Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Mini-Review Article

Multifunctional Liquid Crystal Nanoparticles for Cancer Therapy

Author(s): Abhishesh K. Mehata*, Deepa Dehari, Amit Gupta, Dangali C. Rabin and Alim Miya

Volume 6, Issue 1, 2021

Published on: 18 January, 2021

Page: [4 - 16] Pages: 13

DOI: 10.2174/2405461506666210118114851

Price: $65

Abstract

Cancer is the second foremost reason for worldwide death, affecting every country of the globe. However, 70% of cancer-related death was reported from low- and middle-income nations. Delay in the detection and intervention of therapeutic agents in cancer patients also promoted a cancer-related mortality index. Currently, numerous nanomedicines are under development for advancing tumor diagnosis and therapeutic capability. Recently, liquid crystalline nanoparticles (LCNPs) have emerged as an attractive drug delivery system for both intravenous and non-intravenous applications. The widely explored LCNPs for cancer therapy include cubosomes and hexosomes. They have significant advantages over other drug delivery system, which includes, high internal surface area, unique solubilization properties and sustained release of entrapped drug molecules and co-loading of imaging and therapeutic agents in a single system. In this review, we have briefly discussed the advantages of LCNPs, preparation methods, and their multifunctional role in treating various cancers.

Keywords: Cancer, cubosomes, hexosomes, liquid crystalline nanoparticles, theranostics, therapy.

