Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance

Author(s): Sarah F. Giardina*, Elena Valdambrini, J. David Warren and Francis Barany

Volume 21, Issue 4, 2021

Published on: 02 February, 2021

Page: [306 - 325] Pages: 20

DOI: 10.2174/1568009621666210203110857

Price: $65

Abstract

Epigenetic modulation of gene expression is essential for tissue-specific development and maintenance in mammalian cells. Disruption of epigenetic processes, and the subsequent alteration of gene functions, can result in inappropriate activation or inhibition of various cellular signaling pathways, leading to cancer. Recent advancements in the understanding of the role of epigenetics in cancer initiation and progression have uncovered functions for DNA methylation, histone modifications, nucleosome positioning, and non-coding RNAs. Epigenetic therapies have shown some promise for hematological malignancies, and a wide range of epigenetic-based drugs are undergoing clinical trials. However, in a dynamic survival strategy, cancer cells exploit their heterogeneous population which frequently results in the rapid acquisition of therapy resistance. Here, we describe novel approaches in drug discovery targeting the epigenome, highlighting recent advances the selective degradation of target proteins using Proteolysis Targeting Chimera (PROTAC) to address drug resistance.

Keywords: Cancer, oncology, PROTAC, epigenetics, drug resistance, therapy resistance.

Graphical Abstract

[1]
Biswas, S.; Rao, C.M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur. J. Pharmacol., 2018, 837, 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.021] [PMID: 30125562]
[2]
Berdasco, M.; Esteller, M. Clinical epigenetics: seizing opportunities for translation. Nat. Rev. Genet., 2019, 20(2), 109-127.
[http://dx.doi.org/10.1038/s41576-018-0074-2] [PMID: 30479381]
[3]
Ganesan, A.; Arimondo, P.B.; Rots, M.G.; Jeronimo, C.; Berdasco, M. The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenetics, 2019, 11(1), 174.
[http://dx.doi.org/10.1186/s13148-019-0776-0] [PMID: 31791394]
[4]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[5]
Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Polzer, H.; Vick, B.; Koenig, P-A.; Reinecke, M.; Ruprecht, B.; Petzoldt, S.; Meng, C.; Zecha, J.; Reiter, K.; Qiao, H.; Helm, D.; Koch, H.; Schoof, M.; Canevari, G.; Casale, E.; Depaolini, S.R.; Feuchtinger, A.; Wu, Z.; Schmidt, T.; Rueckert, L.; Becker, W.; Huenges, J.; Garz, A-K.; Gohlke, B-O.; Zolg, D.P.; Kayser, G.; Vooder, T.; Preissner, R.; Hahne, H.; Tõnisson, N.; Kramer, K.; Götze, K.; Bassermann, F.; Schlegl, J.; Ehrlich, H-C.; Aiche, S.; Walch, A.; Greif, P.A.; Schneider, S.; Felder, E.R.; Ruland, J.; Médard, G.; Jeremias, I.; Spiekermann, K.; Kuster, B. The target landscape of clinical kinase drugs. Science, 2017, 358(6367), 4368.
[http://dx.doi.org/10.1126/science.aan4368] [PMID: 29191878]
[6]
Baudino, T.A. Targeted Cancer therapy: the next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[7]
Milojkovic, D.; Apperley, J. Mechanisms of resistance to Imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin. Cancer Res., 2009, 15(24), 7519-7527.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1068] [PMID: 20008852]
[8]
Buschbeck, M. Strategies to overcome resistance to targeted protein kinase inhibitors in the treatment of cancer. Drugs R D., 2006, 7(2), 73-86.
[http://dx.doi.org/10.2165/00126839-200607020-00002] [PMID: 16542054]
[9]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[10]
Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94.
[http://dx.doi.org/10.1038/nrclinonc.2017.166] [PMID: 29115304]
[11]
Elshimali, Y.I.; Wu, Y.; Khaddour, H.; Wu, Y.; Gradinaru, D.; Sukhija, H.; Chung, S.S.; Vadgama, J.V. Optimization of cancer treatment through overcoming drug resistance. J. Cancer Res. Oncobiol., 2018, 1(2), 107.
[http://dx.doi.org/10.31021/jcro.20181107] [PMID: 29932172]
[12]
Lilenbaum, R.C.; Herndon, J.E., II; List, M.A.; Desch, C.; Watson, D.M.; Miller, A.A.; Graziano, S.L.; Perry, M.C.; Saville, W.; Chahinian, P.; Weeks, J.C.; Holland, J.C.; Green, M.R. Single-agent versus combination chemotherapy in advanced non-small- cell lung cancer: the cancer and leukemia group B (study 9730). J. Clin. Oncol., 2005, 23(1), 190-196.
[http://dx.doi.org/10.1200/JCO.2005.07.172] [PMID: 15625373]
[13]
Yang, Q.K.; Chen, T.; Wang, S.Q.; Zhang, X.J.; Yao, Z.X. Apatinib as targeted therapy for advanced bone and soft tissue sarcoma: a dilemma of reversing multidrug resistance while suffering drug resistance itself. Angiogenesis, 2020, 23(3), 279-298.
[http://dx.doi.org/10.1007/s10456-020-09716-y] [PMID: 32333216]
[14]
Arrowsmith, C.H.; Bountra, C.; Fish, P.V.; Lee, K.; Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov., 2012, 11(5), 384-400.
[http://dx.doi.org/10.1038/nrd3674] [PMID: 22498752]
[15]
An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMed., 2018, 36, 553-562.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.005] [PMID: 30224312]
[16]
Carmony, K.C.; Kim, K.B. PROTAC-induced proteolytic targeting. Methods Mol. Biol., 2012, 832, 627-638.
[http://dx.doi.org/10.1007/978-1-61779-474-2_44] [PMID: 22350917]
[17]
Pettersson, M.; Crews, C.M. Proteolysis targeting chimeras (PROTACs) - Past, present and future. Drug Discov. Today. Technol., 2019, 31, 15-27.
[http://dx.doi.org/10.1016/j.ddtec.2019.01.002] [PMID: 31200855]
[18]
Groppe, J.C. Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy. Expert Opin. Drug Discov., 2019, 14(12), 1237-1253.
[http://dx.doi.org/10.1080/17460441.2019.1660641] [PMID: 31513432]
[19]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[20]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[21]
Sekine, K.; Takubo, K.; Kikuchi, R.; Nishimoto, M.; Kitagawa, M.; Abe, F.; Nishikawa, K.; Tsuruo, T.; Naito, M. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem., 2008, 283(14), 8961-8968.
[http://dx.doi.org/10.1074/jbc.M709525200] [PMID: 18230607]
[22]
Itoh, Y.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc., 2010, 132(16), 5820-5826.
[http://dx.doi.org/10.1021/ja100691p] [PMID: 20369832]
[23]
Schneekloth, J.S., Jr; Fonseca, F.N.; Koldobskiy, M.; Mandal, A.; Deshaies, R.; Sakamoto, K.; Crews, C.M. Chemical genetic control of protein levels: Selective in vivo targeted degradation. J. Am. Chem. Soc., 2004, 126(12), 3748-3754.
[http://dx.doi.org/10.1021/ja039025z] [PMID: 15038727]
[24]
Buckley, D.L.; Gustafson, J.L.; Van Molle, I.; Roth, A.G.; Tae, H.S.; Gareiss, P.C.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew. Chem. Int. Ed. Engl., 2012, 51(46), 11463-11467.
[http://dx.doi.org/10.1002/anie.201206231] [PMID: 23065727]
[25]
Buckley, D.L.; Van Molle, I.; Gareiss, P.C.; Tae, H.S.; Michel, J.; Noblin, D.J.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc., 2012, 134(10), 4465-4468.
[http://dx.doi.org/10.1021/ja209924v] [PMID: 22369643]
[26]
Bondeson, D.P.; Smith, B.E.; Burslem, G.M.; Buhimschi, A.D.; Hines, J.; Jaime-Figueroa, S.; Wang, J.; Hamman, B.D.; Ishchenko, A.; Crews, C.M. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol., 2018, 25(1), 78-87.
[http://dx.doi.org/10.1016/j.chembiol.2017.09.010] [PMID: 29129718]
[27]
Anderson, N.A.; Cryan, J.; Ahmed, A.; Dai, H.; McGonagle, G.A.; Rozier, C.; Benowitz, A.B. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg. Med. Chem. Lett., 2020, 30(9), 127106.
[http://dx.doi.org/10.1016/j.bmcl.2020.127106] [PMID: 32184044]
[28]
Bond, M.J.; Chu, L.; Nalawansha, D.A.; Li, K.; Crews, C.M. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. ACS Cent. Sci., 2020, 6(8), 1367-1375.
[http://dx.doi.org/10.1021/acscentsci.0c00411] [PMID: 32875077]
[29]
Yang, K.; Wu, H.; Zhang, Z.; Leisten, E.D.; Nie, X.; Liu, B.; Wen, Z.; Zhang, J.; Cunningham, M.D.; Tang, W. Development of selective histone deacetylase 6 (HDAC6) degraders recruiting von hippel-lindau (VHL) E3 ubiquitin ligase. ACS Med. Chem. Lett., 2020, 11(4), 575-581.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00046] [PMID: 32292566]
[30]
Zoppi, V.; Hughes, S.J.; Maniaci, C.; Testa, A.; Gmaschitz, T.; Wieshofer, C.; Koegl, M.; Riching, K.M.; Daniels, D.L.; Spallarossa, A.; Ciulli, A. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J. Med. Chem., 2019, 62(2), 699-726.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01413] [PMID: 30540463]
[31]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30.
[http://dx.doi.org/10.1002/cbf.3369] [PMID: 30604499]
[32]
Lu, J.; Qian, Y.; Altieri, M.; Dong, H.; Wang, J.; Raina, K.; Hines, J.; Winkler, J.D.; Crew, A.P.; Coleman, K.; Crews, C.M. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol., 2015, 22(6), 755-763.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.009] [PMID: 26051217]
[33]
Zengerle, M.; Chan, K-H.; Ciulli, A. Selective small molecule induced degradation of the BET Bromodomain protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777.
[http://dx.doi.org/10.1021/acschembio.5b00216] [PMID: 26035625]
[34]
Saenz, D.T.; Fiskus, W.; Qian, Y.; Manshouri, T.; Rajapakshe, K.; Raina, K.; Coleman, K.G.; Crew, A.P.; Shen, A.; Mill, C.P.; Sun, B.; Qiu, P.; Kadia, T.M.; Pemmaraju, N.; DiNardo, C.; Kim, M.S.; Nowak, A.J.; Coarfa, C.; Crews, C.M.; Verstovsek, S.; Bhalla, K.N. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia, 2017, 31(9), 1951-1961.
[http://dx.doi.org/10.1038/leu.2016.393] [PMID: 28042144]
[35]
Remillard, D.; Buckley, D.L.; Paulk, J.; Brien, G.L.; Sonnett, M.; Seo, H.S.; Dastjerdi, S.; Wühr, M.; Dhe-Paganon, S.; Armstrong, S.A.; Bradner, J.E. Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Angew. Chem. Int. Ed. Engl., 2017, 56(21), 5738-5743.
[http://dx.doi.org/10.1002/anie.201611281] [PMID: 28418626]
[36]
Liu, J.R.; Yu, C.W.; Hung, P.Y.; Hsin, L.W.; Chern, J.W. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem. Pharmacol., 2019, 163, 458-471.
[http://dx.doi.org/10.1016/j.bcp.2019.03.023] [PMID: 30885763]
[37]
Smalley, J.P.; Adams, G.E.; Millard, C.J.; Song, Y.; Norris, J.K.S.; Schwabe, J.W.R.; Cowley, S.M.; Hodgkinson, J.T. PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes. Chem. Commun. (Camb.), 2020, 56(32), 4476-4479.
[http://dx.doi.org/10.1039/D0CC01485K] [PMID: 32201871]
[38]
Yang, H.; Lv, W.; He, M.; Deng, H.; Li, H.; Wu, W.; Rao, Y. Plasticity in designing PROTACs for selective and potent degradation of HDAC6. Chem. Commun. (Camb.), 2019, 55(98), 14848-14851.
[http://dx.doi.org/10.1039/C9CC08509B] [PMID: 31769449]
[39]
Yang, K.; Song, Y.; Xie, H.; Wu, H.; Wu, Y.T.; Leisten, E.D.; Tang, W. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg. Med. Chem. Lett., 2018, 28(14), 2493-2497.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.057] [PMID: 29871848]
[40]
Schiedel, M.; Herp, D.; Hammelmann, S.; Swyter, S.; Lehotzky, A.; Robaa, D.; Oláh, J.; Ovádi, J.; Sippl, W.; Jung, M. Chemically induced degradation of Sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on Sirtuin rearranging ligands (SirReals). J. Med. Chem., 2018, 61(2), 482-491.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01872] [PMID: 28379698]
[41]
Bassi, Z.I.; Fillmore, M.C.; Miah, A.H.; Chapman, T.D.; Maller, C.; Roberts, E.J.; Davis, L.C.; Lewis, D.E.; Galwey, N.W.; Waddington, K.E.; Parravicini, V.; Macmillan-Jones, A.L.; Gongora, C.; Humphreys, P.G.; Churcher, I.; Prinjha, R.K.; Tough, D.F. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem. Biol., 2018, 13(10), 2862-2867.
[http://dx.doi.org/10.1021/acschembio.8b00705] [PMID: 30200762]
[42]
Farnaby, W.; Koegl, M.; Roy, M.J.; Whitworth, C.; Diers, E.; Trainor, N.; Zollman, D.; Steurer, S.; Karolyi-Oezguer, J.; Riedmueller, C.; Gmaschitz, T.; Wachter, J.; Dank, C.; Galant, M.; Sharps, B.; Rumpel, K.; Traxler, E.; Gerstberger, T.; Schnitzer, R.; Petermann, O.; Greb, P.; Weinstabl, H.; Bader, G.; Zoephel, A.; Weiss-Puxbaum, A.; Ehrenhöfer-Wölfer, K.; Wöhrle, S.; Boehmelt, G.; Rinnenthal, J.; Arnhof, H.; Wiechens, N.; Wu, M-Y.; Owen-Hughes, T.; Ettmayer, P.; Pearson, M.; McConnell, D.B.; Ciulli, A. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol., 2019, 15(7), 672-680.
[http://dx.doi.org/10.1038/s41589-019-0294-6] [PMID: 31178587]
[43]
Segura, M.F.; Fontanals-Cirera, B.; Gaziel-Sovran, A.; Guijarro, M.V.; Hanniford, D.; Zhang, G.; González-Gomez, P.; Morante, M.; Jubierre, L.; Zhang, W.; Darvishian, F.; Ohlmeyer, M.; Osman, I.; Zhou, M-M.; Hernando, E. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res., 2013, 73(20), 6264-6276.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0122-T] [PMID: 23950209]
[44]
Padmanabhan, B.; Mathur, S.; Manjula, R.; Tripathi, S. Bromodomain and extra-terminal (BET) family proteins: New therapeutic targets in major diseases. J. Biosci., 2016, 41(2), 295-311.
[http://dx.doi.org/10.1007/s12038-016-9600-6] [PMID: 27240990]
[45]
Jang, M.K.; Mochizuki, K.; Zhou, M.; Jeong, H.S.; Brady, J.N.; Ozato, K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell, 2005, 19(4), 523-534.
[http://dx.doi.org/10.1016/j.molcel.2005.06.027] [PMID: 16109376]
[46]
Devaiah, B.N.; Singer, D.S. Two faces of brd4: mitotic bookmark and transcriptional lynchpin. Transcription, 2013, 4(1), 13-17.
[http://dx.doi.org/10.4161/trns.22542] [PMID: 23131666]
[47]
Zong, D.; Gu, J.; Cavalcante, G.C.; Yao, W.; Zhang, G.; Wang, S.; Owonikoko, T.K.; He, X.; Sun, S.Y. BRD4 levels determine the response of human lung cancer cells to BET degraders that potently induce apoptosis through suppression of Mcl-1. Cancer Res., 2020, 80(11), 2380-2393.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3674] [PMID: 32156781]
[48]
Houzelstein, D.; Bullock, S.L.; Lynch, D.E.; Grigorieva, E.F.; Wilson, V.A.; Beddington, R.S.P. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol., 2002, 22(11), 3794-3802.
[http://dx.doi.org/10.1128/MCB.22.11.3794-3802.2002] [PMID: 11997514]
[49]
Rahman, S.; Sowa, M.E.; Ottinger, M.; Smith, J.A.; Shi, Y.; Harper, J.W.; Howley, P.M. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol., 2011, 31(13), 2641-2652.
[http://dx.doi.org/10.1128/MCB.01341-10] [PMID: 21555454]
[50]
Ozer, H.G.; El-Gamal, D.; Powell, B.; Hing, Z.A.; Blachly, J.S.; Harrington, B.; Mitchell, S.; Grieselhuber, N.R.; Williams, K.; Lai, T-H.; Alinari, L.; Baiocchi, R.A.; Brinton, L.; Baskin, E.; Cannon, M.; Beaver, L.; Goettl, V.M.; Lucas, D.M.; Woyach, J.A.; Sampath, D.; Lehman, A.M.; Yu, L.; Zhang, J.; Ma, Y.; Zhang, Y.; Spevak, W.; Shi, S.; Severson, P.; Shellooe, R.; Carias, H.; Tsang, G.; Dong, K.; Ewing, T.; Marimuthu, A.; Tantoy, C.; Walters, J.; Sanftner, L.; Rezaei, H.; Nespi, M.; Matusow, B.; Habets, G.; Ibrahim, P.; Zhang, C.; Mathé, E.A.; Bollag, G.; Byrd, J.C.; Lapalombella, R. BRD4 profiling identifies critical chronic lymphocytic leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor. Cancer Discov., 2018, 8(4), 458-477.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0902] [PMID: 29386193]
[51]
Pastori, C.; Daniel, M.; Penas, C.; Volmar, C.H.; Johnstone, A.L.; Brothers, S.P.; Graham, R.M.; Allen, B.; Sarkaria, J.N.; Komotar, R.J.; Wahlestedt, C.; Ayad, N.G. BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics, 2014, 9(4), 611-620.
[http://dx.doi.org/10.4161/epi.27906] [PMID: 24496381]
[52]
French, C.A. NUT midline carcinoma. Cancer Genet. Cytogenet., 2010, 203(1), 16-20.
[http://dx.doi.org/10.1016/j.cancergencyto.2010.06.007] [PMID: 20951314]
[53]
Mertz, J.A.; Conery, A.R.; Bryant, B.M.; Sandy, P.; Balasubramanian, S.; Mele, D.A.; Bergeron, L.; Sims, R.J., III Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA, 2011, 108(40), 16669-16674.
[http://dx.doi.org/10.1073/pnas.1108190108] [PMID: 21949397]
[54]
Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; Chesi, M.; Schinzel, A.C.; McKeown, M.R.; Heffernan, T.P.; Vakoc, C.R.; Bergsagel, P.L.; Ghobrial, I.M.; Richardson, P.G.; Young, R.A.; Hahn, W.C.; Anderson, K.C.; Kung, A.L.; Bradner, J.E.; Mitsiades, C.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6), 904-917.
[http://dx.doi.org/10.1016/j.cell.2011.08.017] [PMID: 21889194]
[55]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[56]
Nicodeme, E.; Jeffrey, K.L.; Schaefer, U.; Beinke, S.; Dewell, S.; Chung, C.W.; Chandwani, R.; Marazzi, I.; Wilson, P.; Coste, H.; White, J.; Kirilovsky, J.; Rice, C.M.; Lora, J.M.; Prinjha, R.K.; Lee, K.; Tarakhovsky, A. Suppression of inflammation by a synthetic histone mimic. Nature, 2010, 468(7327), 1119-1123.
[http://dx.doi.org/10.1038/nature09589] [PMID: 21068722]
[57]
Coudé, M.M.; Braun, T.; Berrou, J.; Dupont, M.; Bertrand, S.; Masse, A.; Raffoux, E.; Itzykson, R.; Delord, M.; Riveiro, M.E.; Herait, P.; Baruchel, A.; Dombret, H.; Gardin, C. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget, 2015, 6(19), 17698-17712.
[http://dx.doi.org/10.18632/oncotarget.4131] [PMID: 25989842]
[58]
Brand, M.; Measures, A.R.; Wilson, B.G.; Cortopassi, W.A.; Alexander, R.; Höss, M.; Hewings, D.S.; Rooney, T.P.C.; Paton, R.S.; Conway, S.J. Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem. Biol., 2015, 10(1), 22-39.
[http://dx.doi.org/10.1021/cb500996u] [PMID: 25549280]
[59]
Liao, S.; Maertens, O.; Cichowski, K.; Elledge, S.J. Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is. Genes Dev., 2018, 32(17-18), 1188-1200.
[http://dx.doi.org/10.1101/gad.315648.118] [PMID: 30135075]
[60]
Shu, S.; Lin, C.Y.; He, H.H.; Witwicki, R.M.; Tabassum, D.P.; Roberts, J.M.; Janiszewska, M.; Huh, S.J.; Liang, Y.; Ryan, J.; Doherty, E.; Mohammed, H.; Guo, H.; Stover, D.G.; Ekram, M.B.; Brown, J.; D’Santos, C.; Krop, I.E.; Dillon, D.; McKeown, M.; Ott, C.; Qi, J.; Ni, M.; Rao, P.K.; Duarte, M.; Wu, S.Y.; Chiang, C.M.; Anders, L.; Young, R.A.; Winer, E.; Letai, A.; Barry, W.T.; Carroll, J.S.; Long, H.; Brown, M.; Liu, X.S.; Meyer, C.A.; Bradner, J.E.; Polyak, K. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature, 2016, 529(7586), 413-417.
[http://dx.doi.org/10.1038/nature16508] [PMID: 26735014]
[61]
Asangani, I.A.; Dommeti, V.L.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.; Dhanireddy, S.; Engelke, C.; Iyer, M.K.; Jing, X.; Wu, Y-M.; Cao, X.; Qin, Z.S.; Wang, S.; Feng, F.Y.; Chinnaiyan, A.M. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature, 2014, 510(7504), 278-282.
[http://dx.doi.org/10.1038/nature13229] [PMID: 24759320]
[62]
Stathis, A.; Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov., 2018, 8(1), 24-36.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0605] [PMID: 29263030]
[63]
Doroshow, D.B.; Eder, J.P.; LoRusso, P.M. BET inhibitors: a novel epigenetic approach. Ann. Oncol., 2017, 28(8), 1776-1787.
[http://dx.doi.org/10.1093/annonc/mdx157] [PMID: 28838216]
[64]
Pervaiz, M.; Mishra, P.; Günther, S. Bromodomain drug discovery - the past, the present, and the future. Chem. Rec., 2018, 18(12), 1808-1817.
[http://dx.doi.org/10.1002/tcr.201800074] [PMID: 30289209]
[65]
Yang, C.Y.; Qin, C.; Bai, L.; Wang, S. Small-molecule PROTAC degraders of the bromodomain and extra terminal (BET) proteins - A review. Drug Discov. Today. Technol., 2019, 31, 43-51.
[http://dx.doi.org/10.1016/j.ddtec.2019.04.001] [PMID: 31200858]
[66]
Rathert, P.; Roth, M.; Neumann, T.; Muerdter, F.; Roe, J-S.; Muhar, M.; Deswal, S.; Cerny-Reiterer, S.; Peter, B.; Jude, J.; Hoffmann, T.; Boryń, Ł.M.; Axelsson, E.; Schweifer, N.; Tontsch-Grunt, U.; Dow, L.E.; Gianni, D.; Pearson, M.; Valent, P.; Stark, A.; Kraut, N.; Vakoc, C.R.; Zuber, J. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature, 2015, 525(7570), 543-547.
[http://dx.doi.org/10.1038/nature14898] [PMID: 26367798]
[67]
Fong, C.Y.; Gilan, O.; Lam, E.Y.; Rubin, A.F.; Ftouni, S.; Tyler, D.; Stanley, K.; Sinha, D.; Yeh, P.; Morison, J.; Giotopoulos, G.; Lugo, D.; Jeffrey, P.; Lee, S.C.; Carpenter, C.; Gregory, R.; Ramsay, R.G.; Lane, S.W.; Abdel-Wahab, O.; Kouzarides, T.; Johnstone, R.W.; Dawson, S.J.; Huntly, B.J.; Prinjha, R.K.; Papenfuss, A.T.; Dawson, M.A. BET inhibitor resistance emerges from leukaemia stem cells. Nature, 2015, 525(7570), 538-542.
[http://dx.doi.org/10.1038/nature14888] [PMID: 26367796]
[68]
Dai, X.; Gan, W.; Li, X.; Wang, S.; Zhang, W.; Huang, L.; Liu, S.; Zhong, Q.; Guo, J.; Zhang, J.; Chen, T.; Shimizu, K.; Beca, F.; Blattner, M.; Vasudevan, D.; Buckley, D.L.; Qi, J.; Buser, L.; Liu, P.; Inuzuka, H.; Beck, A.H.; Wang, L.; Wild, P.J.; Garraway, L.A.; Rubin, M.A.; Barbieri, C.E.; Wong, K.K.; Muthuswamy, S.K.; Huang, J.; Chen, Y.; Bradner, J.E.; Wei, W. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat. Med., 2017, 23(9), 1063-1071.
[http://dx.doi.org/10.1038/nm.4378] [PMID: 28805820]
[69]
Janouskova, H.; El Tekle, G.; Bellini, E.; Udeshi, N.D.; Rinaldi, A.; Ulbricht, A.; Bernasocchi, T.; Civenni, G.; Losa, M.; Svinkina, T.; Bielski, C.M.; Kryukov, G.V.; Cascione, L.; Napoli, S.; Enchev, R.I.; Mutch, D.G.; Carney, M.E.; Berchuck, A.; Winterhoff, B.J.N.; Broaddus, R.R.; Schraml, P.; Moch, H.; Bertoni, F.; Catapano, C.V.; Peter, M.; Carr, S.A.; Garraway, L.A.; Wild, P.J.; Theurillat, J.P. Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nat. Med., 2017, 23(9), 1046-1054.
[http://dx.doi.org/10.1038/nm.4372] [PMID: 28805821]
[70]
Zhang, P.; Wang, D.; Zhao, Y.; Ren, S.; Gao, K.; Ye, Z.; Wang, S.; Pan, C.W.; Zhu, Y.; Yan, Y.; Yang, Y.; Wu, D.; He, Y.; Zhang, J.; Lu, D.; Liu, X.; Yu, L.; Zhao, S.; Li, Y.; Lin, D.; Wang, Y.; Wang, L.; Chen, Y.; Sun, Y.; Wang, C.; Huang, H. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat. Med., 2017, 23(9), 1055-1062.
[http://dx.doi.org/10.1038/nm.4379] [PMID: 28805822]
[71]
Pawar, A.; Gollavilli, P.N.; Wang, S.; Asangani, I.A. Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer. Cell Rep., 2018, 22(9), 2236-2245.
[http://dx.doi.org/10.1016/j.celrep.2018.02.011] [PMID: 29490263]
[72]
Bolden, J.E.; Tasdemir, N.; Dow, L.E.; van Es, J.H.; Wilkinson, J.E.; Zhao, Z.; Clevers, H.; Lowe, S.W. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep., 2014, 8(6), 1919-1929.
[http://dx.doi.org/10.1016/j.celrep.2014.08.025] [PMID: 25242322]
[73]
Saenz, D.T.; Fiskus, W.; Mill, C.P.; Perera, D.; Manshouri, T.; Lara, B.H.; Karkhanis, V.; Sharma, S.; Horrigan, S.K.; Bose, P.; Kadia, T.M.; Masarova, L.; DiNardo, C.D.; Borthakur, G.; Khoury, J.D.; Takahashi, K.; Bhaskara, S.; Lin, C.Y.; Green, M.R.; Coarfa, C.; Crews, C.M.; Verstovsek, S.; Bhalla, K.N. Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors. Blood, 2020, 135(15), 1255-1269.
[http://dx.doi.org/10.1182/blood.2019002922] [PMID: 32068780]
[74]
Kurimchak, A.M.; Shelton, C.; Duncan, K.E.; Johnson, K.J.; Brown, J.; O’Brien, S.; Gabbasov, R.; Fink, L.S.; Li, Y.; Lounsbury, N.; Abou-Gharbia, M.; Childers, W.E.; Connolly, D.C.; Chernoff, J.; Peterson, J.R.; Duncan, J.S. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep., 2016, 16(5), 1273-1286.
[http://dx.doi.org/10.1016/j.celrep.2016.06.091] [PMID: 27452461]
[75]
Jin, X.; Yan, Y.; Wang, D.; Ding, D.; Ma, T.; Ye, Z.; Jimenez, R.; Wang, L.; Wu, H.; Huang, H. DUB3 Promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol. Cell, 2018, 71(4), 592-605.e4.
[http://dx.doi.org/10.1016/j.molcel.2018.06.036] [PMID: 30057199]
[76]
Marcotte, R.; Sayad, A.; Brown, K.R.; Sanchez-Garcia, F.; Reimand, J.; Haider, M.; Virtanen, C.; Bradner, J.E.; Bader, G.D.; Mills, G.B.; Pe’er, D.; Moffat, J.; Neel, B.G. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell, 2016, 164(1-2), 293-309.
[http://dx.doi.org/10.1016/j.cell.2015.11.062] [PMID: 26771497]
[77]
Raina, K.; Lu, J.; Qian, Y.; Altieri, M.; Gordon, D.; Rossi, A.M.; Wang, J.; Chen, X.; Dong, H.; Siu, K.; Winkler, J.D.; Crew, A.P.; Crews, C.M.; Coleman, K.G. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(26), 7124-7129.
[http://dx.doi.org/10.1073/pnas.1521738113] [PMID: 27274052]
[78]
Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[79]
Hines, J.; Lartigue, S.; Dong, H.; Qian, Y.; Crews, C.M. MDM2-recruiting PROTAC offers superior, synergistic anti-proliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res., 2019, 79(1), 251-262.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2918] [PMID: 30385614]
[80]
Ohoka, N.; Okuhira, K.; Ito, M.; Nagai, K.; Shibata, N.; Hattori, T.; Ujikawa, O.; Shimokawa, K.; Sano, O.; Koyama, R.; Fujita, H.; Teratani, M.; Matsumoto, H.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. In Vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J. Biol. Chem., 2017, 292(11), 4556-4570.
[http://dx.doi.org/10.1074/jbc.M116.768853] [PMID: 28154167]
[81]
Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-How we can rise to the challenge. Cells, 2019, 8(9), 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[82]
Bai, L.; Zhou, B.; Yang, C.Y.; Ji, J.; McEachern, D.; Przybranowski, S.; Jiang, H.; Hu, J.; Xu, F.; Zhao, Y.; Liu, L.; Fernandez-Salas, E.; Xu, J.; Dou, Y.; Wen, B.; Sun, D.; Meagher, J.; Stuckey, J.; Hayes, D.F.; Li, S.; Ellis, M.J.; Wang, S. Targeted degradation of BET Proteins in triple-negative breast cancer. Cancer Res., 2017, 77(9), 2476-2487.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2622] [PMID: 28209615]
[83]
Cooper, J.M.; Patel, A.J.; Chen, Z.; Liao, C.P.; Chen, K.; Mo, J.; Wang, Y.; Le, L.Q. Overcoming BET inhibitor resistance in malignant peripheral nerve sheath tumors. Clin. Cancer Res., 2019, 25(11), 3404-3416.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2437] [PMID: 30796033]
[84]
Dawson, M.A.; Prinjha, R.K.; Dittmann, A.; Giotopoulos, G.; Bantscheff, M.; Chan, W.I.; Robson, S.C.; Chung, C.W.; Hopf, C.; Savitski, M.M.; Huthmacher, C.; Gudgin, E.; Lugo, D.; Beinke, S.; Chapman, T.D.; Roberts, E.J.; Soden, P.E.; Auger, K.R.; Mirguet, O.; Doehner, K.; Delwel, R.; Burnett, A.K.; Jeffrey, P.; Drewes, G.; Lee, K.; Huntly, B.J.; Kouzarides, T. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011, 478(7370), 529-533.
[http://dx.doi.org/10.1038/nature10509] [PMID: 21964340]
[85]
Zuber, J.; Shi, J.; Wang, E.; Rappaport, A.R.; Herrmann, H.; Sison, E.A.; Magoon, D.; Qi, J.; Blatt, K.; Wunderlich, M.; Taylor, M.J.; Johns, C.; Chicas, A.; Mulloy, J.C.; Kogan, S.C.; Brown, P.; Valent, P.; Bradner, J.E.; Lowe, S.W.; Vakoc, C.R. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 2011, 478(7370), 524-528.
[http://dx.doi.org/10.1038/nature10334] [PMID: 21814200]
[86]
Zhang, L.; Riley-Gillis, B.; Vijay, P.; Shen, Y. Acquired resistance to BET-PROTACs(Proteolysis Targeting Chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther., 2019, 18(7), 1302-1311.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1129] [PMID: 31064868]
[87]
Hodges, C.; Kirkland, J.G.; Crabtree, G.R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med., 2016, 6(8), a026930.
[http://dx.doi.org/10.1101/cshperspect.a026930] [PMID: 27413115]
[88]
Mathur, R.; Roberts, C.W.M. SWI/SNF (BAF) complexes: Guardians of the epigenome. Annu. Rev. Cancer Biol., 2018, 2(1), 413-427.
[http://dx.doi.org/10.1146/annurev-cancerbio-030617-050151]
[89]
Shain, A. H.; Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PloS one, 2013, 8(1), e55119-e..
[90]
Del Gaudio, N.; Di Costanzo, A.; Liu, N.Q.; Conte, L.; Migliaccio, A.; Vermeulen, M.; Martens, J.H.A.; Stunnenberg, H.G.; Nebbioso, A.; Altucci, L. BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death Dis., 2019, 10(5), 338.
[http://dx.doi.org/10.1038/s41419-019-1570-9] [PMID: 31000698]
[91]
Kang, J.U.; Koo, S.H.; Kwon, K.C.; Park, J.W.; Kim, J.M. Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet. Cytogenet., 2008, 182(1), 1-11.
[http://dx.doi.org/10.1016/j.cancergencyto.2007.12.004] [PMID: 18328944]
[92]
Scotto, L.; Narayan, G.; Nandula, S.V.; Subramaniyam, S.; Kaufmann, A.M.; Wright, J.D.; Pothuri, B.; Mansukhani, M.; Schneider, A.; Arias-Pulido, H.; Murty, V.V. Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over- expressed genes, including Drosha. Mol. Cancer, 2008, 7, 58.
[http://dx.doi.org/10.1186/1476-4598-7-58] [PMID: 18559093]
[93]
Sima, X.; He, J.; Peng, J.; Xu, Y.; Zhang, F.; Deng, L. The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A. PLoS One, 2019, 14(9), e0222305.
[http://dx.doi.org/10.1371/journal.pone.0222305] [PMID: 31504061]
[94]
Wang, X.; Wang, S.; Troisi, E.C.; Howard, T.P.; Haswell, J.R.; Wolf, B.K.; Hawk, W.H.; Ramos, P.; Oberlick, E.M.; Tzvetkov, E.P.; Ross, A.; Vazquez, F.; Hahn, W.C.; Park, P.J.; Roberts, C.W.M. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun., 2019, 10(1), 1881.
[http://dx.doi.org/10.1038/s41467-019-09891-7] [PMID: 31015438]
[95]
Yu, X.; Li, Z.; Shen, J. BRD7: a novel tumor suppressor gene in different cancers. Am. J. Transl. Res., 2016, 8(2), 742-748.
[PMID: 27158366]
[96]
Ma, J.; Niu, W.; Wang, X.; Zhou, Y.; Wang, H.; Liu, F.; Liu, Y.; Guo, J.; Xiong, W.; Zeng, Z.; Fan, S.; Li, X.; Nie, X.; Li, G.; Gui, R.; Luo, Y.; Zhou, M. Bromodomain-containing protein 7 sensitizes breast cancer cells to paclitaxel by activating Bcl2-antagonist/killer protein. Oncol. Rep., 2019, 41(3), 1487-1496.
[PMID: 30592293]
[97]
Drost, J.; Mantovani, F.; Tocco, F.; Elkon, R.; Comel, A.; Holstege, H.; Kerkhoven, R.; Jonkers, J.; Voorhoeve, P.M.; Agami, R.; Del Sal, G. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat. Cell Biol., 2010, 12(4), 380-389.
[http://dx.doi.org/10.1038/ncb2038] [PMID: 20228809]
[98]
Harte, M.T.; O’Brien, G.J.; Ryan, N.M.; Gorski, J.J.; Savage, K.I.; Crawford, N.T.; Mullan, P.B.; Harkin, D.P. BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res., 2010, 70(6), 2538-2547.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2089] [PMID: 20215511]
[99]
Pan, D.; Kobayashi, A.; Jiang, P.; Ferrari de Andrade, L.; Tay, R.E.; Luoma, A.M.; Tsoucas, D.; Qiu, X.; Lim, K.; Rao, P.; Long, H.W.; Yuan, G-C.; Doench, J.; Brown, M.; Liu, X.S.; Wucherpfennig, K.W. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science, 2018, 359(6377), 770-775.
[http://dx.doi.org/10.1126/science.aao1710] [PMID: 29301958]
[100]
Theodoulou, N.H.; Bamborough, P.; Bannister, A.J.; Becher, I.; Bit, R.A.; Che, K.H.; Chung, C.W.; Dittmann, A.; Drewes, G.; Drewry, D.H.; Gordon, L.; Grandi, P.; Leveridge, M.; Lindon, M.; Michon, A-M.; Molnar, J.; Robson, S.C.; Tomkinson, N.C.O.; Kouzarides, T.; Prinjha, R.K.; Humphreys, P.G. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem., 2016, 59(4), 1425-1439.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00256] [PMID: 25856009]
[101]
Clark, P.G.; Vieira, L.C.; Tallant, C.; Fedorov, O.; Singleton, D.C.; Rogers, C.M.; Monteiro, O.P.; Bennett, J.M.; Baronio, R.; Müller, S.; Daniels, D.L.; Méndez, J.; Knapp, S.; Brennan, P.E.; Dixon, D.J. LP99: Discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew. Chem. Int. Ed. Engl., 2015, 54(21), 6217-6221.
[http://dx.doi.org/10.1002/anie.201501394] [PMID: 25864491]
[102]
Martin, L.J.; Koegl, M.; Bader, G.; Cockcroft, X-L.; Fedorov, O.; Fiegen, D.; Gerstberger, T.; Hofmann, M.H.; Hohmann, A.F.; Kessler, D.; Knapp, S.; Knesl, P.; Kornigg, S.; Müller, S.; Nar, H.; Rogers, C.; Rumpel, K.; Schaaf, O.; Steurer, S.; Tallant, C.; Vakoc, C.R.; Zeeb, M.; Zoephel, A.; Pearson, M.; Boehmelt, G.; McConnell, D. Structure-based design of an in vivo active selective BRD9 inhibitor. J. Med. Chem., 2016, 59(10), 4462-4475.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01865] [PMID: 26914985]
[103]
Crawford, T.D.; Vartanian, S.; Côté, A.; Bellon, S.; Duplessis, M.; Flynn, E.M.; Hewitt, M.; Huang, H-R.; Kiefer, J.R.; Murray, J.; Nasveschuk, C.G.; Pardo, E.; Romero, F.A.; Sandy, P.; Tang, Y.; Taylor, A.M.; Tsui, V.; Wang, J.; Wang, S.; Zawadzke, L.; Albrecht, B.K.; Magnuson, S.R.; Cochran, A.G.; Stokoe, D. Inhibition of bromodomain-containing protein 9 for the prevention of epigenetically-defined drug resistance. Bioorg. Med. Chem. Lett., 2017, 27(15), 3534-3541.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.063] [PMID: 28606761]
[104]
Brien, G.L.; Remillard, D.; Shi, J.; Hemming, M.L.; Chabon, J.; Wynne, K.; Dillon, E.T.; Cagney, G.; Van Mierlo, G.; Baltissen, M.P.; Vermeulen, M.; Qi, J.; Fröhling, S.; Gray, N.S.; Bradner, J.E.; Vakoc, C.R.; Armstrong, S.A. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.41305] [PMID: 30431433]
[105]
Pollack, V.A.; Savage, D.M.; Baker, D.A.; Tsaparikos, K.E.; Sloan, D.E.; Moyer, J.D.; Barbacci, E.G.; Pustilnik, L.R.; Smolarek, T.A.; Davis, J.A.; Vaidya, M.P.; Arnold, L.D.; Doty, J.L.; Iwata, K.K.; Morin, M.J. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther., 1999, 291(2), 739-748.
[PMID: 10525095]
[106]
Kozovska, Z.; Patsalias, A.; Bajzik, V.; Durinikova, E.; Demkova, L.; Jargasova, S.; Smolkova, B.; Plava, J.; Kucerova, L.; Matuskova, M. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer, 2018, 18(1), 656.
[http://dx.doi.org/10.1186/s12885-018-4572-6] [PMID: 29902974]
[107]
Raha, D.; Wilson, T.R.; Peng, J.; Peterson, D.; Yue, P.; Evangelista, M.; Wilson, C.; Merchant, M.; Settleman, J. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res., 2014, 74(13), 3579-3590.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3456] [PMID: 24812274]
[108]
Hohmann, A.F.; Martin, L.J.; Minder, J.L.; Roe, J-S.; Shi, J.; Steurer, S.; Bader, G.; McConnell, D.; Pearson, M.; Gerstberger, T.; Gottschamel, T.; Thompson, D.; Suzuki, Y.; Koegl, M.; Vakoc, C.R. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat. Chem. Biol., 2016, 12(9), 672-679.
[http://dx.doi.org/10.1038/nchembio.2115] [PMID: 27376689]
[109]
Narlikar, G.J.; Sundaramoorthy, R.; Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell, 2013, 154(3), 490-503.
[http://dx.doi.org/10.1016/j.cell.2013.07.011] [PMID: 23911317]
[110]
Mashtalir, N.; D’Avino, A.R.; Michel, B.C.; Luo, J.; Pan, J.; Otto, J.E.; Zullow, H.J.; McKenzie, Z.M.; Kubiak, R.L.; St Pierre, R.; Valencia, A.M.; Poynter, S.J.; Cassel, S.H.; Ranish, J.A.; Kadoch, C. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell, 2018, 175(5), 1272-1288.e20.
[http://dx.doi.org/10.1016/j.cell.2018.09.032] [PMID: 30343899]
[111]
Martens, J.A.; Winston, F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev., 2003, 13(2), 136-142.
[http://dx.doi.org/10.1016/S0959-437X(03)00022-4] [PMID: 12672490]
[112]
Lin, D.I.; Chudnovsky, Y.; Duggan, B.; Zajchowski, D.; Greenbowe, J.; Ross, J.S.; Gay, L.M.; Ali, S.M.; Elvin, J.A. Comprehensive genomic profiling reveals inactivating SMARCA4 mutations and low tumor mutational burden in small cell carcinoma of the ovary, hypercalcemic-type. Gynecol. Oncol., 2017, 147(3), 626-633.
[http://dx.doi.org/10.1016/j.ygyno.2017.09.031] [PMID: 29102090]
[113]
Wong, A.K.C.; Shanahan, F.; Chen, Y.; Lian, L.; Ha, P.; Hendricks, K.; Ghaffari, S.; Iliev, D.; Penn, B.; Woodland, A-M.; Smith, R.; Salada, G.; Carillo, A.; Laity, K.; Gupte, J.; Swedlund, B.; Tavtigian, S.V.; Teng, D.H-F.; Lees, E. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res., 2000, 60(21), 6171-6177.
[PMID: 11085541]
[114]
Wilson, B.G.; Roberts, C.W.M. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer, 2011, 11(7), 481-492.
[http://dx.doi.org/10.1038/nrc3068] [PMID: 21654818]
[115]
Guerrero-Martínez, J.A.; Reyes, J.C. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci. Rep., 2018, 8(1), 2043.
[http://dx.doi.org/10.1038/s41598-018-20217-3] [PMID: 29391527]
[116]
Hoffman, G.R.; Rahal, R.; Buxton, F.; Xiang, K.; McAllister, G.; Frias, E.; Bagdasarian, L.; Huber, J.; Lindeman, A.; Chen, D.; Romero, R.; Ramadan, N.; Phadke, T.; Haas, K.; Jaskelioff, M.; Wilson, B.G.; Meyer, M.J.; Saenz-Vash, V.; Zhai, H.; Myer, V.E.; Porter, J.A.; Keen, N.; McLaughlin, M.E.; Mickanin, C.; Roberts, C.W.; Stegmeier, F.; Jagani, Z. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 3128-3133.
[http://dx.doi.org/10.1073/pnas.1316793111] [PMID: 24520176]
[117]
Oike, T.; Ogiwara, H.; Tominaga, Y.; Ito, K.; Ando, O.; Tsuta, K.; Mizukami, T.; Shimada, Y.; Isomura, H.; Komachi, M.; Furuta, K.; Watanabe, S.; Nakano, T.; Yokota, J.; Kohno, T. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res., 2013, 73(17), 5508-5518.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4593] [PMID: 23872584]
[118]
Wilson, B.G.; Helming, K.C.; Wang, X.; Kim, Y.; Vazquez, F.; Jagani, Z.; Hahn, W.C.; Roberts, C.W. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol., 2014, 34(6), 1136-1144.
[http://dx.doi.org/10.1128/MCB.01372-13] [PMID: 24421395]
[119]
Lu, B.; Shi, H. An in-depth look at small cell carcinoma of the ovary, hypercalcemic type (SCCOHT): Clinical implications from recent molecular findings. J. Cancer, 2019, 10(1), 223-237.
[http://dx.doi.org/10.7150/jca.26978] [PMID: 30662543]
[120]
Pan, J.; McKenzie, Z.M.; D’Avino, A.R.; Mashtalir, N.; Lareau, C.A.; St Pierre, R.; Wang, L.; Shilatifard, A.; Kadoch, C. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting. Nat. Genet., 2019, 51(4), 618-626.
[http://dx.doi.org/10.1038/s41588-019-0363-5] [PMID: 30858614]
[121]
Papillon, J.P.N.; Nakajima, K.; Adair, C.D.; Hempel, J.; Jouk, A.O.; Karki, R.G.; Mathieu, S.; Möbitz, H.; Ntaganda, R.; Smith, T.; Visser, M.; Hill, S.E.; Hurtado, F.K.; Chenail, G.; Bhang, H.C.; Bric, A.; Xiang, K.; Bushold, G.; Gilbert, T.; Vattay, A.; Dooley, J.; Costa, E.A.; Park, I.; Li, A.; Farley, D.; Lounkine, E.; Yue, Q.K.; Xie, X.; Zhu, X.; Kulathila, R.; King, D.; Hu, T.; Vulic, K.; Cantwell, J.; Luu, C.; Jagani, Z. Discovery of orally active inhibitors of brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J. Med. Chem., 2018, 61(22), 10155-10172.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01318] [PMID: 30339381]
[122]
Chung, H.K.; Jacobs, C.L.; Huo, Y.; Yang, J.; Krumm, S.A.; Plemper, R.K.; Tsien, R.Y.; Lin, M.Z. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol., 2015, 11(9), 713-720.
[http://dx.doi.org/10.1038/nchembio.1869] [PMID: 26214256]
[123]
Rago, F.; DiMare, M.T.; Elliott, G.; Ruddy, D.A.; Sovath, S.; Kerr, G.; Bhang, H.C.; Jagani, Z. Degron mediated BRM/SMARCA2 depletion uncovers novel combination partners for treatment of BRG1/SMARCA4-mutant cancers. Biochem. Biophys. Res. Commun., 2019, 508(1), 109-116.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.009] [PMID: 30527810]
[124]
Ehrenhöfer-Wölfer, K.; Puchner, T.; Schwarz, C.; Rippka, J.; Blaha-Ostermann, S.; Strobl, U.; Hörmann, A.; Bader, G.; Kornigg, S.; Zahn, S.; Sommergruber, W.; Schweifer, N.; Zichner, T.; Schlattl, A.; Neumüller, R.A.; Shi, J.; Vakoc, C.R.; Kögl, M.; Petronczki, M.; Kraut, N.; Pearson, M.A.; Wöhrle, S. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci. Rep., 2019, 9(1), 11661.
[http://dx.doi.org/10.1038/s41598-019-48152-x] [PMID: 31406271]
[125]
Vangamudi, B.; Paul, T.A.; Shah, P.K.; Kost-Alimova, M.; Nottebaum, L.; Shi, X.; Zhan, Y.; Leo, E.; Mahadeshwar, H.S.; Protopopov, A.; Futreal, A.; Tieu, T.N.; Peoples, M.; Heffernan, T.P.; Marszalek, J.R.; Toniatti, C.; Petrocchi, A.; Verhelle, D.; Owen, D.R.; Draetta, G.; Jones, P.; Palmer, W.S.; Sharma, S.; Andersen, J.N. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res., 2015, 75(18), 3865-3878.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3798] [PMID: 26139243]
[126]
Zhang, Z.; Wang, F.; Du, C.; Guo, H.; Ma, L.; Liu, X.; Kornmann, M.; Tian, X.; Yang, Y. BRM/SMARCA2 promotes the proliferation and chemoresistance of pancreatic cancer cells by targeting JAK2/STAT3 signaling. Cancer Lett., 2017, 402, 213-224.
[http://dx.doi.org/10.1016/j.canlet.2017.05.006] [PMID: 28602977]
[127]
Fukuda, A.; Wang, S.C.; Morris, J.P., IV; Folias, A.E.; Liou, A.; Kim, G.E.; Akira, S.; Boucher, K.M.; Firpo, M.A.; Mulvihill, S.J.; Hebrok, M. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell, 2011, 19(4), 441-455.
[http://dx.doi.org/10.1016/j.ccr.2011.03.002] [PMID: 21481787]
[128]
Xu, X.; Wang, Y.; Deng, H.; Liu, C.; Wu, J.; Lai, M. HMGA2 enhances 5-fluorouracil chemoresistance in colorectal cancer via the Dvl2/Wnt pathway. Oncotarget, 2018, 9(11), 9963-9974.
[http://dx.doi.org/10.18632/oncotarget.24133] [PMID: 29515783]
[129]
Gerstenberger, B.S.; Trzupek, J.D.; Tallant, C.; Fedorov, O.; Filippakopoulos, P.; Brennan, P.E.; Fedele, V.; Martin, S.; Picaud, S.; Rogers, C.; Parikh, M.; Taylor, A.; Samas, B.; O’Mahony, A.; Berg, E.; Pallares, G.; Torrey, A.D.; Treiber, D.K.; Samardjiev, I.J.; Nasipak, B.T.; Padilla-Benavides, T.; Wu, Q.; Imbalzano, A.N.; Nickerson, J.A.; Bunnage, M.E.; Müller, S.; Knapp, S.; Owen, D.R. Identification of a chemical probe for family VIII bromodomains through optimization of a fragment hit. J. Med. Chem., 2016, 59(10), 4800-4811.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00012] [PMID: 27115555]
[130]
Ganguly, D.; Sims, M.; Cai, C.; Fan, M.; Pfeffer, L.M. Chromatin remodeling factor BRG1 regulates stemness and chemosensitivity of glioma initiating cells. Stem Cells, 2018, 36(12), 1804-1815.
[http://dx.doi.org/10.1002/stem.2909] [PMID: 30171737]
[131]
Nagy, Z.; Tora, L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene, 2007, 26(37), 5341-5357.
[http://dx.doi.org/10.1038/sj.onc.1210604] [PMID: 17694077]
[132]
Martinez, E.; Kundu, T.K.; Fu, J.; Roeder, R.G. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem., 1998, 273(37), 23781-23785.
[http://dx.doi.org/10.1074/jbc.273.37.23781] [PMID: 9726987]
[133]
Ogryzko, V.V.; Kotani, T.; Zhang, X.; Schiltz, R.L.; Howard, T.; Yang, X.J.; Howard, B.H.; Qin, J.; Nakatani, Y. Histone-like TAFs within the PCAF histone acetylase complex. Cell, 1998, 94(1), 35-44.
[http://dx.doi.org/10.1016/S0092-8674(00)81219-2] [PMID: 9674425]
[134]
Wieczorek, E.; Brand, M.; Jacq, X.; Tora, L. Function of TAF(II)- containing complex without TBP in transcription by RNA polymerase II. Nature, 1998, 393(6681), 187-191.
[http://dx.doi.org/10.1038/30283] [PMID: 9603525]
[135]
Nagy, Z.; Riss, A.; Fujiyama, S.; Krebs, A.; Orpinell, M.; Jansen, P.; Cohen, A.; Stunnenberg, H.G.; Kato, S.; Tora, L. The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cell. Mol. Life Sci., 2010, 67(4), 611-628.
[http://dx.doi.org/10.1007/s00018-009-0199-8] [PMID: 19936620]
[136]
Kouzarides, T. SnapShot: histone-modifying enzymes. Cell, 2007, 131(4), 822. 1.
[137]
Kuo, Y.M.; Andrews, A.J. Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3. PLoS One, 2013, 8(2), e54896.
[http://dx.doi.org/10.1371/journal.pone.0054896] [PMID: 23437046]
[138]
Liu, L.; Scolnick, D.M.; Trievel, R.C.; Zhang, H.B.; Marmorstein, R.; Halazonetis, T.D.; Berger, S.L. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol., 1999, 19(2), 1202-1209.
[http://dx.doi.org/10.1128/MCB.19.2.1202] [PMID: 9891054]
[139]
Okumura, K.; Mendoza, M.; Bachoo, R.M.; DePinho, R.A.; Cavenee, W.K.; Furnari, F.B. PCAF modulates PTEN activity. J. Biol. Chem., 2006, 281(36), 26562-26568.
[http://dx.doi.org/10.1074/jbc.M605391200] [PMID: 16829519]
[140]
Patel, J.H.; Du, Y.; Ard, P.G.; Phillips, C.; Carella, B.; Chen, C.J.; Rakowski, C.; Chatterjee, C.; Lieberman, P.M.; Lane, W.S.; Blobel, G.A.; McMahon, S.B. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell. Biol., 2004, 24(24), 10826-10834.
[http://dx.doi.org/10.1128/MCB.24.24.10826-10834.2004] [PMID: 15572685]
[141]
Chen, L.; Wei, T.; Si, X.; Wang, Q.; Li, Y.; Leng, Y.; Deng, A.; Chen, J.; Wang, G.; Zhu, S.; Kang, J. Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of E2F1, cyclin D1, and cyclin E1 expression. J. Biol. Chem., 2013, 288(20), 14510-14521.
[http://dx.doi.org/10.1074/jbc.M113.458737] [PMID: 23543735]
[142]
Mustachio, L.M.; Roszik, J.; Farria, A.T.; Guerra, K.; Dent, S.Y. Repression of GCN5 expression or activity attenuates c-MYC expression in non-small cell lung cancer. Am. J. Cancer Res., 2019, 9(8), 1830-1845.
[PMID: 31497362]
[143]
Yin, Y.W.; Jin, H.J.; Zhao, W.; Gao, B.; Fang, J.; Wei, J.; Zhang, D.D.; Zhang, J.; Fang, D. The histone acetyltransferase GCN5 expression is elevated and regulated by c-myc and E2F1 transcription factors in human colon cancer. Gene Expr., 2015, 16(4), 187-196.
[http://dx.doi.org/10.3727/105221615X14399878166230] [PMID: 26637399]
[144]
Liu, K.; Zhang, Q.; Lan, H.; Wang, L.; Mou, P.; Shao, W.; Liu, D.; Yang, W.; Lin, Z.; Lin, Q.; Ji, T. GCN5 potentiates glioma proliferation and invasion via STAT3 and AKT signaling pathways. Int. J. Mol. Sci., 2015, 16(9), 21897-21910.
[http://dx.doi.org/10.3390/ijms160921897] [PMID: 26378521]
[145]
Zhao, L.; Pang, A.; Li, Y. Function of GCN5 in the TGF-β1-induced epithelial-to-mesenchymal transition in breast cancer. Oncol. Lett., 2018, 16(3), 3955-3963.
[http://dx.doi.org/10.3892/ol.2018.9134] [PMID: 30128014]
[146]
Farria, A.T.; Mustachio, L.M.; Akdemir, Z.H.C.; Dent, S.Y.R. GCN5 HAT inhibition reduces human Burkitt lymphoma cell survival through reduction of MYC target gene expression and impeding BCR signaling pathways. Oncotarget, 2019, 10(56), 5847-5858.
[http://dx.doi.org/10.18632/oncotarget.27226] [PMID: 31645904]
[147]
Wang, L.T.; Liu, K.Y.; Jeng, W.Y.; Chiang, C.M.; Chai, C.Y.; Chiou, S.S.; Huang, M.S.; Yokoyama, K.K.; Wang, S.N.; Huang, S.K.; Hsu, S.H. PCAF-mediated acetylation of ISX recruits BRD4 to promote epithelial-mesenchymal transition. EMBO Rep., 2020, 21(2), e48795.
[http://dx.doi.org/10.15252/embr.201948795] [PMID: 31908141]
[148]
Jia, Y.-L.; Xu, M.; Dou, C.-W.; Liu, Z.-K.; Xue, Y.-M.; Yao, B.-W.; Ding, L.-L.; Tu, K.-S.; Zheng, X.; Liu, Q.-G. P300/CBP-associated factor (PCAF) inhibits the growth of hepatocellular carcinoma by promoting cell autophagy. Cell Death Dis, 2016, 7(10), e2400.
[149]
Liu, T.; Wang, X.; Hu, W.; Fang, Z.; Jin, Y.; Fang, X.; Miao, Q.R. Epigenetically down-regulated acetyltransferase PCAF increases the resistance of colorectal cancer to 5-fluorouracil. Neoplasia, 2019, 21(6), 557-570.
[http://dx.doi.org/10.1016/j.neo.2019.03.011] [PMID: 31042625]
[150]
Ying, M.Z.; Wang, J.J.; Li, D.W.; Yu, G.; Wang, X.; Pan, J.; Chen, Y.; He, M.X. The p300/CBP associated factor is frequently downregulated in intestinal-type gastric carcinoma and constitutes a biomarker for clinical outcome. Cancer Biol. Ther., 2010, 9(4), 312-320.
[http://dx.doi.org/10.4161/cbt.9.4.10748] [PMID: 20026908]
[151]
Lau, O.D.; Kundu, T.K.; Soccio, R.E.; Ait-Si-Ali, S.; Khalil, E.M.; Vassilev, A.; Wolffe, A.P.; Nakatani, Y.; Roeder, R.G.; Cole, P.A. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell, 2000, 5(3), 589-595.
[http://dx.doi.org/10.1016/S1097-2765(00)80452-9] [PMID: 10882143]
[152]
De Angelis, J.; Gastel, J.; Klein, D.C.; Cole, P.A. Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87). J. Biol. Chem., 1998, 273(5), 3045-3050.
[http://dx.doi.org/10.1074/jbc.273.5.3045] [PMID: 9446620]
[153]
Tanner, K.G.; Trievel, R.C.; Kuo, M.H.; Howard, R.M.; Berger, S.L.; Allis, C.D.; Marmorstein, R.; Denu, J.M. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem., 1999, 274(26), 18157-18160.
[http://dx.doi.org/10.1074/jbc.274.26.18157] [PMID: 10373413]
[154]
Zeng, L.; Li, J.; Muller, M.; Yan, S.; Mujtaba, S.; Pan, C.; Wang, Z.; Zhou, M-M. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J. Am. Chem. Soc., 2005, 127(8), 2376-2377.
[http://dx.doi.org/10.1021/ja044885g] [PMID: 15724976]
[155]
Humphreys, P.G.; Bamborough, P.; Chung, C.W.; Craggs, P.D.; Gordon, L.; Grandi, P.; Hayhow, T.G.; Hussain, J.; Jones, K.L.; Lindon, M.; Michon, A-M.; Renaux, J.F.; Suckling, C.J.; Tough, D.F.; Prinjha, R.K. Discovery of a potent, cell penetrant, and selective p300/CBP-associated factor (PCAF)/general control nonderepressible 5 (GCN5) bromodomain chemical Probe. J. Med. Chem., 2017, 60(2), 695-709.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01566] [PMID: 28002667]
[156]
Moustakim, M.; Clark, P.G.; Trulli, L.; Fuentes de Arriba, A.L.; Ehebauer, M.T.; Chaikuad, A.; Murphy, E.J.; Mendez-Johnson, J.; Daniels, D.; Hou, C.D.; Lin, Y.H.; Walker, J.R.; Hui, R.; Yang, H.; Dorrell, L.; Rogers, C.M.; Monteiro, O.P.; Fedorov, O.; Huber, K.V.; Knapp, S.; Heer, J.; Dixon, D.J.; Brennan, P.E. Discovery of a PCAF bromodomain chemical probe. Angew. Chem. Int. Ed. Engl., 2017, 56(3), 827-831.
[http://dx.doi.org/10.1002/anie.201610816] [PMID: 27966810]
[157]
Huang, L.; Li, H.; Li, L.; Niu, L.; Seupel, R.; Wu, C.; Cheng, W.; Chen, C.; Ding, B.; Brennan, P. E.; Yang, S. Discovery of pyrrolo[3,2-d]pyrimidin-4-one derivatives as a new class of potent and cell-active inhibitors of P300/CBP-associated factor bromodomain. J. Med. Chem., 2019, 62(9), 4526-4542. 1.
[158]
Albrecht, B.; Burdick, D.; Cote, A.; Duplessis, M.; Nasveschuk, C.; Taylor, A. Pyridazinone derivatives and their use in the treatment of cancer. WO2016/112298A1, 2016.
[159]
Albrecht, B.; Cote, A.; Crawford, T.; Duplessis, M.; Good, A.; Leblanc, Y.; Magnuson, S.; Nasveschuk, C.; Pastor, R.; Romero, F.; Taylor, A. Phthalazine derivatives of formula (I) as PCAF and GCN5 inhibitors for use in the treatment of cancer. WO2016/036954A1, 2016.
[160]
Albrecht, B.; Cote, A.; Crawford, T.; Duplessis, M.; Good, A.; Leblanc, Y.; Magnuson, S.; Nasveschuk, C.; Pastor, R.; Romero, F.; Taylor, A. Therapeutic compounds and uses thereof. WO2016/036873A1, 2016.
[161]
Balasubramanyam, K.; Altaf, M.; Varier, R.A.; Swaminathan, V.; Ravindran, A.; Sadhale, P.P.; Kundu, T.K. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem., 2004, 279(32), 33716-33726.
[http://dx.doi.org/10.1074/jbc.M402839200] [PMID: 15155757]
[162]
Aggarwal, V.; Tuli, H.S.; Kaur, J.; Aggarwal, D.; Parashar, G.; Chaturvedi Parashar, N.; Kulkarni, S.; Kaur, G.; Sak, K.; Kumar, M.; Ahn, K.S. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines, 2020, 8(5), 103.
[http://dx.doi.org/10.3390/biomedicines8050103] [PMID: 32365899]
[163]
Huang, W.C.; Kuo, K.T.; Adebayo, B.O.; Wang, C.H.; Chen, Y.J.; Jin, K.; Tsai, T.H.; Yeh, C.T. Garcinol inhibits cancer stem cell-like phenotype via suppression of the Wnt/β-catenin/STAT3 axis signalling pathway in human non-small cell lung carcinomas. J. Nutr. Biochem., 2018, 54, 140-150.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.008] [PMID: 29414668]
[164]
Li, F.; Shanmugam, M.K.; Siveen, K.S.; Wang, F.; Ong, T.H.; Loo, S.Y.; Swamy, M.M.; Mandal, S.; Kumar, A.P.; Goh, B.C.; Kundu, T.; Ahn, K.S.; Wang, L.Z.; Hui, K.M.; Sethi, G. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers. Oncotarget, 2015, 6(7), 5147-5163.
[http://dx.doi.org/10.18632/oncotarget.2881] [PMID: 25762616]
[165]
Tu, S.H.; Chiou, Y.S.; Kalyanam, N.; Ho, C.T.; Chen, L.C.; Pan, M.H. Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct., 2017, 8(3), 1067-1079.
[http://dx.doi.org/10.1039/C6FO01588C] [PMID: 28145547]
[166]
Farhan, M.; Malik, A.; Ullah, M.F.; Afaq, S.; Faisal, M.; Farooqi, A.A.; Biersack, B.; Schobert, R.; Ahmad, A. Garcinol sensitizes NSCLC cells to standard therapies by regulating EMT-modulating miRNAs. Int. J. Mol. Sci., 2019, 20(4), 800.
[http://dx.doi.org/10.3390/ijms20040800] [PMID: 30781783]
[167]
Blander, G.; Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem., 2004, 73, 417-435.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073651] [PMID: 15189148]
[168]
Zahedipour, F.; Jamialahmadi, K.; Karimi, G. The role of noncoding RNAs and sirtuins in cancer drug resistance. Eur. J. Pharmacol., 2020, 877, 173094.
[http://dx.doi.org/10.1016/j.ejphar.2020.173094] [PMID: 32243871]
[169]
Dang, W. The controversial world of sirtuins. Drug Discov. Today. Technol., 2014, 12, 9-17.
[http://dx.doi.org/10.1016/j.ddtec.2012.08.003] [PMID: 25027380]
[170]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[171]
Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007, 26(37), 5541-5552.
[http://dx.doi.org/10.1038/sj.onc.1210620] [PMID: 17694093]
[172]
Stark, M.; Hayward, N. Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. Cancer Res., 2007, 67(6), 2632-2642.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4152] [PMID: 17363583]
[173]
Taylor, B.S.; DeCarolis, P.L.; Angeles, C.V.; Brenet, F.; Schultz, N.; Antonescu, C.R.; Scandura, J.M.; Sander, C.; Viale, A.J.; Socci, N.D.; Singer, S. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov., 2011, 1(7), 587-597.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0181] [PMID: 22328974]
[174]
Ropero, S.; Fraga, M.F.; Ballestar, E.; Hamelin, R.; Yamamoto, H.; Boix-Chornet, M.; Caballero, R.; Alaminos, M.; Setien, F.; Paz, M.F.; Herranz, M.; Palacios, J.; Arango, D.; Orntoft, T.F.; Aaltonen, L.A.; Schwartz, S., Jr; Esteller, M. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet., 2006, 38(5), 566-569.
[http://dx.doi.org/10.1038/ng1773] [PMID: 16642021]
[175]
Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[176]
Weichert, W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett., 2009, 280(2), 168-176.
[http://dx.doi.org/10.1016/j.canlet.2008.10.047] [PMID: 19103471]
[177]
Sudo, T.; Mimori, K.; Nishida, N.; Kogo, R.; Iwaya, T.; Tanaka, F.; Shibata, K.; Fujita, H.; Shirouzu, K.; Mori, M. Histone deacetylase 1 expression in gastric cancer. Oncol. Rep., 2011, 26(4), 777-782.
[PMID: 21725604]
[178]
Oehme, I.; Deubzer, H.E.; Wegener, D.; Pickert, D.; Linke, J.P.; Hero, B.; Kopp-Schneider, A.; Westermann, F.; Ulrich, S.M.; von Deimling, A.; Fischer, M.; Witt, O. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res., 2009, 15(1), 91-99.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0684] [PMID: 19118036]
[179]
Rettig, I.; Koeneke, E.; Trippel, F.; Mueller, W. C.; Burhenne, J.; Kopp-Schneider, A.; Fabian, J.; Schober, A.; Fernekorn, U.; von Deimling, A.; Deubzer, H. E.; Milde, T.; Witt, O.; Oehme, I. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis, 2015, 6(2), e1657-e..
[http://dx.doi.org/10.1038/cddis.2015.24]
[180]
He, B.; Dai, L.; Zhang, X.; Chen, D.; Wu, J.; Feng, X.; Zhang, Y.; Xie, H.; Zhou, L.; Wu, J.; Zheng, S. The HDAC inhibitor quisinostat (JNJ-26481585) supresses hepatocellular carcinoma alone and synergistically in combination with sorafenib by G0/G1 phase arrest and apoptosis induction. Int. J. Biol. Sci., 2018, 14(13), 1845-1858.
[http://dx.doi.org/10.7150/ijbs.27661] [PMID: 30443188]
[181]
Yuan, H.; Su, L.; Chen, W.Y. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. OncoTargets Ther., 2013, 6, 1399-1416.
[PMID: 24133372]
[182]
Lain, S.; Hollick, J.J.; Campbell, J.; Staples, O.D.; Higgins, M.; Aoubala, M.; McCarthy, A.; Appleyard, V.; Murray, K.E.; Baker, L.; Thompson, A.; Mathers, J.; Holland, S.J.; Stark, M.J.; Pass, G.; Woods, J.; Lane, D.P.; Westwood, N.J. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell, 2008, 13(5), 454-463.
[http://dx.doi.org/10.1016/j.ccr.2008.03.004] [PMID: 18455128]
[183]
Mazumder, S.; Plesca, D.; Kinter, M.; Almasan, A. Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis. Mol. Cell. Biol., 2007, 27(9), 3511-3520.
[http://dx.doi.org/10.1128/MCB.01448-06] [PMID: 17325036]
[184]
Choi, H.K.; Cho, K.B.; Phuong, N.T.; Han, C.Y.; Han, H.K.; Hien, T.T.; Choi, H.S.; Kang, K.W. SIRT1-mediated FoxO1 deacetylation is essential for multidrug resistance-associated protein 2 expression in tamoxifen-resistant breast cancer cells. Mol. Pharm., 2013, 10(7), 2517-2527.
[http://dx.doi.org/10.1021/mp400287p] [PMID: 23763570]
[185]
Chu, F.; Chou, P.M.; Zheng, X.; Mirkin, B.L.; Rebbaa, A. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res., 2005, 65(22), 10183-10187.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2002] [PMID: 16288004]
[186]
Karbasforooshan, H.; Roohbakhsh, A.; Karimi, G. SIRT1 and microRNAs: The role in breast, lung and prostate cancers. Exp. Cell Res., 2018, 367(1), 1-6.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.023] [PMID: 29574020]
[187]
Wang, Z.; Yuan, H.; Roth, M.; Stark, J.M.; Bhatia, R.; Chen, W.Y. SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene, 2013, 32(5), 589-598.
[http://dx.doi.org/10.1038/onc.2012.83] [PMID: 22410779]
[188]
Kim, H-S.; Vassilopoulos, A.; Wang, R-H.; Lahusen, T.; Xiao, Z.; Xu, X.; Li, C.; Veenstra, T.D.; Li, B.; Yu, H.; Ji, J.; Wang, X.W.; Park, S-H.; Cha, Y.I.; Gius, D.; Deng, C-X. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell, 2011, 20(4), 487-499.
[http://dx.doi.org/10.1016/j.ccr.2011.09.004] [PMID: 22014574]
[189]
Chalkiadaki, A.; Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer, 2015, 15(10), 608-624.
[http://dx.doi.org/10.1038/nrc3985] [PMID: 26383140]
[190]
Li, L.; Wang, L.; Li, L.; Wang, Z.; Ho, Y.; McDonald, T.; Holyoake, T.L.; Chen, W.; Bhatia, R. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell, 2012, 21(2), 266-281.
[http://dx.doi.org/10.1016/j.ccr.2011.12.020] [PMID: 22340598]
[191]
Jang, K.Y.; Noh, S.J.; Lehwald, N.; Tao, G.Z.; Bellovin, D.I.; Park, H.S.; Moon, W.S.; Felsher, D.W.; Sylvester, K.G. SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. PLoS One, 2012, 7(9), e45119.
[http://dx.doi.org/10.1371/journal.pone.0045119] [PMID: 23024800]
[192]
Menssen, A.; Hydbring, P.; Kapelle, K.; Vervoorts, J.; Diebold, J.; Lüscher, B.; Larsson, L.G.; Hermeking, H. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl. Acad. Sci. USA, 2012, 109(4), E187-E196.
[http://dx.doi.org/10.1073/pnas.1105304109] [PMID: 22190494]
[193]
Li, X.; Zhang, S.; Blander, G.; Tse, J.G.; Krieger, M.; Guarente, L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell, 2007, 28(1), 91-106.
[http://dx.doi.org/10.1016/j.molcel.2007.07.032] [PMID: 17936707]
[194]
Oh, W.K.; Cho, K.B.; Hien, T.T.; Kim, T.H.; Kim, H.S.; Dao, T.T.; Han, H.K.; Kwon, S.M.; Ahn, S.G.; Yoon, J.H.; Kim, T.H.; Kim, Y.G.; Kang, K.W.; Amurensin, G. Amurensin G, a potent natural SIRT1 inhibitor, rescues doxorubicin responsiveness via down-regulation of multidrug resistance 1. Mol. Pharmacol., 2010, 78(5), 855-864.
[http://dx.doi.org/10.1124/mol.110.065961] [PMID: 20713551]
[195]
Gui, C.Y.; Ngo, L.; Xu, W.S.; Richon, V.M.; Marks, P.A. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA, 2004, 101(5), 1241-1246.
[http://dx.doi.org/10.1073/pnas.0307708100] [PMID: 14734806]
[196]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[197]
Qin, H-T.; Li, H-Q.; Liu, F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin. Ther. Pat., 2017, 27(5), 621-636.
[http://dx.doi.org/10.1080/13543776.2017.1276565] [PMID: 28033734]
[198]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[199]
Santo, L.; Hideshima, T.; Kung, A.L.; Tseng, J.C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J.H.; Mazitschek, R.; Ogier, W.C.; Cirstea, D.; Rodig, S.; Eda, H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K.C.; Jones, S.S.; Raje, N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood, 2012, 119(11), 2579-2589.
[http://dx.doi.org/10.1182/blood-2011-10-387365] [PMID: 22262760]
[200]
Marek, L.; Hamacher, A.; Hansen, F.K.; Kuna, K.; Gohlke, H.; Kassack, M.U.; Kurz, T. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J. Med. Chem., 2013, 56(2), 427-436.
[http://dx.doi.org/10.1021/jm301254q] [PMID: 23252603]
[201]
Cao, K.; Wang, G.; Li, W.; Zhang, L.; Wang, R.; Huang, Y.; Du, L.; Jiang, J.; Wu, C.; He, X.; Roberts, A.I.; Li, F.; Rabson, A.B.; Wang, Y.; Shi, Y. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity. Oncogene, 2015, 34(49), 5960-5970.
[http://dx.doi.org/10.1038/onc.2015.46] [PMID: 25745993]
[202]
Won, H.R.; Lee, D.H.; Yeon, S.K.; Ryu, H.W.; Kim, G.W.; Kwon, S.H. HDAC6-selective inhibitor synergistically enhances the anticancer activity of immunomodulatory drugs in multiple myeloma. Int. J. Oncol., 2019, 55(2), 499-512.
[http://dx.doi.org/10.3892/ijo.2019.4828] [PMID: 31268156]
[203]
Shimizu, T.; LoRusso, P.M.; Papadopoulos, K.P.; Patnaik, A.; Beeram, M.; Smith, L.S.; Rasco, D.W.; Mays, T.A.; Chambers, G.; Ma, A.; Wang, J.; Laliberte, R.; Voi, M.; Tolcher, A.W. Phase I first-in-human study of CUDC-101, a multitargeted inhibitor of HDACs, EGFR, and HER2 in patients with advanced solid tumors. Clin. Cancer Res., 2014, 20(19), 5032-5040.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0570] [PMID: 25107918]
[204]
Qian, C.; Lai, C.J.; Bao, R.; Wang, D.G.; Wang, J.; Xu, G.X.; Atoyan, R.; Qu, H.; Yin, L.; Samson, M.; Zifcak, B.; Ma, A.W.; DellaRocca, S.; Borek, M.; Zhai, H.X.; Cai, X.; Voi, M. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res., 2012, 18(15), 4104-4113.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0055] [PMID: 22693356]
[205]
Gryder, B.E.; Rood, M.K.; Johnson, K.A.; Patil, V.; Raftery, E.D.; Yao, L-P.D.; Rice, M.; Azizi, B.; Doyle, D.F.; Oyelere, A.K. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem., 2013, 56(14), 5782-5796.
[http://dx.doi.org/10.1021/jm400467w] [PMID: 23786452]
[206]
He, S.; Dong, G.; Wang, Z.; Chen, W.; Huang, Y.; Li, Z.; Jiang, Y.; Liu, N.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Discovery of novel multiacting topoisomerase I/II and histone deacetylase inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 239-243.
[http://dx.doi.org/10.1021/ml500327q] [PMID: 25815139]
[207]
Wang, L.; Chen, G.; Chen, K.; Ren, Y.; Li, H.; Jiang, X.; Jia, L.; Fu, S.; Li, Y.; Liu, X.; Wang, S.; Yang, J.; Wu, C. Dual targeting of retinoid X receptor and histone deacetylase with DW22 as a novel antitumor approach. Oncotarget, 2015, 6(12), 9740-9755.
[http://dx.doi.org/10.18632/oncotarget.3149] [PMID: 25762635]
[208]
Luan, Y.; Li, J.; Bernatchez, J.A.; Li, R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J. Med. Chem., 2019, 62(7), 3171-3183.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00189] [PMID: 30418766]
[209]
Heltweg, B.; Gatbonton, T.; Schuler, A.D.; Posakony, J.; Li, H.; Goehle, S.; Kollipara, R.; Depinho, R.A.; Gu, Y.; Simon, J.A.; Bedalov, A. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res., 2006, 66(8), 4368-4377.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3617] [PMID: 16618762]
[210]
Peck, B.; Chen, C.-Y.; Ho, K.-K.; Di Fruscia, P.; Myatt, S. S.; Coombes, R. C.; Fuchter, M. J.; Hsiao, C.-D.; Lam, E. W.-F. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther, 2010, 9(4), 844-855. 1..
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0971]
[211]
Jing, H.; Hu, J.; He, B.; Negrón Abril, Y.L.; Stupinski, J.; Weiser, K.; Carbonaro, M.; Chiang, Y.L.; Southard, T.; Giannakakou, P.; Weiss, R.S.; Lin, H. A SIRT2-selective inhibitor promotes c-myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell, 2016, 29(3), 297-310.
[http://dx.doi.org/10.1016/j.ccell.2016.02.007] [PMID: 26977881]
[212]
Cui, H.; Kamal, Z.; Ai, T.; Xu, Y.; More, S.S.; Wilson, D.J.; Chen, L. Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach. J. Med. Chem., 2014, 57(20), 8340-8357.
[http://dx.doi.org/10.1021/jm500777s] [PMID: 25275824]
[213]
Rumpf, T.; Schiedel, M.; Karaman, B.; Roessler, C.; North, B.J.; Lehotzky, A.; Oláh, J.; Ladwein, K.I.; Schmidtkunz, K.; Gajer, M.; Pannek, M.; Steegborn, C.; Sinclair, D.A.; Gerhardt, S.; Ovádi, J.; Schutkowski, M.; Sippl, W.; Einsle, O.; Jung, M. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun., 2015, 6, 6263.
[http://dx.doi.org/10.1038/ncomms7263] [PMID: 25672491]
[214]
Afifi, S.; Michael, A.; Azimi, M.; Rodriguez, M.; Lendvai, N.; Landgren, O. Role of histone deacetylase inhibitors in relapsed refractory multiple myeloma: A focus on vorinostat and panobinostat. Pharmacotherapy, 2015, 35(12), 1173-1188.
[http://dx.doi.org/10.1002/phar.1671] [PMID: 26684557]
[215]
An, Z.; Lv, W.; Su, S.; Wu, W.; Rao, Y. Developing potent PROTACs tools for selective degradation of HDAC6 protein. Protein Cell, 2019, 10(8), 606-609.
[http://dx.doi.org/10.1007/s13238-018-0602-z] [PMID: 30603959]
[216]
Wu, H.; Yang, K.; Zhang, Z.; Leisten, E.D.; Li, Z.; Xie, H.; Liu, J.; Smith, K.A.; Novakova, Z.; Barinka, C.; Tang, W. Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity. J. Med. Chem., 2019, 62(15), 7042-7057.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00516] [PMID: 31271281]
[217]
Schiedel, M.; Rumpf, T.; Karaman, B.; Lehotzky, A.; Gerhardt, S.; Ovádi, J.; Sippl, W.; Einsle, O.; Jung, M. Structure-based development of an affinity probe for sirtuin 2. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 2252-2256.
[http://dx.doi.org/10.1002/anie.201509843] [PMID: 26748890]
[218]
Olson, C.M.; Jiang, B.; Erb, M.A.; Liang, Y.; Doctor, Z.M.; Zhang, Z.; Zhang, T.; Kwiatkowski, N.; Boukhali, M.; Green, J.L.; Haas, W.; Nomanbhoy, T.; Fischer, E.S.; Young, R.A.; Bradner, J.E.; Winter, G.E.; Gray, N.S. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol., 2018, 14(2), 163-170.
[http://dx.doi.org/10.1038/nchembio.2538] [PMID: 29251720]
[219]
Churcher, I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J. Med. Chem., 2018, 61(2), 444-452.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01272] [PMID: 29144739]
[220]
Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.027] [PMID: 28223226]
[221]
Mullard, A. Arvinas’s PROTACs pass first safety and PK analysis. Nat. Rev. Drug Discov., 2019, 18(12), 895.
[http://dx.doi.org/10.1038/d41573-019-00188-4] [PMID: 31780851]
[222]
Chamberlain, P.P.; Hamann, L.G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol., 2019, 15(10), 937-944.
[http://dx.doi.org/10.1038/s41589-019-0362-y] [PMID: 31527835]
[223]
Zhou, B.; Hu, J.; Xu, F.; Chen, Z.; Bai, L.; Fernandez-Salas, E.; Lin, M.; Liu, L.; Yang, C.Y.; Zhao, Y.; McEachern, D.; Przybranowski, S.; Wen, B.; Sun, D.; Wang, S. Discovery of a small- molecule degrader of bromodomain and extra-terminal (bet) proteins with picomolar cellular potencies and capable of achieving tumor regression. J. Med. Chem., 2018, 61(2), 462-481.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01816] [PMID: 28339196]
[224]
Okuhira, K.; Demizu, Y.; Hattori, T.; Ohoka, N.; Shibata, N.; Nishimaki-Mogami, T.; Okuda, H.; Kurihara, M.; Naito, M. Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci., 2013, 104(11), 1492-1498.
[http://dx.doi.org/10.1111/cas.12272] [PMID: 23992566]
[225]
Chan, K.H.; Zengerle, M.; Testa, A.; Ciulli, A. Impact of target warhead and linkage vector on inducing protein degradation: comparison of bromodomain and extra-terminal (bet) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I- BET726) BET inhibitor scaffolds. J. Med. Chem., 2018, 61(2), 504-513.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01912] [PMID: 28595007]
[226]
Crew, A.P.; Raina, K.; Dong, H.; Qian, Y.; Wang, J.; Vigil, D.; Serebrenik, Y.V.; Hamman, B.D.; Morgan, A.; Ferraro, C.; Siu, K.; Neklesa, T.K.; Winkler, J.D.; Coleman, K.G.; Crews, C.M. Identification and characterization of von hippel-lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J. Med. Chem., 2018, 61(2), 583-598.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00635] [PMID: 28692295]
[227]
Cyrus, K.; Wehenkel, M.; Choi, E.Y.; Han, H.J.; Lee, H.; Swanson, H.; Kim, K.B. Impact of linker length on the activity of PROTACs. Mol. Biosyst., 2011, 7(2), 359-364.
[http://dx.doi.org/10.1039/C0MB00074D] [PMID: 20922213]
[228]
Lai, A.C.; Toure, M.; Hellerschmied, D.; Salami, J.; Jaime- Figueroa, S.; Ko, E.; Hines, J.; Crews, C.M. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 807-810.
[http://dx.doi.org/10.1002/anie.201507634] [PMID: 26593377]
[229]
Shah, R.R.; Redmond, J.M.; Mihut, A.; Menon, M.; Evans, J.P.; Murphy, J.A.; Bartholomew, M.A.; Coe, D.M. Hi-JAK-ing the ubiquitin system: The design and physicochemical optimisation of JAK PROTACs. Bioorg. Med. Chem., 2020, 28(5), 115326.
[http://dx.doi.org/10.1016/j.bmc.2020.115326] [PMID: 32001089]
[230]
Hughes, S.J.; Ciulli, A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem., 2017, 61(5), 505-516.
[http://dx.doi.org/10.1042/EBC20170041] [PMID: 29118097]
[231]
Drummond, M.L.; Williams, C.I. In silico modeling of PROTAC- mediated ternary Complexes: validation and application. J. Chem. Inf. Model., 2019, 59(4), 1634-1644.
[http://dx.doi.org/10.1021/acs.jcim.8b00872] [PMID: 30714732]
[232]
Gadd, M.S.; Testa, A.; Lucas, X.; Chan, K.H.; Chen, W.; Lamont, D.J.; Zengerle, M.; Ciulli, A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol., 2017, 13(5), 514-521.
[http://dx.doi.org/10.1038/nchembio.2329] [PMID: 28288108]
[233]
Gasic, I.; Groendyke, B.J.; Nowak, R.P.; Yuan, J.C.; Kalabathula, J.; Fischer, E.S.; Gray, N.S.; Mitchison, T.J. Tubulin resists degradation by cereblon-recruiting PROTACs. Cells, 2020, 9(5), 1083.
[http://dx.doi.org/10.3390/cells9051083] [PMID: 32349222]
[234]
Zeng, M.; Xiong, Y.; Safaee, N.; Nowak, R.P.; Donovan, K.A.; Yuan, C.J.; Nabet, B.; Gero, T.W.; Feru, F.; Li, L.; Gondi, S.; Ombelets, L.J.; Quan, C.; Jänne, P.A.; Kostic, M.; Scott, D.A.; Westover, K.D.; Fischer, E.S.; Gray, N.S. Exploring targeted degradation strategy for oncogenic KRAS(G12C). Cell Chem. Biol., 2020, 27(1), 19-31.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.12.006] [PMID: 31883964]
[235]
Sun, Y.; Zhao, X.; Ding, N.; Gao, H.; Wu, Y.; Yang, Y.; Zhao, M.; Hwang, J.; Song, Y.; Liu, W.; Rao, Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res., 2018, 28(7), 779-781.
[http://dx.doi.org/10.1038/s41422-018-0055-1] [PMID: 29875397]
[236]
Sun, Y.; Ding, N.; Song, Y.; Yang, Z.; Liu, W.; Zhu, J.; Rao, Y. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia, 2019, 33(8), 2105-2110.
[http://dx.doi.org/10.1038/s41375-019-0440-x] [PMID: 30858551]
[237]
Buhimschi, A.D.; Armstrong, H.A.; Toure, M.; Jaime-Figueroa, S.; Chen, T.L.; Lehman, A.M.; Woyach, J.A.; Johnson, A.J.; Byrd, J.C.; Crews, C.M. Targeting the C481S ibrutinib-resistance mutation in bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry, 2018, 57(26), 3564-3575.
[http://dx.doi.org/10.1021/acs.biochem.8b00391] [PMID: 29851337]
[238]
George, A.J.; Hoffiz, Y.C.; Charles, A.J.; Zhu, Y.; Mabb, A.M. A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front. Genet., 2018, 9(29), 29.
[http://dx.doi.org/10.3389/fgene.2018.00029] [PMID: 29491882]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy