T(reg) cells. Nat. Commun., 2017, 8, 14649.