Graphical Abstract

[1]
WHO. CancerWorld Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2019; 69(1): 7-34.
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2020; 70(1): 7-30.
[4]
Stoyanoff TR, Rodríguez JP, Todaro JS, et al. Tumor biology of non-metastatic stages of clear cell renal cell carcinoma; overexpression of stearoyl desaturase-1, EPO/EPO-R system and hypoxia-related proteins. Tumour Biol 2016; 37(10): 13581-93.
[5]
Zanotelli MR, Reinhart-King CA. Mechanical forces in tumor angiogenesis. Adv Exp Med Biol 2018; 1092: 91-112.
[http://dx.doi.org/10.1007/978-3-319-95294-9_6]
[6]
Mehata AK, Dehari D. Bradford assay as a high-throughput bioanalytical screening method for conforming pathophysiological state of the animal. J Drug Deliv Ther 2020; 10(1-s): 105-10.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3921]
[7]
Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58(7): 1408-16.
[PMID: 9537241]
[8]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394]
[9]
Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med 2013; 19(11): 1450-64.
[http://dx.doi.org/10.1038/nm.3391]
[10]
Kato H, Nakajima M. Treatments for esophageal cancer: a review. Gen Thorac Cardiovasc Surg 2013; 61(6): 330-5.
[http://dx.doi.org/10.1007/s11748-013-0246-0]
[11]
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019; 13: 961.
[http://dx.doi.org/10.3332/ecancer.2019.961]
[12]
Galletti G, Leach BI, Lam L, Tagawa ST. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017; 57: 16-27.
[http://dx.doi.org/10.1016/j.ctrv.2017.04.008]
[13]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 2017; 7(3): 339-48.
[http://dx.doi.org/10.15171/apb.2017.041]
[14]
d’Amato TA, Landreneau RJ, Ricketts W, et al. Chemotherapy resistance and oncogene expression in non-small cell lung cancer. J Thorac Cardiovasc Surg 2007; 133(2): 352-63.
[15]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108]
[16]
Yue X, Dai Z. Liposomal nanotechnology for cancer theranostics. Curr Med Chem 2018; 25(12): 1397-408.
[http://dx.doi.org/10.2174/0929867324666170306105350]
[17]
Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 2008; 60(11): 1226-40.
[http://dx.doi.org/10.1016/j.addr.2008.03.015]
[18]
Srinivasan M, Rajabi M, Mousa SA. Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials (Basel) 2015; 5(4): 1690-703.
[http://dx.doi.org/10.3390/nano5041690]
[19]
Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 2009; 6(1): 43-51.
[http://dx.doi.org/10.2174/157016309787581066]
[20]
Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 2007; 7(6): 833-7.
[http://dx.doi.org/10.1586/14737140.7.6.833]
[21]
Kamo T, Nakano M, Leesajakul W, Sugita A, Matsuoka H, Handa T. Nonlamellar liquid crystalline phases and their particle formation in the egg yolk phosphatidylcholine/diolein system. Langmuir 2003; 19(22): 9191-5.
[http://dx.doi.org/10.1021/la035313x]
[22]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[23]
Cervin C, Tinzl M, Johnsson M, Abrahamsson PA, Tiberg F, Dizeyi N. Properties and effects of a novel liquid crystal nanoparticle formulation of docetaxel in a prostate cancer mouse model. Eur J Pharm Sci 2010; 41(2): 369-75.
[http://dx.doi.org/10.1016/j.ejps.2010.07.003]
[24]
Spillmann CM, Naciri J, Algar WR, Medintz IL, Delehanty JB. Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug delivery. ACS Nano 2014; 8(7): 6986-97.
[http://dx.doi.org/10.1021/nn501816z]
[25]
Nag OK, Naciri J, Oh E, Spillmann CM, Delehanty JB. Targeted plasma membrane delivery of a hydrophobic cargo encapsulated in a liquid crystal nanoparticle carrier. J Vis Exp 2017; 120: e55181.
[26]
Urandur S, Banala VT, Shukla RP, et al. Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy. Acta Biomater 2020; 113: 522-40.
[27]
Hirlekar R, Jain S, Patel M, Garse H, Kadam V. Hexosomes: a novel drug delivery system. Curr Drug Deliv 2010; 7(1): 28-35.
[http://dx.doi.org/10.2174/156720110790396526]
[28]
Chaud MV, Rios AC, dos Santos CA, de Barros CT, de Souza JF, Alves TFR. Nanostructure self-assembly for direct nose-to-brain drug delivery: a novel approach for cryptococcal meningitis. In: Rai M, Abd-Elsalam KA, eds. Nanomycotoxicology. Cambridge, Massachusetts: Academic Press 2020; pp. 449-80.
[http://dx.doi.org/10.1016/B978-0-12-817998-7.00019-7]
[29]
Verma P, Ahuja M. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide. Drug Deliv 2016; 23(8): 3043-54.
[http://dx.doi.org/10.3109/10717544.2016.1143057]
[30]
Li JC, Zhu N, Zhu JX, et al. Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of paeonol. Med Sci Monit 2015; 21: 3298-310.
[http://dx.doi.org/10.12659/MSM.894484]
[31]
Alcaraz N, Boyd BJ. Cubosomes as carriers for MRI contrast agents. Curr Med Chem 2017; 24(5): 470-82.
[http://dx.doi.org/10.2174/0929867323666160817141556]
[32]
Mo J, Milleret G, Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery. Liq Cryst Rev 2017; 5(2): 69-85.
[http://dx.doi.org/10.1080/21680396.2017.1361874]
[33]
Fan Y, Chen H, Huang Z, et al. Taste- masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int J Pharm 2020; 575: 118875.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118875]
[34]
Ding Y, Chow SH, Liu GS, et al. Annexin V-containing cubosomes for targeted early detection of apoptosis in degenerative retinal tissue. J Mater Chem B 2018; 6(46): 7652-61.
[35]
Yasser M, Teaima M, El-Nabarawi M, El-Monem RA. Cubosomal based oral tablet for controlled drug delivery of telmisartan: formulation, in vitro evaluation and in vivo comparative pharmacokinetic study in rabbits. Drug Dev Ind Pharm 2019; 45(6): 981-94.
[http://dx.doi.org/10.1080/03639045.2019.1590392.]
[36]
Lee DR, Park JS, Bae IH, Lee Y, Kim BM. Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution. Int J Nanomedicine 2016; 11: 853-71.
[37]
Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today 2019; 24(7): 1405-12.
[http://dx.doi.org/10.1016/j.drudis.2019.05.004]
[38]
Yang D, Armitage B, Marder SR. Cubic liquid-crystalline nanoparticles. Angew Chem Int Ed Engl 2004; 43(34): 4402-9.
[39]
Lakshmi NM, Yalavarthi PR, Vadlamudi HC, Thanniru J, Yaga GKH. Cubosomes as targeted drug delivery systems - a biopharmaceutical approach. Curr Drug Discov Technol 2014; 11(3): 181-8.
[40]
Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biol Pharm Bull 2007; 30(2): 350-3.
[http://dx.doi.org/10.1248/bpb.30.350]
[41]
Radiman S, Toprakcioglu C, McLeish T. Rheological study of ternary cubic phases. Langmuir 1994; 10(1): 61-7.
[http://dx.doi.org/10.1021/la00013a009]
[42]
von Eckardstein KL, Reszka R, Kiwit JC. Intracavitary chemotherapy (paclitaxel/carboplatin liquid crystalline cubic phases) for recurrent glioblastoma clinical observations. J Neurooncol 2005; 74(3): 305-9.
[43]
Almgren M, Edwards K, Gustafsson J, Science I. Cryotransmission electron microscopy of thin vitrified samples. Curr Opin Colloid Interface Sci 1996; 1(2): 270-8.
[http://dx.doi.org/10.1016/S1359-0294(96)80015-X]
[44]
Spicer PT, Small WB, Lynch ML, Burns JL. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res 2002; 4(4): 297-311.
[http://dx.doi.org/10.1023/A:1021184216308]
[45]
Shanmugam T, Banerjee R. Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2011; 2(11): 1485-516.
[http://dx.doi.org/10.4155/tde.11.105]
[46]
Han S, Shen JQ, Gan Y, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin 2010; 31(8): 990-8.
[http://dx.doi.org/10.1038/aps.2010.98]
[47]
Sharma P, Dhawan S, Nanda S. Cubosome: a potential liquid crystalline carrier system. Curr Pharm Des 2020; 26(27): 3300-16.
[48]
Ali MA, Kataoka N, Ranneh AH, et al. Enhancing the solubility and oral bioavailability of poorly water-soluble drugs using monoolein cubosomes. Chem Pharm Bull (Tokyo) 2017; 65(1): 42-8.
[http://dx.doi.org/10.1248/cpb.c16-00513]
[49]
Nithya R, Jerold P, Siram K. Cubosomes of dapsone enhanced permeation across the skin. J Drug Deliv Sci Technol 2018; 48: 75-81.
[http://dx.doi.org/10.1016/j.jddst.2018.09.002]
[50]
Sagalowicz L, Leser M, Watzke H, Michel M. Technology. Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci Technol 2006; 17(5): 204-14.
[http://dx.doi.org/10.1016/j.tifs.2005.12.012]
[51]
Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 1997; 13(26): 6964-71.
[http://dx.doi.org/10.1021/la970566+]
[52]
Tran N, Bye N, Moffat BA, Wright DK, et al. Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution. Mater Sci Eng C Mater Biol Appl 2017; 71: 584-93.
[53]
Jenni S, Picci G, Fornasier M, et al. Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochem Photobiol Sci 2020; 19(5): 674-80.
[54]
Singhvi G, Banerjee S, Khosa A. Lyotropic liquid crystal nanoparticles: a novel improved lipidic drug delivery system. Organic materials as smart nanocarriers for drug delivery 2018; 417-517.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00011-7]
[55]
Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009; 6(10): 1017-32.
[http://dx.doi.org/10.1517/17425240903167942]
[56]
Koo YE, Reddy GR, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006; 58(14): 1556-77.
[http://dx.doi.org/10.1016/j.addr.2006.09.012]
[57]
Mertins O, Mathews PD, Angelova A. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials (Basel) 2020; 10(5): 963.
[http://dx.doi.org/10.3390/nano10050963]
[58]
Luo Q, Lin T, Zhang CY, et al. A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake. Int J Pharm 2015; 493(1-2): 30-9.
[59]
Nazaruk E, Majkowska-Pilip A, Bilewicz R. Lipidic cubic-phase nanoparticles-cubosomes for efficient drug delivery to cancer cells. ChemPlusChem 2017; 82(4): 570-5.
[http://dx.doi.org/10.1002/cplu.201600534]
[60]
Jiang WG, Sanders AJ, Katoh M, et al. Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35: S244-75.
[61]
Yamashita T, Kaneko S. Liver Cancer. Rinsho Byori 2016; 64(7): 787-96.
[PMID: 30695467]
[62]
Sia D, Villanueva A, Friedman SL, Lovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 2017; 152(4): 745-61.
[63]
Gravitz L. Liver cancer. Nature 2014; 516(7529): S1.
[64]
Sethuraman V, Janakiraman K, Krishnaswami V, Natesan S, Kandasamy R. pH responsive delivery of lumefantrine with calcium phosphate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chem Phys Lipids 2019; 224: 104763.
[65]
WHO; World Health Organization. Breast cancer. 2018. Available at: https://www.who.int/cancer/prevention/diagnosis-screening/breast- cancer/en/
[66]
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin 2019; 69(6): 438-51.
[67]
Qiao J, Dong P, Mu X, Qi L, Xiao R. Folic acid-conjugated fluorescent polymer for up-regulation folate receptor expression study via targeted imaging of tumor cells. Biosens Bioelectron 2016; 78: 147-53.
[http://dx.doi.org/10.1016/j.bios.2015.11.021]
[68]
Bwatanglang IB, Mohammad F, Yusof NA, et al. in vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system. J Colloid Interface Sci 2016; 480: 146-58.
[69]
Tian Y, Li JC, Zhu JX, et al. Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med Sci Monit 2017; 23: 2426-35.
[http://dx.doi.org/10.12659/MSM.904683]
[70]
Rawla P. Epidemiology of Prostate Cancer. World J Oncol 2019; 10(2): 63-89.
[http://dx.doi.org/10.14740/wjon1191]
[71]
Daniyal M, Siddiqui ZA, Akram M, Asif HM, Sultana S, Khan A. Epidemiology, etiology, diagnosis and treatment of prostate cancer. Asian Pac J Cancer Prev 2014; 15(22): 9575-8.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9575]
[72]
Berthold DR, Sternberg CN, Tannock IF. Management of advanced prostate cancer after first-line chemotherapy. J Clin Oncol 2005; 23(32): 8247-52.
[73]
Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351(15): 1502-12.
[74]
Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004; 351(15): 1513-20.
[75]
Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016; 67: 103-17.
[76]
Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873(1): 188314.
[http://dx.doi.org/10.1016/j.bbcan.2019.188314]
[77]
Murgia S, Falchi AM, Mano M, et al. Nanoparticles from lipid-based liquid crystals: emulsifier influence on morphology and cytotoxicity. J Phys Chem B 2010; 114(10): 3518-25.
[78]
Zhang L, Li J, Tian D, Sun L, Wang X, Tian M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis 2020; 11(1): 1.
[http://dx.doi.org/10.1038/s41419-019-2182-0]
[79]
Caltagirone C, Falchi AM, Lampis S, et al. Cancer-cell-targeted theranostic cubosomes. Langmuir 2014; 30(21): 6228-36.
[http://dx.doi.org/10.1021/la501332u] [PMID: 24815031]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy